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In this paper, we treat proximity graphs as theoretical road networks and evaluate the configuration and the
travel efficiency on proximity graphs. We analyze the configuration of proximity graphs in terms of the length of
graph edge and the efficiecy of travel on the graphs to compare with the property of ideal road network pattern.
In conclusion, network distance on the relative neighborhood graph which is a kind of proximity graph is similar
to rectilinear distance in terms of edge length and travel distance, but is different in terms of ratio to Euclidean
distance.
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1. Introduction
Transportation networks consist of several kind of trans-

portation systems like road, railway, liner, airline and so on.
Especially, road network makes a skeleton of city or region
and there is no same pattern in the world. There is a few
grid pattern as theoretical road networks in urban planning.
Network consists of line data which is made with nodes and
edges, and the efficiency of network depends on the config-
uration of network.

Okabe et al. (2000) introduces the theory of computa-
tional geometry to construct geometric graphs. The geo-
metric graphs defined on the basis of proximity relations
are called “proximity graphs”. The proximity graphs have
many applications in engineering, particularly to morpho-
logical problems, and are recently developed in the field of
computational morphology like spatial and cluster analy-
sis, computer vision, pattern recognition and computational
perception. When it is given a set of points on the plane,
it is desired to find some structure among the points in the
form of edges connecting a subset of the pairs of points.
Watanabe (2005) analyzes the road network pattern of ma-
jor cities in Japan using proximity graphs and find that the
edges of the relative neighborhood graph include most of
the grid road.

In this paper, we treat proximity graphs as the ideal road
networks and evaluate the configuration and the travel effi-
ciency on proximity graphs. In the next section, we define
the notations and introduce the proximity graphs and some
graphs related to them. In Sec. 3, we analyze the configu-
ration of proximity graphs in terms of the length of graph
edge. It hasn’t been reported that the estimation of edge
length of all proximity graphs, so we estimate the length and
number of edges using the theory of the geometric proba-
bility. In Sec. 4, we analyze the efficiecy of travel on the
graphs to compare with some routing system of ideal road
network pattern.

2. Mathematical Preliminaries
In graph theory, a graph is a set of objects called points,

nodes, or vertices connected by links called lines or edges.
A geometric graph G = (P, E) consists of the set of

points given by P = {p1, . . . pn} and the set of edges given
by E = {e1, . . . em}. Let S be area of arbitrary region,
d(pi , p j ) be Euclidean distance between pi and p j . The
total number of points is |P| = n and the total number of
edges is |E | = m. The density of points is ρ = n/S.

We call generally connected geometric graph as PG and
denote it by GPG = (P, EPG). We call directed graph
if the two directions are counted as being distinct edge,
and not undirected graph. A subgraph of G is denoted
by G ′ = (P ′, E ′) if and only if G ′ satisfies following
conditions: P ⊆ P ′ and E ⊆ E ′.

The proximity Graphs are developed by several academic
field and contain following graphs.

Reciprocal Pairs (RP) is obtained by joining two points
pi , p j of P with an edge if and only if pi is the nearest to p j

and vice versa. The edge is originally direct graph, but we
treat it as undirected graph and denote it GRP = (P, ERP).

Nearest Neighborhood Graph (NNG) is obtained by join-
ing two points pi , p j of P with an edge if and only if pi

is the nearest to p j . The edge is originally direct graph,
but we treat it as undirected graph and denote it GNNG =
(P, ENNG).

Relative Neighborhood Graph (RNG) is obtained by
joining two points pi , p j of P with an edge if and only
if lune does not contain any other points of P in its inte-
rior. The lune is defined as the intersection of the two discs
centered at pi and p j . We denote it GRNG = (P, ERNG).

Gabriel Graph (GG) is obtained by joining two points
pi , p j of P with an edge if and only if the circle with the
diameter pi , p j does not contain any other points of P in its
interior. We denote it GGG = (P, EGG).

Delaunay Triangle (DT) is obtained by joining tree
points of P with an edge if and only if triangle does not
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Fig. 1. Proximity graphs on same random points.

contain any other points of P in its interior. We denote it
GDT = (P, EDT). DT is dual graph of Voronoi diagram.

Minimum Spanning Tree (MST) is not proximity graph
because MST needs to be global optimum, but related with
proximity graphs. MST is defined as the tree which the sum
of the Euclidean length of all the edges attains the minimum
over all trees. The number of edges is mMST = n−1 because
there is no circuit. We denote it GMST = (P, EMST).

