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Entrainment and Modulation of Turing Patterns
under Spatiotemporal Forcing
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We examine the time-evolutional behavior of self-organized Turing patterns under spatiotemporal forcing in
one-dimensional systems. Based on the model equations, we apply a space-time-dependent external force. The
entrainment and modulation of time-evolutional patterns are investigated numerically in one dimension. We
develop a theoretical analysis to understand the obtained dynamics, and conjecture about the mode selection of
the one-dimensional Turing pattern.
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1. Introduction
Many biological systems display large-scale patterns that

are much larger than their individual components. These
self-organized patterns are observed in a broad range of
systems and scales, from fish skin (Kondo and Asai, 1995)
and animal coats (Murray, 2003) to the spatial distribution
of individuals in ant colonies (Theraulaz et al., 2002). In
many cases, patterns are formed through interactions among
individuals within the systems.

Several groups have proposed possible candidates gener-
ating patterns. Turing (1952) offered what has been called
“one of the most remarkable explanations of self-organized
phenomena” by postulating a mechanism based on reacting
and diffusing chemicals (Turing, 1952). This Turing mech-
anism is now called a diffusion-driven instability or Turing
instability (Murray, 2003).

The effects of external forcing in pattern dynamics have
also been studied. A typical problem is the synchronization
of nonlinear oscillators with an externally applied periodic
disturbance (Kuramoto, 1984). This is an example of non-
linear response in a nonequilibrium steady state. The effects
of external forcing are interesting also because it might be
useful to control the mesoscopic structures in material sci-
ences. In fact, there are interesting experiments on pattern
dynamics in nonequilibrium (Tabe and Yokoyama, 1995;
Reigada et al., 2002).

The purpose of the present paper is to investigate, the-
oretically and by numerical simulation, the dynamics of
Turing patterns under spatio-temporal external forcing. Ep-
stein and coworker experimentally and numerically studied
Turing-like patterns in chemical reactions under spatially
periodic illumination (Horvath et al., 1999). Here we ex-
tend their study to spatio-temporal external forcing, carry
out numerical simulations in one dimension, and develop a
theoretical analysis to understand the results of the simula-
tions.

The paper is organized as follows. In the next section,

we start with a brief explanation of the FitzHugh-Nagumo
equation and introduce external forcing. In Sec. 3, we
present the entrained pattern to external forcing and the
time-modulated pattern obtained numerically. The behav-
ior is formalized in Sec. 4. Discussion is given in Sec. 5,
including conjecture on mode selection of the Turing pat-
tern.

2. FitzHugh-Nagumo Equation under External
Forcing

The FitzHugh-Nagumo (FHN) equation is given by
the coupled reaction diffusion equations (FitzHugh, 1961;
Nagumo et al., 1962)

∂u/∂t = Du∂
2u/∂x2 + u − u3 − v, (1)

∂v/∂t = Dv∂
2v/∂x2 + γ (u − αv − β), (2)

where the constants α, β, γ, Du, and Dv are all positive.
This set of equations has been introduced as a model equa-
tion of impulse propagation along the nerve axon (Rinzel
and Keller, 1973). In its original version, the diffusion term
of the variable v was absent and only the u term existed in
Eq. (2). By adding the diffusion term to the coefficient of
Dv , the set of Eqs. (1) and (2) is that of the model equations
for the Belousov-Zhabotinsky chemical reaction (Tyson and
Keener, 1988).

Here we mention that Malevanets and Kapral (1997)
considered a two-variable, site-specific reaction scheme
where active sites can each accommodate a maximum of
N molecule maximum for species U and a separate N
molecule maxium for species V . The vacancies correspond-
ing to these species will be denoted U ∗ and V ∗, respec-
tively. The mechanism comprised the following processes:

2U + U ∗ k1−→ 3U, 2U ∗ + U
k∗

1−→ 3U ∗, U ∗ + V
k2−→ U + V

k3 ↑ ↓ k∗
3

U ∗ + V ∗ k2−→ U + V ∗.
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Fig. 1. Bifurcation diagram for Du = 0.15, Dv = 15.0, and α = 0.5
in Eqs. (1) and (2). The thick full line and dotted line are the Turing
bifurcation and the Hopf bifurcation, respectively. The full and dotted
circles indicate the parameters we use in Fig. 3 and in our comparison
of (γ, β) in the Discussion section.

