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Recently, we have proposed a method to control the dynamical behavior of coupled-oscillator system by
regulating the coupling function through multi-linear feedback. In the present paper, we extend our previous
theory such that it is even applicable to general systems where the coupling strengths, the observables, and the
applied feedback signals are not uniform. This method does not require an individual output from each oscillator
but only needs the output signals obtained from all the measurement nodes, and hence it has wide applicability.
The validity of the method is confirmed through a simulation using a Bonhoeffer-van der Pol model.
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1. Introduction
Recently, we have proposed a new method to control

the dynamical behavior of coupled-oscillator system, in
which various dynamical states such as desynchronization
and clustering of the oscillators are obtainable (Kano and
Kinoshita, 2008). In this method, we have considered
a phase model (Kuramoto, 1984; Pikovsky et al., 2001;
Manrubia et al., 2004) and have employed multi-linear
feedback to control the functional form of the coupling
function, which characterizes the dynamical behavior of
coupled oscillators.

Actually, controlling dynamical behaviors of coupled os-
cillators has been a challenging topic owing to various prac-
tical demands (Beer et al., 1997; Tass, 1999; Calvitti and
Beer, 2000; Klavins and Koditschek, 2002; Rosenblum and
Pikovsky, 2004a, b; Hauptmann et al., 2005a, 2005b, 2007;
Popovych et al., 2005, 2006; Pyragas et al., 2007; Kiss et
al., 2007; Kori et al., 2008). For example, electrical stimu-
lation techniques, which are known as a therapy to several
neural diseases such as Parkinson’s disease and essential
tremor, are now developing so that the electrical stimulation
desynchronizes or locally synchronizes the pathological ac-
tivities of neurons effectively (Tass, 1999; Rosenblum and
Pikovsky, 2004a, b; Hauptmann et al., 2005a, 2005b, 2007;
Popovych et al., 2005, 2006; Pyragas et al., 2007). Another
example is found in the field of technology. Many tasks
in robotics require cyclic actions to be coordinated, such
as walking, juggling, and factory automation, and hence,
there is a need for stabilizing a desired phase relationship of
cyclic units in robots (Beer et al., 1997; Calvitti and Beer,
2000; Klavins and Koditschek, 2002).

The method we have proposed previously (Kano and
Kinoshita, 2008) becomes a breakthrough for the control
of coupled oscillators. In fact, our method has several ad-
vantages as compared with those proposed so far (Beer et
al., 1997; Tass, 1999; Calvitti and Beer, 2000; Klavins
and Koditschek, 2002; Rosenblum and Pikovsky, 2004a, b;

Hauptmann et al., 2005a, 2005b, 2007; Popovych et al.,
2005, 2006; Pyragas et al., 2007; Kiss et al., 2007; Kori et
al., 2008). First, since our method is based on the phase
model and the coupling function is well controlled up to
the higher Fourier harmonics, various complex behaviors
are obtainable by applying small feedback signals without
knowing detailed mechanisms of systems. Second, in our
method, we do not need to measure an individual output
from each oscillator, but only measure sum of the outputs
from all the oscillators. This is extremely important because
it is often practically difficult to measure individual outputs
and to process them rapidly, particularly when the number
of oscillators is large, as in neuronal systems.

However, our previous method still has a drawback: it
is applicable only in a special case where the oscillators
are coupled to each other by the same coupling strength
(global coupling) and an observable is measured uniformly
from all of the oscillators, with feedback signals applied
uniformly to them. In actual systems, however, the coupling
strengths, observables, and applied feedback signals are not
generally uniform. Hence, it is clearly needed to generalize
our method so that it is even applicable in the case where
they are not uniform. In the present paper, we will derive
a generalized method to control the dynamical behaviors of
coupled oscillators, by extending our previous work (Kano
and Kinoshita, 2008). We will also confirm the validity of
the method through the simulation of one-dimensionally-
arranged Bonhoeffer-van der Pol oscillators.