Complete Graph (CG) is obtained by joining two points
pi , p j of P with an edge if each pair of points has an edge
connecting them, and denote it by GCG = (P, ECG). The
number of edges is mCG = n(n − 1)/2 because there are
pairs of all nodes.

Each proximity graph and its related graphs have follow-
ing relation: ERP ⊆ ENNG ⊆ EMST ⊆ ERNG ⊆ EGG ⊆
EDT ⊆ ECG. Figure 1 shows these proximity graphs con-
structed with random 100 points.

3. Evaluation of Graph Configuration
3.1 The length of graph edges with random points in

previous works
It has been reported that the estimation of edge length of

RP, NNG, GG and DT, but that of RNG and MST are un-
known. We estimate those approximately using geometric
probability.

We assume a random pattern with theoretical density of
points ρ per unit area. Poisson probability law are used to
obtain the probability density function of distance from an
arbitrary locus to the nearest points. The random variable is
denoted by l and a particular value of this distance variable
is indicated by L . Let the probability density function of l
be f (l), the expectation be µ and the variance be σ 2.

The result of RP is obtained by Pickard (1982) as follows:
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The result of NNG is obtained by Clark and Evans (1954)
as follows:

fNNG(l) = 2ρπle−ρπl2
, (2)
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The result of GG is obtained by Møller (1994) as follows:
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The result of DT is obtained by Collins (1968) and Miles
(1970) as follows:
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where Erfc is the complementary error function.
3.2 Estimation of the length of graph edges of RNG

and MST
The result of RNG is not obtained and we derive using

geomeric probability. At first, we derive the nearest neigh-
bor distance with restricted search region. It has been estab-
lished that the probability of finding exactly x points in an
arbitrary area is given by the Poisson probability law. Let
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Fig. 2. Search region for RNG.

the arbitrary region with area A, and assume region con-
tains an average of ρ points per unit area. The probability
that this region contains exactly x points is

Pr(x, A) = (ρ A)x

x!
e−ρ A. (5)

The probability of finding no points in a region with area A
is obtained from Eq. (5) by putting x = 0. That probability
is

Pr(0, A) = e−ρ A. (6)

The region must contain at least one point on condition that
the distance to the nearest point in the region L is less than
l. So, the probability that the distance of two points is less
than l is equal to the probability of finding at least one point
in the region. That probabiltiy is

F(l) = 1 − Pr(0, A). (7)

F(l) is accumulation of probabilistic density function, so
f (l) is obtained by differentiation with respect to l as fol-
lows:

f (l) = −dPr(0, A)

dl

= − d

dl
e−ρ A. (8)

RNG is obtained by joining two points pi , p j of P with an
edge if and only if lune does not contain any other points of
P in its interior. As this lune is the gray region of RNG in
Fig. 2, the area of this lune is (2π/3−√

3/2)l2. We replace
(2π/3 − √

3/2) by ω which doesn’t contain the terms of l.
So, we substitute ωl2 for A and Eq. (8) is

f (l) = − d

dl
e−ρωl2

= 2ρωle−ρωl2
. (9)

Laplacian is known to be∫ ∞
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Fig. 3. Search region for MST.

The variance is

σ 2 =
∫ ∞

0
(l − µ)2 f (l)dl

=
∫ ∞

0
l2 f (l)dl − µ2

= 1

ρω
− π

4ρω
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. (12)

After substituting ω by (2π/3−√
3/2) in Eqs. (9), (11) and

(12), we obtain f (l), µ and σ as follows:
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The estimation of length of MST which needs global op-
timum is more difficult than that of proximity graphs that
can be constructed only with local information. Therefore,
we must think an approximated method using nearest neigh-
bor distance. The construction principle of MST is approx-
imated as the set of unisolated edges because MST is a tree
which doesn’t have isolated edge. We can think that MST
is approximately obtained by joining two points pi , p j of
P with an edge if and only if crescent does not contain any
other points of P in its interior. This crescent is defined
as the conplements of the two discs centered at pi and pk

which is assumed as connected point of MST. We can con-
nect pi and p j even if pi is the closest point from pi because
we limit the search region within this crescent. As this cres-
cent is the gray region in Fig. 3, the area of this crescent
is A = (π/3 + √

3/2)l2. We replace (π/3 + √
3/2) by

ω which doesn’t contain the terms of l as same manner of
RNG. After substituting ω by (π/3+√

3/2) in Eq. (9), (11)
and (12), we obtain f (l), µ and σ as follows:
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Fig. 4. PDF of edge length of proximity graphs.

Fig. 5. Proximity graphs with regular points.