If the rate constants satisfy k2 = k∗
2 and k3 = k∗

3 , and
with the diffusion term considering the Brownian motions
of molecules, the dimensionless reaction diffusion system
can be turned to yield a desired valued of FHN equations
(1) and (2) (Malevanets and Kapral, 1997).

Equations (1) and (2) each have a time-independent uni-
form solution (ū, v̄) which are defined through ū− ū3 − v̄ =
0 and ū − αv̄ − β = 0. We are concerned with the monos-
table situation when the diffusions are absent. The linear
stability analysis of the uniform solution is readily carried
out. Put (u − ū, v − v̄) ∼ exp(ikx + λt). The eigenvalue is
a solution of the algebraic equation

λ2 + {(Du + Dv)k
2 + (3ū2 + αγ − 1)}λ

+(Duk2 + 3ū2 − 1)(Dvk2 + αγ ) + γ = 0. (3)

The uniform solution (ū, v̄) becomes unstable when the real
part of λ is positive. Actually, we consider a situation where
the eigenvalue is always real. The eigenvalue becomes
positive first at the critical wave number given by k2

c =
(1−3ū2)/2Du−αγ 2Dv . The parameter region where (ū, v̄)

is linearly unstable is given by the condition

{Dv(1 − 3ū2) − αγ Du}2

4Du Dv

+ αγ (1 − 3ū2) − γ > 0. (4)

It is readily shown that the condition kc > 0 is satisfied if
Du << Dv . Especially, Hopf instability occurs for

3ū2 + αγ − 1 < 0. (5)

Figure 1 displays the bifurcation thresholds for Du =
0.15, Dv = 15.0, and α = 0.5 in Eqs. (1) and (2). The
full line is the Turing bifurcation given by (4), whereas the
dotted line is the Hopf bifurcation line given by (5). On
the right side of the full line, the uniform time-independent
solution is linear stable. We have carried out numerical
simulations for Du = 0.15, Dv = 15.0, and α = 0.5 with

changes in parameter β and γ in which Turing instability
occurs.

In order to investigate post-threshold behavior, we have
carried out numerical simulations of Eqs. (1) and (2) in one
dimension. The calculation scheme is applied to the fully
implicit finite difference method with the system size L =
80π divided into 4096 grids (δx = 80π/4096) and with
periodic boundary condition. The chosen time increment
is δt = 0.01. The unstable uniform solution (ū, v̄) with a
small random perturbation is used as the initial condition,
providing ten different random perturbations for each value
of γ .

Now we consider a case where the system is exposed
through periodically arrayed slits by illuminating light and
the slit moves at constant velocity �/q f with 2π/q f period
of the slits. As a result, we assume that the autocatalysis rate
of U and U ∗ is the affected rate � where � represents the
effect of illumination traveling to the right at the velocity
�/q f , and � is the sinusoidal force providing a sufficiently
small forcing ε. In this way, the set of Eq. (1) has an additive
term �(x, t) = ε cos(q f x − �t). The set of equations that
we study becomes

∂u/∂t = Du∂
2u/∂x2 + u − u3 − v + ε cos(q f x − �t),

(6)

∂v/∂t = Dv∂
2v/∂x2 + γ (u − αv − β). (7)

The parameters are fixed as Du = 0.15, Dv = 15.0, α =
0.5, and β = 0.04 as in the previous line, whereas γ , ε, and
q f are varied in numerical simulations. In this paper, we
consider only a case where the external forcing is applied
at the beginning of each simulation. The wave numbers of
the obtained patterns are the same as the wave number of
the external forcing, to the extent that the intrinsic wave
number of a system is not much different from external
forcing, Fig. 4(c) shows.

