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This paper deals with the kth nearest rectilinear distance of two regular point patterns: square and diamond
lattices. The probability density functions of the kth nearest rectilinear distance are theoretically derived for
k = 1, 2, . . . , 8. Upper and lower bounds of the kth nearest distance are also derived. As an application of the
kth nearest distance, we consider a facility location problem with closing of facilities. The objective is to find
the best configuration of facilities that minimizes the average rectilinear distance from residents to their nearest
open facility when some existing facilities are closed. Assuming that facilities are closed independently and at
random, we show that the diamond lattice is the best if at least 73% of facilities are open.
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1. Introduction
Facility location problems aim to find the optimal loca-

tion of facilities. The most frequently used objective is min-
imization of the sum of distances from residents to their
nearest facility. However, when some existing facilities are
closed, distances to the kth nearest facility are also impor-
tant. For example, when locating emergency facilities such
as hospitals, fire stations, and refuges, the second and third
nearest distances should be taken into consideration. This
paper analyses facility locations using the kth nearest dis-
tance.

Analytical expressions of the kth nearest distance have
been obtained for several patterns. The probability den-
sity function of the nearest distance was derived in Clark
and Evans (1954) for the random pattern, Persson (1964)
for the square lattice, and Holgate (1965) for the triangular
lattice. The probability density function of the kth nearest
distance was derived in Dacey (1968) for the random pat-
tern, Koshizuka (1985) for k = 1, 2, 3 for the square lattice,
and Miyagawa (2009) for k = 1, 2, . . . , 7 for the square,
triangular, and hexagonal lattices. These distances are mea-
sured as Euclidean distances. Although Euclidean distances
are good approximations for actual travel distances, rec-
tilinear distances are more suitable for cities with a grid
road network. In fact, rectilinear distances have been fre-
quently used in facility location models (Wesolowsky and
Love, 1972; Drezner, 1987; Francis et al., 1992). The prob-
ability density function of the nearest rectilinear distance
was derived in Larson and Odoni (1981) for the random
pattern. The higher order rectilinear distances of regular
patterns have not been derived previously.

We focus on the kth nearest rectilinear distance of regular
and random point patterns shown in Fig. 1. The regular pat-
terns that we consider are the square and diamond lattices.
The diamond lattice is constructed by rotating the square
lattice at angle π/4. These two regular patterns are identi-

cal for Euclidean distances, but not for rectilinear distances.
The actual distribution of public facilities can be regarded
as the intermediate pattern between regular and random pat-
terns. The theoretical results of the extremes of regular and
random will give useful information to empirical studies.
We assume that these patterns continue infinitely in an un-
bounded region. This assumption allows us to derive the
kth nearest distance without taking into account the effect
of the boundary.

There have been some studies concerning a facility loca-
tion problem with closing of facilities. Gregg et al. (1988)
presented a stochastic programming approach for siting and
closing public facilities. Wang et al. (2003) studied a budget
constrained location problem to consider opening new fa-
cilities and closing existing facilities simultaneously. ReV-
elle et al. (2007) investigated facility closing in a competi-
tive environment and in the situation of financial exigency.
Diamond and Wright (1987) and Church and Murray (1993)
developed a multiobjective model for school closing. The
present paper differs from these works in employing an ana-
lytical approach based on the kth nearest rectilinear distance
of the regular and random patterns.

The remainder of this paper is organized as follows. The
next section derives the probability density functions of the
kth nearest rectilinear distance for the regular and random
patterns. Section 3 gives the upper and lower bounds of the
kth nearest distance. Section 4 provides an application of
the kth nearest distance to a facility location problem. The
final section presents the conclusion of this paper.

2. kth Nearest Distance Distribution
Let Rk be the rectilinear distance from an arbitrary lo-

cation in a study region to the kth nearest point and fk(r)

be the probability density function of Rk . We call Rk and
fk(r) the kth nearest distance and the kth nearest distance
distribution, respectively. In this section, we derive the kth
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(a) square lattice (b) diamond lattice (c) random

Fig. 1. Regular and random point patterns.

(a) (b) (c)

Fig. 2. Bisector defined with rectilinear distances.

(a) square lattice (b) diamond lattice

Fig. 3. kth nearest regions.

nearest distance distributions fk(r) (k = 1, 2, . . . , 8) for
the two regular patterns.

