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Dynamics in Co-evolving Networks of Active Elements
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We investigate the co-evolving dynamics in a weighted network of various dynamical elements, in which
the state of the elements at the nodes and the weights of the links interact with each other. First, we examine the
network of phase oscillators with various local, bottom-up rules for the weight of the link, and next investigate the
recurrent networks of neurons with the global, top-down learning rule of an extension of the infomax principle.
In both cases, some interesting properties of emergent dynamical patterns are found and characterized by mutual
information.
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1. A Co-evolving Network of Phase Oscillators
and Coupling Weights

Beautiful ordered pattern observed in nature has been
attracting the interest of the scientific researchers, because
it indicates the existence of an undelying mechanism which
generates such an ordered pattern from the disturbed and
randomized state. In general, many things in nature consist
of the aggregated elements, and then the formed pattern
represents a kind of a coherent state of the elements, in
which the interaction among the elements plays a critical
role in generating the order. In this context, we believe
that coupled dynamical system will provide a theoretical
framework to elucidate the underlying mechanism of the
emergence of the ordered collective behaviors.

What is essential in the coupled dynamical system is the
interaction among the dynamical elements. In this paper,
we focus on the coupling connections among the elements,
and address a question: how the structure of the connections
are determined in the coupled systems in nature? One possi-
bility is that the connections are fixed by the constraints due
to the physical properties of the real world. For example, if
the interaction is limited in a short range, the system is re-
garded as the case in which the dynamical elements occupy
the site of a lattice and they interact only with the nearest
neighborhoods. In contrast to the system with such a regu-
lar and static connections, there are other types of systems
in which they are coupled with more flexible and compli-
cated connections, which is often seen in the broad fields
of sciences: physics, chemistry, biology, and the social sci-
ences. This type of system can be regarded as dynamical
networks of active elements. It has been reported that there
exist some topological properties in their coupling struc-
tures, which suggests that their connections are not random,
but have a certain kind of structure. It is, however, still
unclear how the structures of connections are determined.
The significant feature observed in the type of system is that

the connection is flexible and can be changed depending on
the dynamical behavior of the elements. For example, in
neural networks, it is known that the synaptic coupling be-
tween neurons is altered depending on the activities of the
neurons, and believed that this activity-dependent change
in the synaptic connections causes the changes of neuronal
circuits, resulting in the emergence of functionality, such
as learning or memory. This activity-dependent changes of
the network were observed in a number of biological and
social networks, and would determine the connections in
the coupled dynamical systems, generating the interesting
collective behaviors. The distinctive characteristics of this
dynamical network are that both the coupling between the
nodes and the states of the active elements at the nodes in-
teract and evolve together. Hence, it is important to elu-
cidate the essential features of such co-evolving dynamics:
what types of connections are organized? what types of pat-
tern emerge?

Among the typical types of coupled dynamical systems,
the coupled limit-cycle system has been studied most in-
tensively. Limit-cycle oscillation is widely observed in real
dissipative systems, and the coupled limit-cycle oscillators
often generate a rich variety of collective behaviors. The
limit-cycle oscillation is structurally stable, and it can be de-
scribed by a simple model of phase oscillator that is mathe-
matically tractable (Kuramoto, 1984; Acebronet al., 2005).
Thus, the coupled oscillator system has served one of the
fundamental models to examine the essential nature of the
collective behaviors which emerge in coupled dynamical
systems. For this reason, we consider the coupled oscil-
lators to extend it to the co-evolving system by inducing the
evolution dynamics of the coupling connections. Using a
standard reduction technique, a network ofN limit-cycle
oscillators are described by the coupled phase equation
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dφi

dt
= ω − 1

N

∑

j

ki j sin(φi − φ j + α), (1)

where φi denotes the phase of the limit-cycle oscillation at
the i-th node of the network (i = 1, . . . , N ), and ω is its
natural frequency. The last term in the equation represents
the interaction between the oscillators, in which ki j is the
coupling weight from the j-th to the i-th oscillator. The
parameter α denotes the phase difference due to a short
transmission delay of the interaction.