2. Theory
We begin with considering coupled oscillators following

our previous work (Kano and Kinoshita, 2008). The cou-
pled oscillators are generally described by

ẋi = Fi (xi ) + 1

N

N∑
j=1

εi j Pc(xi (t), x j (t)), (1)
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where N is the number of oscillators and Pc(xi (t), x j (t))
denotes the coupling between the oscillators. εi j is a newly
introduced parameter expressing the coupling strength be-
tween the i th and j th oscillators, where N−1 ∑N

j=1 εi j is as-
sumed to be sufficiently smaller than unity. Fi (xi ) denotes
a set of functions describing a limit cycle. We assume that
the frequencies of the oscillators are slightly different from
each other in nature with the magnitude of the difference be-
ing characterized by εd that is smaller than N−1 ∑N

j=1 εi j .
Then, Fi (xi ) is divided into a part common to all the oscil-
lators and the deviation from it as Fi (xi ) = F(xi )+ εd fi (xi )

(we assume that F(xi ), fi (xi ), and Pc(xi (t), x j (t)) are the
functions of O(1)). Equation (1) is generally reduced to a
phase model as (Kuramoto, 1984)

φ̇i = ω̄ + εdωi + 1

N

N∑
j=1

εi j qc(φi (t) − φ j (t)), (2)

where

ωi = 1

2π

∫ 2π

0
dθZ(φi + θ) · fi (x0(φi + θ)), (3)

and

qc(φi − φ j )

= 1

2π

∫ 2π

0
dθZ(φi + θ) · Pc(x0(φi + θ), x0(φ j + θ)).

(4)

Here, x0(φ) denotes a point on the limit cycle at a phase
φ, and ω̄ denotes the increasing rate of the phase, when the
inhomogeneity εd fi (xi ) and the coupling between oscilla-
tors are absent. Since the limit cycle constitutes a closed
orbit, x0(φ) = x0(φ + 2π) is naturally satisfied. Z(φ) ≡
(gradxφ)x=x0(φ) is called phase response function. It is noted
that |Z(φ)| should not be extremely large for any φ because
the phase description is valid only when φ − ω̄t is kept
almost constant during an oscillation period (Kuramoto,
1984). qc(φi (t) − φ j (t)) is called coupling function, whose
functional form can be experimentally derived either by
specifying the phase response function Z(φ) (if the interac-
tion Pc(xi (t), x j (t)) is already known) (Kiss et al., 2005),
or by analyzing the period of one of two-coupled oscilla-
tors when they are not completely synchronized (Miyazaki
and Kinoshita, 2006a, b). qc(φi (t) − φ j (t)) is expanded to
Fourier series as qc(φi (t)−φ j (t)) = ∑

k a(c)
k exp[ik(φi (t)−

φj (t))], where a(c)
−k = a(c)∗

k should be satisfied.
We consider a case where several measurement and stim-

ulation nodes are placed in the system, as shown in Fig. 1.
Here, we have called an element used for the measurement
of the outputs from its neighborhood oscillators as “mea-
surement node”, while that used for the stimulation of the
feedback signals to its neighborhood oscillators as “stimula-
tion node”. The data obtained from the measurement nodes
are analyzed at the host computer and the feedback signals
with time delays are applied from the stimulation nodes to
the oscillators. Thus, the observables and the applied feed-
back signals are not uniform, in contrast to our previous
work where they are uniform (Kano and Kinoshita, 2008).

Fig. 1. Scheme of a system considered in the theory. The oscillators
(empty circles) are coupled to each other ununiformly (left right ar-
rows). The data obtained from several measurement nodes (empty
squares) are analyzed at the host computer and the feedback signals
with time delays are applied from the stimulation nodes (filled squares).

The model equation is then given in the following way:

ẋi = Fi (xi ) + 1

N

N∑
j=1

εi j Pc(xi (t), x j (t))

+ 1

N

∑
β,γ

ε′
βγ ρ

(β)

i

2M+1∑
m=1

�m P (γ )

0 (t − τm)r, (5)

where β and γ denote indices of the stimulation and mea-
surement nodes, respectively. ε′

βγ characterizes the rate of
the output from the γ th measurement node to the input to
the βth stimulation node. P (γ )

0 (t) ≡ ∑N
j=1 σ

(γ )

j p(xi (t)) is
the output from the γ th node, where p(x j (t)) is an arbitrary
single-valued function of x j (t), and σ

(γ )

j is a weighting fac-

tor for the measurement through the γ th node. ρ
(β)

i charac-
terizes the magnitude of the feedback signal applied from
the βth node to the i th oscillator. τm and �m are the time
delay and strength of the mth signal, respectively, which we
will specify in the following. r is a unit vector whose di-
mension is equal to that of xi , and it can be selected in an
arbitrary manner. The number of the feedback signals are
set at 2M + 1, where the definition of M will be described
later.