Let Sk(r) be the area of the region such that Rk ≤ r in the
study region. Then the cumulative distribution function of
Rk , denoted by Fk(r), which is the probability that Rk ≤ r ,
is

Fk(r) = Sk(r)

S
(1)

where S is the area of the study region. Differentiating
Eq. (1) with respect to r gives the kth nearest distance
distribution fk(r) as

fk(r) = 1

S

dSk(r)

dr
. (2)

To obtain Sk(r), we first define the bisector with recti-
linear distances. The shape of the bisector is classified into
three types as shown in Fig. 2. If the line through two points
has angle π/4 or 3π/4 with the x-axis, the bisector con-
sists of not only a straight line but also an area as shown
in Fig. 2(c); see Lee (1980). To avoid the indeterminacy,
we define the bisector as the straight perpendicular line, as
suggested by Okabe et al. (2000).

Since we assume that regular patterns continue infinitely,
Sk(r) can be calculated by considering only one point. Fig-
ure 3 shows the regions where the white point is the kth
nearest. We call these regions the kth nearest regions. The
innermost square is the nearest region, and the outside of
it is the second nearest region, followed by third, fourth,
. . . , eighth nearest regions. These kth nearest regions cor-
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a r

Fig. 4. S1(r) of the square lattice.

respond to order-k Voronoi polygons with the Manhattan
metric (Okabe et al., 2000).

Then Sk(r) is the area of the rectilinear circle, which is a
square rotated at angle π/4, centred at the white point with
radius r in the kth nearest region. For example, S1(r) of
the square lattice is obtained by calculating the area of the
rectilinear circle in the square as shown in Fig. 4. Let a be
the side length of the square. Then,

S1(r) =



2r2
(

0 < r ≤ a

2

)
a2 − 2(a − r)2

(a

2
< r ≤ a

)
.

(3)

Substituting Eq. (3) and S = a2 into Eq. (2), we obtain the
nearest distance distribution f1(r) as

f1(r) =




4ρr

(
0 < r ≤ 1

2
√

ρ

)

−4ρr + 4
√

ρ

(
1

2
√

ρ
< r ≤ 1√

ρ

) (4)

where ρ (= 1/a2) is the density of points. The kth nearest
distance distributions fk(r) are similarly obtained by cal-
culating Sk(r) in each kth nearest region. The average kth
nearest distance E(Rk) is given by

E(Rk) =
∫ ∞

0
r fk(r) dr. (5)

The details of fk(r) and E(Rk) are provided in Appendix
A.

fk(r) and E(Rk) of the random pattern are obtained by
the same way as with Euclidean distances in Dacey (1968)
as

fk(r) = 4ρr(2ρr2)k−1

(k − 1)!
exp(−2ρr2) (6)

E(Rk) = (2k − 1)!!

(2k − 2)!!

√
π

2
√

2ρ
. (7)

fk(r) of the regular and random patterns are illustrated in
Fig. 5, where the density of points is ρ = 1. Notice
that f7(r) = f8(r) for the square lattice, f3(r) = f4(r),
f5(r) = f6(r), and f7(r) = f8(r) for the diamond lattice.
The average kth nearest distances E(Rk) of the regular and
random patterns are given in Table 1. Note that E(R1) of
the diamond lattice is the smallest. This makes intuitive
sense, because the shape of the first nearest region of the di-
amond lattice is a rectilinear circle (see Fig. 3(b)). However,
E(R2), E(R3), E(R5), E(R7), E(R8) of the square lattice
are smaller than those of the diamond lattice.

3. Upper and Lower Bounds of the kth Nearest
Distance

In the previous section, we have theoretically derived the
kth nearest distance distributions fk(r) for k = 1, 2, . . . , 8.
Since calculating fk(r) for all k is practically impossible,
we obtain the upper and lower bounds of the kth nearest
distance Rk instead.

Consider a rectilinear circle with radius Rk . The recti-
linear circle has exactly one point in the circumference and
k − 1 points in the inside. Hence the upper (lower) bound
of the kth nearest distance Rk is the upper (lower) bound of
the radius of the rectilinear circle which contains k points.