When the external force is small enough (ε << 1), the
Turing pattern is not affected appreciably. However, when
the magnitude of the external forcing exceeds a certain
threshold, the pattern undergoes an induced motion. Fig-
ure 2(b) shows the concentration variation when the pattern
is entrained by the external forcing. We have repeated the
simulation by changing (q f , ε) and have obtained the phase
diagram shown in Fig. 3. When the strength of the forcing
is strong enough in the region indicated by ×, the periodic
pattern is entrained completely by the external forcing, as
shown in Fig. 4(a), where the periodic domains travel with
the external velocity �/q f . When ε is small in the region
indicated by �, the domains do not exhibit a smooth travel-
ing motion but undergo a periodic modulation. This can be
seen in Fig. 4(b).

3. Theoretical Analysis
Now we formulate the modes in the case of the model

equation. Numerical simulation shows that Eqs. (1) and (2)
have motionless periodic solutions, and we write

u = ū + u1 cos(qx), v = v̄ + v1 cos(qx).

Substituting these into (1) and (2) and ignoring the higher
harmonics generated by the nonlinear term, we obtain the
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Fig. 2. Spatial variations of u(x, t) (thick dotted line) and v(x, t) (thick full line), which are (a) statical as obtained numerically from Eqs. (1) and (2)
for Du = 0.15, Dv = 15.0, α = 0.5, β = 0.04, and γ = 28.0; and (b), which are traveling to the right as indicated by the arrow obtained numerically
from (6) and (7) for the same with q f = 1.600, � = 0.05, and ε = 0.01270. The thin full line indicates � = ε cos(q f x − �t). Although the system
size is 80π , only the interval between 0 and 20π is displayed, for the sake of clarity.
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Fig. 3. Behavior in the q f − ε plane by solving (6) and (7) numerically for (a) γ = 28.0, (b) γ = 18.0, or (c) γ = 8.0. The other parameters are for
Du = 0.15, Dv = 15.0, α = 0.5, and β = 0.04. When the strength of the forcing is strong enough in the region indicated by ×, the periodic pattern
entrained completely by external forcing as shown in Fig. 4(a), where the periodic domains travel with the external velocity �/q f . When ε is small
in the region indicated by � , the domains do not undergo an induced traveling but exhibit a periodic modulation. This can be seen in Fig. 4(b). When
q f is beyond the threshold wave number in the region indicated by •, each mode splits into two. This can be seen in Fig. 4(c). The thick line is drawn
by Eq. (15).

Fig. 4. Space (horizontal) − time (vertical) plot of u(x, t) for q f = 1.625, γ = 28.0 and (a) ε = 0.01266, (b) ε = 0.01260, whereas (c) q f = 0.825,
γ = 8.0, and ε = 0.0466. The other parameters are Du = 0.15, Dv = 15.0, α = 0.5, and β = 0.04 in Eqs. (6) and (7). The value of u is larger
(smaller) for lighter (darker) regions. No modulation appears in (a). The modulation occurs periodically in time but uniformly in space in (b). The
wave number of the external forcing is beyond the ranges of intrinsic wave number in Eqs. (6) and (7) in (c).
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set of equations for u1 and v1

(−Duq2 + 1)u1 − v1 − 3
4 u3

1 − 3ū2u1 = 0,

γ u1 − (Dvq2 + αγ )v1 = 0.
(8)

When the magnitude of external force is increased, the mo-
tionless solution (7) becomes unstable, as shown in Figs. 3
and 4. Modulation and entrained solutions appear after
destabilization of the motionless distribution in Fig. 3. Now
we consider that the modulation solution can be approxi-
mated by

u = ū + u1(1 + φ1(t)) cos(q f x − �t + θ(t)), (9)

v = v̄ + v1(1 + φ2(t)) cos(q f x − �t + θ(t)), (10)

where the time-evolution equation for the terms φ1 and φ2

relating to the amplitudes and that for the phase θ(t) are
to be derived. Substituting (9) and (10) into (6) and (7),
multiplying each equation by cos(q f x − �t + θ(t)) and
carrying out the integral over one spatial period, we obtain

u1
∂φ1

∂t
=

(
u1 − Duq2

f u1 − 9

4
u3

1 − 3u1ū2

)
φ1(t)

−v1φ2(t) + ε cos θ(t), (11)

v1
∂φ2

∂t
= γ u1φ1(t) − (Dvq2

f v1 + αγ v1)φ2(t). (12)