We compare the expectation of length with estimations in
former researches. As lower bound, Furuyama (2003) es-
timated µL

MST = 0.64/
√

ρ from the component percentages
of nearest neighbor links using numerical result. As upper
bound, Robert (1968) estimated µU

MST = 0.707/
√

ρ. The
expectation of length µMST which is derived by this crescent
is very close to the lower bound derived by Furuyama and
our approximation using the nearest neighbor distance with
the restricted search region within crescent is similar to the
lower bound of MST.

Figure 4 shows the probabilistic density functions with
ρ=1. As the search region become smaller from RP to DT,
the length of edges become longer because the number of
connectable points increase. As the distribution of edge
length shifts to the right from RP to DT, the expectation and
the variance also become larger. Especially, the functions of
RNG and MST which are derived in this section lie between
that of NNG and GG.
3.3 Comparison with the length of graph edges with

regular points
Figure 5 shows the proximity graphs with regular points

of triangular lattice, square lattice and hexagonal lattice. If
the node is degenerated, we include the edges. As you can
see, RNG can construct typical grid road network on each
lattice.

In the region which contain n points in area S, we can
easily calculate the total number and length of edges if we
don’t consider the condition of the boundary. Table 1 shows

Table 1. Total number of graph edges of regular lattice.

Triangle Square Hexagon

RP 1
2 n 1

2 n 1
2 n

NNG n n n

MST n − 1 n − 1 n − 1

RNG 3n 2n 3
2 n

GG 3n 2n

DT 3n

Fig. 6. Average length of graph edges.

the total number of edges, and Table 2 shows the total length
of edges

By deviding total length of edges by total number of
edges, we get the average length of edge. From the result of
random point in previous section, Table 3 shows the result
of the average length of graph edges in both regular point
and random point. Figure 6 shows the numerical result of
Table 3 with ρ = 1. On random point, the average length
of edge gets longer from RP to DT, and is less than that
of regular lattice except DT. On triangle lattice and square
lattice, the average length of edges hardly changes from RP
to DT. On hexagonal lattice, the average length of edges
hardly changes from RP to RNG, but get longer from GG
to DT.

4. Evaluation of Travel Efficiency on Graphs
4.1 Model description

In this section, we analyze the efficiecy of travel on the
graphs to compare with some routing system of ideal road
network pattern. Most of transportation model treat dis-
crete network or continuous plane. On continuous plane,
there are several kind of theoretical distance like Euclidean
distance and rectilinear distance. We call the set of edges
network when the edges have attribution like distance.

We assume a random pattern with theoretical density of
points ρ per unit area. There are n demand points in rect-
angular region whose side is a and area is S = a2. The trip
demand uniformly and independently distributed between
two points and the total of trips is n(n − 1).

Types of distance are Euclidean distance u, rectilinear
distance r and network distance d, and “the travel distance”
and “the ratio to Euclidean distance” are compared.

The distance of two point between pi = (xi , yi ) and
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Table 2. Total length of graph edges of regular lattice.
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Table 3. Average length of graph edges.
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p j = (x j , y j ) of Euclidean distance u and rectilinear dis-
tance r are respectively defined as follows:

u
def=

√
(xi − x j )2 + (yi − y j )2, (15)

r
def= |xi − x j | + |yi − y j |. (16)

Network distance is the distance on the shortest path us-
ing the Dijkstra’s algorithm. Each trip travel on undirected
graph G = (P, E) which is proximity graph and we treat
RNG, GG and DT for network because they are connected
graph.
4.2 Comparison with travel distance

Distance distribution is the probabilistic density function
f (l) of distance l. The probabilistic density function fU (u)

of Euclidean distance u is derived by Ghosh (1951) in rect-
angular region as follows:

fU (u)

=
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and the expectation of Euclidean distance is
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� 0.521a.

Table 4. Average distance.

Average distance

Euclidean distance 0.521

Rectilinear distance 0.667

Network distance on RNG 0.668

Network distance on GG 0.583

Network distance on DT 0.551

Table 5. The ratio of each distance to Euclidean distance.

Maximum Average RF

Rectilinear distance 1.414 1.274 1.279

Network distance on RNG 4.143 1.293 1.280

Network distance on GG 1.987 1.121 1.116

Network distance on DT 1.402 1.058 1.056

The probabilistic density function fR(r) of rectiliner dis-
tance r is derived by Fairthorne (1963) in rectangular region
as follows:

fR(r) =




2r

a4

(
r2

3
− 2ar + 2a2

)
, (0 ≤ r ≤ a)

2

3a4
(2a − r)3, (a < r ≤ 2a)

(18)

and the expectation of rectilinear distance is

µR = 2

3
a

� 0.667a.
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Fig. 7. Distance distribution on RNG.