The upper and lower bounds of Rk of the square lattice
are obtained as follows. Consider the case where k points
form a rectilinear circle, that is k = 2n2 − 2n + 1 (n :
natural number), as indicated by white points in Fig. 6(a).
Let a be the distance between two adjacent points. To
obtain the upper bound of Rk , let us consider a rectilinear
circle which contains more than k points. As shown in
Fig. 6(a), the outer rectilinear circle always contains more
than k points. The radius of the circle is na. Thus we have
the upper bound of Rk as

R1 < a, R5 < 2a, R13 < 3a, . . . , R2n2−2n+1 < na. (8)

Next, to obtain the lower bound of Rk , let us consider a rec-
tilinear circle which contains less than k points. As shown
in Fig. 6(a), the inner rectilinear circle always contains less
than k points. The radius of the circle is (n − 1)a. Thus we
have the lower bound of Rk as

R1 > 0, R5 > a, R13 > 2a, . . . , R2n2−2n+1 > (n − 1)a.

(9)

From Eqs. (8) and (9), and a = 1/
√

ρ, the upper and lower
bounds of the kth nearest distance Rk for general k are given
by {⌊

1

2
(
√

2k − 1 + 1)

⌋
− 1

}
1√
ρ

< Rk <

⌈
1

2
(
√

2k − 1 + 1)

⌉
1√
ρ

. (10)

The upper and lower bounds of Rk of the diamond lattice
are similarly obtained as⌊√

k
⌋

− 1
√

2ρ
< Rk <

⌈√
k
⌉

√
2ρ

. (11)

The upper and lower bounds of Rk of the two regular pat-
terns are shown in Fig. 7. The ranges of fk(r) and E(Rk)

for k = 1, 2, . . . , 8 are also shown in the figure. It can be
seen that the bounds of the diamond lattice are tighter than
those of the square lattice.

4. Application to a Facility Location Problem
In this section, we provide an application of the kth near-

est distance to a facility location problem. Assume that
residents are uniformly distributed. Although this assump-
tion is unrealistic, the method is applicable to realistic situa-
tions if the study region can be divided into subregions with
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Fig. 5. kth nearest distance distribution.

Table 1. Average kth nearest distance.

E(R1) E(R2) E(R3) E(R4) E(R5) E(R6) E(R7) E(R8)

square 0.500 0.833 1.167 1.333 1.500 1.667 1.833 1.833

diamond 0.471 0.943 1.179 1.179 1.650 1.650 1.886 1.886

random 0.627 0.940 1.175 1.371 1.542 1.696 1.838 1.969

a

2a/

(a) square lattice (b) diamond lattice

a

a/2

Fig. 6. Rectilinear circle which can (cannot) contain k points.

nearly uniform distributions. Under the uniformity assump-
tion, the optimal facility location is the diamond lattice as
shown in Larson and Odoni (1981). This is because the av-
erage distance to the nearest facility E(R1) of the diamond

lattice is the smallest (see Table 1). However, when some
existing facilities are closed, it is uncertain whether or not
the diamond lattice is still optimal.

Suppose that facilities are closed independently and at
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Fig. 7. Upper and lower bounds of the kth nearest distance.
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Fig. 8. Upper and lower bounds of the average distance to the nearest open facility.

random. Let p be the probability that facilities are open.
Residents are assumed to use their nearest open facility. The
residents whose nearest facility is closed have to use the
second nearest facility, if the second nearest is open. The
probability that the nearest facility is closed and the second
nearest is open is (1 − p)p. In general, the probability that
residents have to use the kth nearest facility is (1 − p)k−1 p.
Using this probability and the average kth nearest distance

E(Rk), we can express the average distance to the nearest
open facility E(R) as

E(R) = p
∞∑

k=1

(1 − p)k−1 E(Rk). (12)

We regard the facility configuration that minimizes E(R) as
the best.

Substituting E(Rk) for k = 1, 2, . . . , 8 and the upper and
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lower bounds of Rk for k ≥ 9 into Eq. (12) yields the upper
and lower bounds of E(R). Figure 8 depicts the upper and
lower bounds of the average distance to the nearest open
facility E(R) as a function of probability p. The upper
and lower bounds of E(R) are equivalent at p = 1 where
all facilities are open, and the difference increases with
decreasing p. By comparing the upper and lower bounds
of E(R), we can show the range of p that one pattern
outperforms the other. The diamond lattice outperforms
the square lattice, that is the upper bound of E(R) of the
diamond lattice is smaller than the lower bounds of the
square lattice, when

0.7257 < p ≤ 1. (13)

It follows that the diamond lattice is the best if at least 73%
of facilities are open.