We introduce the dynamics which describes the evolution
rule of the coupling weight, ki j (Aoki and Aoyagi, 2009).
This dynamics depends on the states of the oscillators at
the nodes. In this model, the state is given by the phase of
the oscillation, and it is natural that this dynamics depends
on the relative phases between the oscillators, not on the
absolute value of the phases. In this way, the dynamics is
given by

dki j

dt
= ε
(φi − φ j ), |ki j | ≤ 1, (2)

where ε determines the time scale of the dynamics of the
coupling weight ki j . Because the evolution of the coupling
weight tends to be very slow compared with that of the dy-
namical elements at the nodes, we assume that ε � 1. The
function 
(φ) defines the evolution rule of the coupling
weight as a function of the relative phase between oscilla-
tors. In general, this function is a 2π periodic function, and
then we assume the form 
(φ) = − sin(φ +β), considering
the lowest-order Fourier mode. The condition, |ki j | ≤ 1,
gives a constraint to the range of ki j , because the coupling
weight can not grow indefinitely in practical cases.

The mathematical model given above has two parameters
α and β. In particular, β controls the characteristics of
the evolution rule of the coupling weight. By varying the
value of β, the system drastically changes its pattern of
collective behavior and the coupling weights. We found
that this model exhibits three distinct types of the dynamical
patterns depending on the parameters: a two-cluster state,
a coherent state with a fixed phase relation, and a chaotic
state with frustration. We show an example of these states
in the case of the seven-oscillator system (Figs. 2, 3 and
4). In these figures, the time development of the state of
the system, {φi (t), ki j (t)}, is displayed by the sequence of
matrix graphs. As illustrated in Fig. 1, the value of φi is
represented by a circle graph at the diagonal position, and
the value of ki j is expressed by the color at the off-diagonal
position in the matrix graph.

In the two-cluster state shown in Fig. 2, the oscilla-
tors organize the two synchronized groups (α = 0.1π ,
β = −0.6π ). The initial phases φi (0) and coupling weights
ki j (0) are chosen randomly from uniform distributions on
[0, 2π) and [−1, 1], respectively. Then, the system realizes
two groups within which the oscillators of the group are
synchronized and the phase difference between the groups
is π . The coupling weights between the oscillators belong-
ing to the same cluster take ki j = k ji = 1, while those be-
tween the oscillators belonging to the different clusters take
ki j = k ji = −1. It is a result of the evolution rule of the
coupling weight. For the parameters β ∼ −π/2, the cou-
pling weights between the oscillators of similar phases are

i

j

kij

φi

Fig. 1. An illustration of the matrix graph shown in Figs. 2, 3 and 4. It
represents the state of the dynamical system, {φi (t), ki j (t)} of the model
which is given by Eqs. (1) and (2).

increased, whereas those between the oscillators of quite
different phases are decreased, owing to the form of the
function 
(φ). This like-and-like rule leads the system to
the emergence of the clustered state.

When the parameter β is set to −0.1π , a coherent state
emerges (Fig. 3), in which oscillators rotate coherently,
maintaining a fixed phase relationship among the oscilla-
tors. For this sequential phase-pattern, the coupling weights
are organized depending on the order of the phases. From
the leading oscillator to the succeeding one, a positive cou-
pling weight, ki j = 1, is formed, while the connection to
the opposite direction, k ji take a negative weight, −1. In
contrast to the case of two-cluster state, the form of 
(φ)

for β ∼ 0 is asymmetric with respect to the sign of the
phase difference. For this reason, the growth of the cou-
pling weight is strongly affected by the sequential order of
the oscillators, and it results in the emergence of this coher-
ent state.

If β=0.4π , the system does not settle into a fixed state,
in contrast to the above types of emergent patterns. In this
state, the phase relationship among the oscillators and the
coupling weights continue changing in time. Moreover, we
found that Lyapunov exponents take positive values, and
then we refer to it as a chaotic state (Fig. 4). In this state,

(φ) takes the opposite form to that of the two-cluster state,
which has the opposite effect on the evolution of the cou-
pling weight: the coupling weight between the synchro-
nized oscillators is decreased, while that between the os-
cillators of quite different phases is increased. According to
this evolution rule, a reciprocal destabilization of the phase
pattern and the network structure is observed.