Now we assume that the contribution of the third term
in the right-hand side of Eq. (5) is sufficiently smaller than
that of Fi (xi ). Then, Eq. (5) is reduced to the phase model
as

φ̇i = ω̄ + εdωi + 1

N

N∑
j=1

εi j qc(φi (t) − φ j (t))

+ 1

N

∑
β,γ

ε′
βγ ρ

(β)

i

·
2M+1∑
m=1

�m

N∑
j=1

σ
(γ )

j q f (φi (t) − φ j (t − τm)), (6)
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Fig. 2. Functional forms of (a) qc(ψ) and (b) q f (ψ) (left graphs). The data are obtained by using the method shown in Miyazaki and Kinoshita (2006a,

b) (black dots), and they are fitted by a function γ0 + ∑12
k=1(βksin(kψ) + γk cos(kψ)) with the fitting parameters of βk and γk (solid lines). In the

right graphs, the absolute values of each Fourier coefficient, |a(c)
k | (or |a( f )

k |) =
√

β2
k + γ 2

k /2 for k ≥ 1 and γ0 for k = 0, are shown.

Fig. 3. Temporal evolutions of the phase difference between the i th and first oscillators obtained from the simulation of Eq. (8) when the target state is
(i) unidirectional phase-shifted state, (ii) 2-cluster state, and (iii) “v-type” phase-shifted state. q̃(ψ) and the positions of the nodes are given as shown
in Figs. 4 and 5, respectively. The initial condition is set at φi = 0 for all i . Since the relative phase is 2π -periodic, it is expressed within the range of
(i), (iii) [−0.05π, 1.95π ] and (ii) [−0.95π, 1.05π ].

where
N∑

j=1

σ
(γ )

j q f (φi (t) − φ j (t − τm))

= 1

2π

∫ 2π

0
dθZ(φi (t) + θ)

·
N∑

j=1

σ
(γ )

j p(x0(φ j (t − τm) + θ))r. (7)

The functional form of q f (ψ) can be derived in a sim-
ilar manner as that of qc(ψ) (see details in Kano and
Kinoshita (2008)). Let q f (φi (t) − φ j (t)) thus derived
be expanded to Fourier series as q f (φi (t) − φ j (t)) =∑

k a( f )

k exp[ik(φi (t) − φj (t))], where a( f )

−k = a( f )∗
k should

be satisfied.

Suppose that Eq. (6) is consistent with the following
equation:

φ̇i = ω̄ + εdωi + 1

N

N∑
j=1

εi j qc(φi (t) − φ j (t))

+ 1

N

∑
β,γ

ε′
βγ ρ

(β)

i

N∑
j=1

σ
(γ )

j q̃(φi (t) − φ j (t)), (8)

where q̃(ψ) is the target coupling function. Note that the
definition of this function is slightly different from that in
our previous study (Kano and Kinoshita, 2008), where the
natural coupling term is included into it (see equation (6) in
Kano and Kinoshita (2008)). The functional form of q̃(ψ)

and the parameters related to the positions of the nodes,
ε′
βγ , ρ

(β)

i , and σ
(γ )

j , are explored through the simulation of
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Fig. 4. Functional forms of q̃(ψ) when the target state is (i) unidirectional phase-shifted state, (ii) 2-cluster state, and (iii) “v-type” phase-shifted state.
Note that ãk and ã−k are set at zero when q̃(ψ) does not have a Fourier component in the kth harmonic for k ≤ M , where M is taken as 8.