E(R) of the random pattern is obtained from Eq. (7) as

E(R) =
√

π

2
√

2pρ
. (14)

The ratio of the average distance of the square (diamond)
lattice to that of the random pattern is 79.8% (75.2%) at
p = 1, and 89.0–89.6% (90.2–90.4%) at p = 0.5.

5. Conclusion
This paper has theoretically derived the kth nearest

distance distributions with rectilinear distances for k =
1, 2, . . . , 8 for the square and diamond lattices. These ana-
lytical expressions of higher order distances have not been
found in previous studies. As an application of the kth
nearest distance, we also have considered a facility location
problem with closing of facilities.

The following implications are worth noting. First, we
have revealed that some of the average kth nearest distances
of the square lattice are smaller than those of the diamond
lattice. This means that the diamond lattice is not always
optimal if the distances to the kth nearest facility are also
considered. Second, we have obtained the average distances
to the nearest open facility when facilities are closed inde-
pendently and at random. These average distances of reg-
ular and random patterns give an estimate for the distance
for actual facility patterns. Finally, we have proved that the
diamond lattice is the best if at least 73% of facilities are
open. This finding gives an insight into the further studies
on facility location problem with closing of facilities.
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Appendix A.
The kth nearest distance distributions fk(r) and the av-

erage kth nearest distances E(Rk) (k = 1, 2, . . . , 8) with
rectilinear distances of the square and diamond lattices are
as follows:

Square lattice

f1(r) =



4ρr
(

0 < r ≤ 1
2
√

ρ

)
−4ρr + 4

√
ρ

(
1

2
√

ρ
< r ≤ 1√

ρ

) E(R1) = 1

2
√

ρ

f2(r) = 8ρr − 4
√

ρ

(
1

2
√

ρ
< r ≤ 1√

ρ

)
E(R2) = 5

6
√

ρ

f3(r) = −8ρr + 12
√

ρ

(
1√
ρ

< r ≤ 3

2
√

ρ

)
E(R3) = 7

6
√

ρ

f4(r) = 8ρr − 8
√

ρ

(
1√
ρ

< r ≤ 3

2
√

ρ

)
E(R4) = 4

3
√

ρ

f5(r) =



4ρr − 4
√

ρ
(

1√
ρ

< r ≤ 3
2
√

ρ

)
−4ρr + 8

√
ρ

(
3

2
√

ρ
< r ≤ 2√

ρ

) E(R5) = 3

2
√

ρ

f6(r) = −8ρr + 16
√

ρ

(
3

2
√

ρ
< r ≤ 2√

ρ

)
E(R6) = 5

3
√

ρ

f7(r) = 8ρr − 12
√

ρ

(
3

2
√

ρ
< r ≤ 2√

ρ

)
E(R7) = 11

6
√

ρ

f8(r) = f7(r) E(R8) = E(R7)

Diamond lattice

f1(r) = 4ρr

(
0 < r ≤ 1√

2ρ

)
E(R1) =

√
2

3
√

ρ

f2(r) = −4ρr + 4
√

2ρ

(
1√
2ρ

< r ≤
√

2

ρ

)
E(R2) = 2

√
2

3
√

ρ

f3(r) = 4ρr − 2
√

2ρ

(
1√
2ρ

< r ≤
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2

ρ

)
E(R3) = 5

3
√

2ρ

f4(r) = f3(r) E(R4) = E(R3)

f5(r) = −4ρr + 6
√

2ρ

(√
2

ρ
< r ≤ 3√

2ρ

)
E(R5) = 7

3
√

2ρ

f6(r) = f5(r) E(R6) = E(R5)

f7(r) = 4ρr − 4
√

2ρ

(√
2

ρ
< r ≤ 3√

2ρ

)
E(R7) = 4

√
2

3
√

ρ

f8(r) = f7(r) E(R8) = E(R7)
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