In summary, we have investigated co-evolving dynamics
in a weighted network of phase oscillators in which phase
oscillators at the nodes and the weights of their links inter-
act and co-evolve. We found that this system exhibits three
distinct types of dynamical patterns: a two-cluster state, a
coherent state with a fixed phase relation, and a chaotic state
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Fig. 2. The emergence of a two-cluster state. The sequence of the matrix graphs displays the time development of the state of the dynamical system,
{φi (t), ki j (t)}. In this state, the phases of the oscillators, φi (t), are organized into two synchronized groups as shown in the diagonal blocks in
the matrix graphs. The coupling weights among the oscillators, ki j (t), shown in the off-diagonal blocks, take positive couplings (red) within a
synchronized group and negative couplings (blue) between the different groups. This two-cluster state emerges in the case of β ∼ −π/2, with which
the evolution rule of the coupling weight has a similar effect of like-and-like rule.
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Fig. 3. The emergence of a coherent state with a fixed phase relation. A sequential pattern of the oscillators are organized, in which a fixed phase
relationship is maintained over a long period. This state is observed for the parameter β ∼ 0, with which the evolution rule of the coupling weight is
strongly dependent on the order of the phases of oscillators, in a similar way as the spike-timing dependent plasticity in neural networks.

with frustration. These distinct dynamical behaviors can be
characterized by mutual information between the initial and
final phase patterns, and by entropy of the final phase pat-
tern. In Fig. 5, the mutual information is largest for the
coherent state. Since mutual information measures the in-
formation that the initial and final states share, the initial
phase pattern can be most easily inferred from the final
one in the coherent state. This suggests that the coherent
state preserves a phase pattern through the co-evolving dy-
namics. A similar situation is observed for the case of the
two-cluster state, except that the entropy is much smaller
than that for the coherent state. This is because the possible
phase patterns are restricted for the two-clustered state. For
the chaotic state, the mutual information takes almost zero
and the entropy is almost maximum. This fact implies that
the information of the initial state is lost with time and the
system is wandering over all possible phase patterns.

2. Firing Activity of Optimized Neuronal Net-
works

In the previous section, we descibed a simplified model
of co-evolving dynamics. In this simple model, the be-
havior of the system is reduced to a few essential param-
eters. Thus this model allowed us to understand the behav-
ior of the co-evolving systems without knowing the details
of the systems. However, because this model is an abstract
model, more specific models are needed to understand the
detailed behavior of individual systems, such as our brain.
As an example, here we describe a specific neuronal net-
work model to explain the activity of the neuronal networks
in the brain. This neuronal network model is a top-down
model, whose dynamics we derived to maximize an objec-
tive function, which is the mutual information in this case.
It is in a sharp contrast to the model in the previous sec-
tion, which explained the behavior of the co-evolving sys-
tems by using two bottom-up rules (Eqs. (1) and (2)). The
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Fig. 4. The emergence of a chaotic state with frustration. In contrast to the above two steady states, the structure of the network and the phase
relationship among the oscillators continue changing in time, and do not converge to a fixed state. This result is caused by the evolution rule specified
by β ∼ π/2, which has the opposite effect of the like-and-like rule in the two-cluster state. According to this anti-like-and-like rule, the system
exhibits a reciprocal destabilization of the phase pattern and the coupling weights.

neuronal network model in this section explains the activity
observed in the experiments of the neuronal networks from
an information-theoretic point of view.

Our brain is the most complex coupled dynamical sys-
tem. There are ∼ 109 neurons in our cerebral cortices, and
each of these neurons has ∼ 104 synaptic connections. In
terms of coupled dynamical systems, neurons in the brain
are regarded as active elements, and synaptic connections
among them correspond to the connections among active
elements. As an active element, the activity of a neuron is
characterized by the dynamics of the membrane potential.
The membrane potential of a neuron fluctuates around the
resting potential until the neuron receives a strong excita-
tory input. An excitatory input makes the membrane po-
tential cross the threshold, and the the neuron generates an
action potential. When the action potential reaches synaptic
terminals, the excitatory or inhibitory input is given to the
neurons connected by the synaptic terminals, and this input,
in turn, evokes the generation of action potentials in these
postsynaptic neurons. Thus, in our brain, a large number
of neurons interact through synaptic connections in a quite
complicated manner, and the brain activity consists of the
generation and propagation of firings, i.e., action potentials.