Eq. (8). q̃(ψ) thus determined is expanded to Fourier series
as q̃(ψ) = ∑M

k=−M ãkexp[ikψ], where ã−k = ã∗
k should

be satisfied. Here, M is defined as the highest harmonic
of q̃(ψ), since we aim to control the coupled oscillators
with a finite number of such harmonics. It is noted that
Eqs. (8) and (6) correspond to equations (6) and (8) in Kano
and Kinoshita (2008), respectively, when the parameters εi j

and
∑

β,γ ε′
βγ ρ

(β)

i σ
(γ )

j correspond to εc and ε f , with the
replacement of (εc/ε f )qc(φi (t)−φ j (t))+ q̃(φi (t)−φ j (t))

by q̃(φi (t)−φ j (t)). Thus, the parameters εi j , ε′
βγ , ρ(β)

i , and

σ
(γ )

j are responsible for the extension of our previous theory
(Kano and Kinoshita, 2008) to general cases.

Then, since Eq. (6) is consistent with Eq. (8), we obtain
the following relation:

q̃(φi (t) − φ j (t)) =
2M+1∑
m=1

�mq f (φi (t) − φ j (t) + ω̄τm). (9)

Here, we have used the approximation

φ j (t − τm) ≈ φ j (t) − ω̄τm, (10)

which is applicable as far as τm is comparable to or shorter
than the natural oscillation period because φ j − ω̄t is kept
almost constant during an oscillation period.

By comparing each Fourier coefficient of Eq. (9) up to
the M th harmonic, we obtain

ãk =
2M+1∑
m=1

�ma( f )

k eik ω̄τm . (11)

Although the Fourier coefficients of the harmonics higher
than M in q f (ψ) generally have non-zero values, we can
minimize their contributions by taking M larger than the
number of harmonics in which q f (ψ) has nonnegligible
Fourier components. Equation (11) is rewritten in a matrix
form as




A0

A1

A2

...

AM

B1

B2

...

BM




=




1 1 . . . 1
cos(ω̄τ1) cos(ω̄τ2) . . . cos(ω̄τ2M+1)

cos(2ω̄τ1) cos(2ω̄τ2) . . . cos(2ω̄τ2M+1)

...
...

. . .
...

cos(M ω̄τ1) cos(M ω̄τ2) . . . cos(M ω̄τ2M+1)

sin(ω̄τ1) sin(ω̄τ2) . . . sin(ω̄τ2M+1)

sin(2ω̄τ1) sin(2ω̄τ2) . . . sin(2ω̄τ2M+1)

...
...

. . .
...

sin(M ω̄τ1) sin(M ω̄τ2) . . . sin(M ω̄τ2M+1)




·




�1

�2

...

...

...

...

...

�2M

�2M+1




, (12)

where Ak = Re[ãk/a(f )

k ] and Bk = Im[ãk/a(f )

k ]. Thus,
when the values of τ1, τ2, . . . , and τ2M+1 are determined,
the corresponding values of �1, �2, . . . , and �2M+1 can be
derived by solving Eq. (12).

Although there is no specified method of selecting the
values of τ1, τ2, . . . , and τ2M+1, we should select them such
that

∑2M+1
m=1 |�m | does not have a large value, otherwise

the validity of the phase model will be lost (see details in
Kano and Kinoshita (2008)). We have selected the values
of τ1, τ2, . . . , and τ2M+1 in a similar manner as that in our
previous study (Kano and Kinoshita, 2008). Let τm be set
as

τm = 2π

ω̄
· frac

(
αm − ω̄τ0

2π

)
+ τ0, (13)

where frac(αm − ω̄τ0/(2π)) means the fractional part of
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Fig. 5. Scheme of a system considered in the simulation when the tar-
get state is (i) unidirectional phase-shifted state, (ii) 2-cluster state,
and (iii) “v-type” phase-shifted state. Fifty oscillators are placed in
one-dimensional array and coupled to the nearest oscillators (left right
arrows). Several measurement and stimulation nodes (empty and filled
squares, respectively) are placed within the array so that the target state
is obtained. The positions of the measurement nodes sγ are (i) 1 and 30,
(ii) 1, 10, and 20, and (iii) 10, 20, 30, and 40, whereas those of the stim-
ulation nodes sβ are (i) 50, (ii) 30, 40, and 50, and (iii) 1 and 50. ε′

βγ is
set at 0.05 when the measurement and stimulation nodes are connected
by an arrow, otherwise ε′

βγ = 0.