Similarly, multiplying (9) by sin(q f x − �t + θ(t)), and
carrying out the integral over one spatial period, we obtain
the equation for the phase θ(t)

u1(1 + θ(t))

(
� − ∂θ

∂t

)
= ε sin θ(t). (13)

φ1(t) and φ2(t), which evolve slowly in time, are elim-
inated adiabatically. Putting dφ1/dt = dφ2/dt = 0, we
obtained the time-evolution equation for phase θ(t)

∂θ

∂t
= � + ε′ sin(θ(t) + ξ), (14)

where ε′ = ε(�2/H 2 + 1/u2
1)

1/2, tan ξ = −(�/H)u1, and
H = (1 − Duq2

f )u1 − 3u1ū2 − (9/4)u3
1 − (γ u1/q2

f Dvv1 +
αγ v1)v1. Equation (14) implies that when � < ε′, there is a
stable equilibrium solution that corresponds to the complete
entrainment with the external force. When � > ε′, this en-
trainment breaks down. � = ε′ is the theoretically obtained
stability limit of the modulated traveling wave, that has the
same velocity as the external force. As shown in Eq. (8), u1

and v1 can be expressed as functions of q f . In general, the
stability limit can be written as

ε = �
/ (

�2

H 2
+ 1

u2
1

)1/2

. (15)

We investigate the wave number indicated by the regions
between the full and dotted lines in Fig. 1. We fix the pa-
rameters as Du = 0.15, Dv = 15.0, and α = 0.5; the
remaining parameters γ, β are varied. We use the set of pa-
rameters (γ, β) indicated in Fig. 1 as solid and dotted cir-
cles. Figure 3 shows the result of changing γ on β = 0.04.
In order of increasing γ , accordance between numerical

simulation and theoretical analysis is not seen. Moreover,
this marked tendency rises significantly according to the |β|
(data not shown). In β = 0.00, good agreement can be seen
for a wide range of γ (14.0 < γ < 34.0), whereas in the
case of β = 0.15, the parameter range, which shows good
agreement, is only near the Turing bifurcation point.

4. Discussion
We have studied the dynamics of Turing patterns un-

der conditions of spatio-temporal forcing. In the present
investigation, we successfully predicted the phase transi-
tion point between the modulations and entrainment, and
found that this point agrees well with the simulations (see
Fig. 3(a)). Moreover, we examined the parameters indicated
by the dotted circles in Fig. 1 (data not shown).

The model system without an external forcing is Tur-
ing one in which self-organized and static pattern appears.
Therefore in Eqs. (6) and (7) the obtained patterns (mod-
ulation or entrainment) might be considered as the results
after competition between Turing’s static property and en-
trainment one of external force. Moreover, Figs. 3(a) and
(b) shows there is one mode which need maximum strength
of external force.

Finally, we discussed mode selection in the Turing pat-
terns. In pattern formation phenomena, a fundamental un-
solved problem in nonvariational disspative systems is to
determine the general principle of mode selection beyond
a bifurcation threshold. Here we assume the wavenumber
which most commonly appears can tolerate with the largest
external forcing. In this respect, it would be interesting to
explore the possibility that some resonance condition might
be related to the mode selection. That is, a periodic pat-
tern might respond most strongly to an external periodic
modulation whose period is the same as that of the intrinsic
spatial period. To examine this possibility, we have carried
out numerical simulations of Turing patterns without exter-
nal forcing. For example, we obtained the intrinsic wave
number 1.575 ≤ q ≤ 1.625 at β = 0.04 and γ = 28.0,
changing the initial distribution sets ten times. It is found
from Fig. 3(a) that these wave number coincides with the
last wave number q f where the time-periodic modulation
becomes unstable by increasing ε and the complete entrain-
ment with the external force starts. We have also carried
out numerical simulations for γ = 34.0, β = 0.00 and
γ = 14.0, γ = 0.00 and found that the intrinsic wave num-
bers of q f show good agreement with the last wave num-
ber of q f . We emphasize that this property is not limited
near the Turing bifurcation point. This numerical evidence
strongly supports our conjecture. We shall return to this
problem in further detail in the near future.
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