Although the number of neurons and complicated con-
nections among them have made researches on the central
nervous system (CNS) difficult, recent advances in multi-
neuronal recording have allowed us to observe phenom-
ena in the networks of the CNS that are much more com-
plex than previously thought to exist. The existence of in-
teresting types of neuronal activity, such as patterned fir-
ings, synchronization, oscillation, and global state transi-
tions has been revealed by multielectrode recording and cal-
cium imaging (Nadasdy et al., 1999; Cossart et al., 2003;
Ikegaya et al., 2004; Fujisawa et al., 2006; Sakurai and
Takahashi, 2006). Recently, we have succeeded in explain-
ing and reproducing patterned firings observed in experi-
ments on the basis of the process of “ information maxi-
mization” (Tanaka et al., 2009). The process of informa-
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Fig. 5. Mutual information between the initial and final phase patterns
and the entropy of the final phase pattern for the three asymptotic states
of a small system (N = 5). The parameter values α, β are the same as
in Figs. 2, 3 and 4. The horizontal dashed line represents the maximum
attainable entropy for the phase pattern.

tion maximization (infomax (Linsker, 1988)) maximizes the
information transmission from the input to the output of
a feedforward network. We extended infomax to the case
of recurrent networks, in which neurons are interconnected
and the input to the neurons at time t consists of their own
output at time t − 1. This algorithm adjusts the connec-
tion weights to realize the most efficient information trans-
fer from the input to the output. This learning algorithm
optimizes the information retention and transmission in the
model network. In other words, the model network self-
organizes to an information-efficient one through learning
by this algorithm. We found that the network optimized for
information retention exhibits (1) stereotyped spontaneous
activity (Hebb, 1949; Abeles, 1991) and (2) a critical neu-
ronal avalanche (Beggs and Plenz, 2003).
2.1 Repeated patterns and sequences

We examined the evolution of the spontaneous activity
in a neuronal network without external input. Figure 6(a)
shows the raster plot of the firing activity in the model net-
work before optimization. Neuronal firings are indicated
by triangles. To identify repeated activity in the model net-
work, we defined a repeated pattern as a spatial pattern of
neuronal firings that occurs at least twice in the test block.
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Fig. 6. Repeated spatial patterns and spatiotemporal sequences occurred frequently in the network after learning. (a) Raster plot before learning. When
the repeated patterns in a test block of 50,000 steps were colored, it was found that no pattern occurred more than once in this short raster plot before
learning. (b) Raster plot after learning. Several patterns appeared multiple times in the raster plot after learning. The repeated patterns are indicated
by consistently colored circles and connected by lines.
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Fig. 7. (a1) Raster plot before learning. Individual bursts in the spontaneous activity are indicated by different colors. The bursts before learning were
short and frequently interrupted by steps without firing. (a2) Raster plot after learning. The bursts after learning had much longer durations than
before learning. (b) Size distribution of avalanches. The black line corresponds to a slope of −1.5.

Coloring repeated patterns consisting of ≥ 3 firing neurons
in raster plots of the network, we found that there are few
repeated patterns in the activity of the network before opti-
mization. Colored patterns in Fig. 6(a) did not occur twice
in this short raster plot of 250 steps and were repeated later.
Thus, there are few repeated patterns in the network activ-
ity before learning. However, the number of repeated pat-
terns increased after learning (Fig. 6(b)). Several patterns
were repeated in a sample of 250 steps as seen in Fig. 6(b),
where the repeated patterns are indicated by consistently
colored circles and connected by lines. For example, the
purple pattern consisting of firings of neurons 8, 12, 29,

and 49 (indicated by arrows) occurs four times (t =4, 9, 34,
119, and 230) in this raster plot. Moreover, some patterns
appeared to constitute repeated sequences. For example,
sequence A, composed of the magenta, orange, and purple
patterns, appears three times in Fig. 6(b). This indicates that
the present algorithm embeds not only repeated patterns but
also repeated sequences of firings into the network struc-
ture as a result of the optimization. This result is consistent
with experimental results suggesting that the neuronal ac-
tivity in our brain consists not of uncorrelated firings, but of
repeated patterns and sequences of firings.