αm − ω̄τ0/(2π), and τ0 is a time necessary for processing
outputs, which should be comparable to or shorter than the
oscillation period. Then, �1, �2, . . . , and �2M+1 are cal-
culated from Eq. (12) with changing α within the range of
0 ≤ α < 1, and τ1, τ2, . . . , and τ2M+1 are systematically
determined from the value of α where

∑2M+1
m=1 |�m | does not

have a large value. Note that even when this scheme is used,∑2M+1
m=1 |�m | cannot have a smaller value than the maxi-

mum value of |Ak | and |Bk |, which can be easily proved
from Eq. (12) such that |Ak | = |∑2M+1

m=1 cos(kω̄τm)�m | ≤∑2M+1
m=1 |�m |. Hence, q̃(ψ) should be determined so that

Max[|Ak |, |Bk |] does not have a large value.

3. Simulation
Now let us confirm the validity of this method through a

simulation. Here we employ Bonhoeffer-van der Pol model,
which is known as a typical model describing limit-cycle
oscillations (Landa, 1996). We consider a case where the
oscillators are placed in a one-dimensional array and are
coupled linearly to the nearest oscillators, and several mea-
surement and stimulation nodes are placed within the array
(see Fig. 5). Then, the model equations are described as

(
hu̇i

v̇i

)
=

( −bivi + ui − u3
i /3

ui + cvi + d

)

+ 1

N

N∑
j=1

εi j (u j (t) − ui (t))

(
1
0

)

+ 1

N

∑
β,γ

ε′
βγ ρ

(β)

i

2M+1∑
m=1

�m P (γ )

0 (t − τm)

(
1
0

)
,

(14)

Fig. 6. α dependence of
∑2M+1

m=1 |�m | in case of
q̃(ψ) = sinψ + 0.5cosψ + 0.5sin2ψ . α is changed from 0 to 1
with a step of 0.001. The minimum value of

∑2M+1
m=1 |�m | is shown by

an arrow.

where the output P (γ )

0 (t) is given as P (γ )

0 (t) =∑N
j=1 σ

(γ )

j u j (t). The first, second, and third terms in the
right-hand side denote a set of functions describing a limit-
cycle, the natural coupling between the oscillators, and the
feedback signals, respectively. The parameters h, b, c, and
d are set at 0.2, 1, 0, and 0.8, respectively, where the nat-
ural periods of the oscillators become 4.52. The coupling
strength between the i th and j th oscillators εi j is set at 0.25
when j = i ± 1, otherwise εi j = 0. The total number of
the oscillators N is set at 50. τm and �m are the time de-
lay and strength of the mth feedback signal, which will be
specified in the following. σ

(γ )

j and ρ
(β)

i are the weighting
factors for the measurement and stimulation, respectively,
and we assume that they are determined from the position
dependence of the nodes as

σ
(γ )

j = exp

[
−| j − sγ |

10

]
, (15)

ρ
(β)

i = exp

[
−|i − sβ |

10

]
, (16)

where sγ and sβ are the positions of the γ th measurement
and βth stimulation node, respectively, which will be speci-
fied below. The parameter ε′

βγ will be also specified below.
In the simulation, the Runge-Kutta method is employed

with the time intervals of 0.02. The initial conditions are set
at ui = vi = 1.5 for all i , and hence the simulation begins
with the in-phase state. In the following, we will set the
target states as (i) unidirectional phase-shifted state where
the phases of the oscillators are shifted unidirectionally,
(ii) 2-cluster state where the oscillators are split into two
synchronized subgroups whose phases are shifted to each
other, and (iii) “v-type” phase-shifted state where the phases
of the oscillators are shifted with the direction of the shift
reversing at the center of the one-dimensional array.