Fig. 8. Distance distribution on GG.

Fig. 9. Distance distribution on DT.

We test ten numerical patterns of n = 1000 and a = 106,
and compare those numerical results with theoretical re-
sults. Table 4 shows the result of average distance. Distance
distribution of RNG, GG and DT is respectively shown in
Figs. 7, 8 and 9. The sign of reverse-triangle on axis indi-
cate average distance d̄ in each figure. Solid lines indicate
distance distributions of Euclidean distance and rectilinear
distance, and vertical lines on axis indicate average of them.
Average distance µU of Euclidean distance is shorter than
µR of rectiliear distance.

From Fig. 7, form of distribution of RNG is close to that
of rectilinear distance. From Table 4, average of RNG is
also close to that of rectilinear distance.

From Fig. 8, form of distribution of GG is intermediate
of that of Euclidean distance and rectilinear distance. From
Table 4, average of GG is also intermediate of that of Eu-
clidean distance and rectilinear distance.

From Fig. 9, form of distribution of DT is close to that
of Euclidean distance. From Table 4, average of DT is also
close to that of Euclidean distance.

Fig. 10. Ratio distribution of RNG.

Fig. 11. Ratio distribution of GG.

Fig. 12. Ratio distribution of DT.

4.3 Comparison with the ratio to Euclidean distance
The ratio of rectilinar distance r to Euclidean distance u

is denoted by h, and is defined as follows:

h = r

u

= |xi − x j | + |yi − y j |√
(xi − x j )2 + (yi − y j )2

(1 ≤ r ≤
√

2). (19)

The probabilistic density function fH (h) is derived by
Tanaka et al. (2007) in rectangular region as follows:

fH (h) = 8(h + 3
√

2 − h2)

3(h + √
2 − h2)3

√
2 − h2

(20)
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and the expectation of ratio is

µH =
∫ √

2

1
h fH (h)dh

= 1

3

{
5 log(1 +

√
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√
2(1 −

√
2)

}
� 1.274.

The ratio of network distance di j to Euclidean distance
ui j between point i and j is denoted by k, and is defined as
follows:

k =

n∑
i=1

n∑
j=i+1

di j

ui j

n(n − 1)/2
. (21)

Route Factor (RF) is defined as the ratio of Average dis-
tance of network distance to Average distance of Euclidean
distance by Vaughan (1987), and is derived as follows:

RFR = µR

µU

=
2
3 a{

1
15 (2 + √

2) + 1
3 log(1 + √

2)
}

a

� 1.279.

RFR is different from µH , but result is numerically similar.
RF of network distance on graph is

RFD =

n∑
i=1

n∑
j=i+1

di j

n∑
i=1

n∑
j=i+1

ui j

. (22)

Table 5 shows the result of ratio to Euclidean distance
of rectilinear distance and network distance of RNG, GG
and DT. Average ratio is quite similar to RF of rectilinear
distance and network distance on proximity graphs. In both
average ratio and RF, rectiliear distance is quite similar
to network distance on RNG. We can conclude that RNG
have same character with grid road network from view of
travel efficiency. In maximum of ratio, Euclidean distance
is intermediate of network distance on GG and DT.

Ratio distribution of RNG, GG and DT is respectively
shown in Figs. 10, 11 and 12. In each figure, sign of
reverse-triangle on axis indicate average distance h̄. Solid
line indicate ratio distributions of rectilinear distance, and
vertical line on axis indicate average of that.

The curve of rectilinear distance diverges at h = √
2 and

is not similar to that of proximity graphs. From the view of

ratio to Euclidean distance, rectilinear distance and network
distance on RNG have different character. The reason of
this diffence seems to be related with the difference between
the continuous plane and the discrete network.

5. Conclusion
In this paper, we treat these proximity graphs as the ideal

road networks and evaluate the configuration of road net-
works and efficiency on them using proximity graphs. We
analyze the configuration of proximity graphs in terms of
the length of graph edge and the efficiecy of travel on the
graphs to compare with the property of ideal road network
pattern.

We estimate the length and the number of edges of RNG
and MST using the theory of the geometric probability. The
length of edge of RNG and MST lie between that of NNG
and GG. The average length of edge on random points is
less than that on regular lattice.

The network distance on RNG which is a kind of proxim-
ity graph is similar to rectilinear distance in terms of edge
length and travel distance, but is different in terms of ratio
to Euclidean distance.
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