In the optimized network, when a pattern in a sequence
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is activated at one step, it is highly probable that the next
pattern in that sequence will be activated at the next step.
This predictability means that the state of the network at
one time step shares much information with the state at the
next time step. In contrast, when the dynamics of a network
is highly stochastic and thereby repeated patterns are rare,
we cannot predict which pattern follows a given pattern
nor reduce the uncertainty of the next pattern by using the
knowledge of the present pattern. Thus, the optimization of
information retention and transfer embeds repeated patterns
and repeated sequences of firings into the network structure.
2.2 Neuronal avalanches

We next examined the behavior of the same neuronal net-
work model in the case that the reliability of the neuronal
firing is low. When the neurons are less reliable, a neu-
ron does not always fire even if it receives a strong enough
input. Thus, the number of identically repeated sequences
is small, and the network seems to lose structured activ-
ity. However, we found characteristic network activity con-
sisting of firing in bursts (Fig. 7(a2)), which are defined as
consecutive firing steps that are immediately preceded and
followed by “silent” steps, with no firing. We found that af-
ter learning, the distribution P(s) of the burst size s, which
is the total number of firings in a burst, obeys a power-law
distribution P(s) ∝ sγ with γ ≈ −1.5, whereas, before
learning, we have P(s) ∝ exp(−αs) (Fig. 7(b)). This result
is consistent with experimental results. Recently, Beggs and
Plenz (2003) recorded the spontaneous activity of an organ-
otypic culture from the cortex using multielectrode arrays.
Defining an avalanche similarly to our bursts following a
period of inactivity, they found that the size distribution
of avalanches is accurately fit by a power-law distribution
with exponent −1.5. To explain this, they argued that a
neuronal network is tuned to minimize the information loss
and that this is realized when one firing induces an average
of one firing at the next step. They showed that this con-
dition yields the universal exponent −3/2, using the self-
organized criticality of the sandpile model (Bak et al., 1987;
Harris, 1989). This condition also holds for the present net-
work, because, after learning, each neuronal firing evoked
one firing in the next step on average. We thus conclude
that our neuronal network model reproduces the patterned
avalanche activity in the brain.

3. Conclusion
In conclusion, we consider two types of the co-evolving

dynamics in weighted network of dynamical elements. One
is the network of phase oscillators, in which the phase pat-
tern at the nodes modifies the weights between phase oscil-
lators via a local rule of slow dynamics for the weights. As
a result, we found that this system exhibits three types of
dynamical behaviors: a two-cluster state, a coherent state
with a fixed phase relation, and a chaotic state with frus-

tration. These distinct dynamical behaviors can be charac-
terized by mutual information between the initial and final
phase patterns, and by entropy of the final phase pattern.
In particular, when the local rule is similar to the spike-
timing dependent plasticity observed in recent neuronal ex-
periments, the system exhibits the coherent state, in which
the temporal order of all the phases of oscillators is pre-
served. Interestingly, the mutual information is maximal
for the coherent state. This result inspires us to adopt a top-
down principle that the system maximizes the mutual in-
formation among the dynamical states. The other network
we consider is the neuronal networks, in which the synaptic
weights are adjusted according to an extended version of the
infomax principle. In the case of highly reliable neurons,
the maximal information retention results that the system
exhibits some specific repeated sequential firing patterns.
In the case of less reliable neurons, the neuronal avalanche
emerges in the firing pattern of the network. The size of
avalanche obeys a power-law distribution. The fact that a
power-law dynamical behavior is realized by the infomax
principle might bridge the gap between nonlinear dynamics
and information theory in various complex networks.
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