To determine the feedback signals, the coupling functions
qc(ψ) and q f (ψ) should be specified. They are derived
by analyzing the period of one of two-coupled oscillators
when they are not completely synchronized (Miyazaki and
Kinoshita, 2006a, b). The obtained functional forms of
qc(ψ) and q f (ψ), and their absolute values of the Fourier
coefficients, |a(c)

k | and |a( f )

k |, are shown in Fig. 2. We find
that |a(c)

k | and |a( f )

k | decrease quickly as k increases. Hence,
we select M as 8, so that it will be larger than the number
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Fig. 7. Temporal evolutions of the relative phases ψi obtained from the simulation of Eq. (14) when the target state is (i) unidirectional phase-shifted
state, (ii) 2-cluster state, and (iii) “v-type” phase-shifted state. The initial condition is set at ui = vi = 1.5 for all i . The definition of the relative phase
ψi is described in the text. Since the relative phase is 2π -periodic, it is expressed within the range of (i)(iii) [−0.05π, 1.95π ] and (ii) [−0.95π, 1.05π ].

of the harmonics in which q f (ψ) has nonnegligible Fourier
components.

The functional form of the target coupling function q̃(ψ),
the positions of the nodes sγ and sβ , and the parameter ε′

βγ

are selected such that the target state is obtained. They are
explored through the simulation of Eq. (8) by trial and er-
ror, with taking notice that Max[|Ak |, |Bk |] does not have
a large value. Figure 3 shows the temporal evolutions of
the phase difference between the first and i th oscillators ob-
tained from the simulation of Eq. (8) with the initial con-
dition of φi = 0 for all i when q̃(ψ) and the positions of
the nodes are given as shown in Figs. 4 and 5, respectively.
Here, ε′

βγ is set at 0.05 when the measurement and stimu-
lation nodes in Fig. 5 are connected by an arrow, otherwise
ε′
βγ = 0. It is found that the target states described above

are actually obtained under these conditions. ε′
βγ , because

changing only q̃(ψ) is often insufficient to obtain the target
state.

Next, the parameters τm and �m are determined using
the obtained coupling functions q f (ψ) and q̃(ψ). Fig-
ure 6 shows the relation between α and

∑2M+1
m=1 |�m | ob-

tained from Eqs. (12) and (13) in the case of q̃(ψ) =
sinψ + 0.5sin2ψ + 0.5cosψ (Fig. 4(iii)). It is found
that

∑2M+1
m=1 |�m | varies significantly with α. Since we

need to select the parameter sets of τm and �m such that∑2M+1
m=1 |�m | can be possibly minimized, we have selected

them using the value of α where
∑2M+1

m=1 |�m | becomes min-
imum.

Then, Eq. (14) is simulated using the obtained values of
τm and �m . Figure 7 shows the temporal evolutions of the
relative phases of the oscillators. Here, the relative phase
of the i th oscillator ψi (i = 2, 3, . . ., and 50) is defined
as ψi (t

(K )

1 ) = 2π(t (K+1)

1 − t (K ′)
i )/(t (K+1)

1 − t (K )

1 ) + 2πn,

where n is an arbitrary integer, and t (K )

1 and t (K ′)
i denote

the time when the first and i th oscillators take maximum
values of u at the K th and K ′th cycles, respectively, with
K and K ′ satisfying t (K )

1 ≤ t (K ′)
i < t (K+1)

1 . It is found

that the states obtained through the feedback are generally
in good agreement with those obtained from the simulation
of Eq. (8) (Fig. 3), although not completely. Thus, the
dynamical behaviors are well controlled by the feedback.

4. Discussion
We have proposed a generalized method to control the

dynamics of coupled oscillators by designing the coupling
function through multi-linear feedback, and have confirmed
its validity through a simulation of one-dimensionally-
arranged Bonhoeffer-van der Pol oscillators. Our previous
theory (Kano and Kinoshita, 2008) is only applicable to a
special case where the oscillators are coupled to each other
by the same coupling strength and the observable is mea-
sured uniformly from all of the oscillators with the feedback
signals uniformly applied to all of them. In contrast, the
present theory is even applicable to systems where the cou-
pling strengths, the observables, and the applied feedback
signals are not uniform. Such generalization is extremely
important, because they are not uniform in most of actual
coupled-oscillator systems. Hence, it is expected that the
present method will lead to various practical applications.

The most characteristic point of the present method is
that it requires only the outputs from several measurement
nodes to determine the delays and the strengths of feedback
signals, whereas the method reported by Kiss et al. (2007)
and Kori et al. (2008) required an individual output from
each oscillator. This is extremely advantageous because it
is often practically difficult to measure individual outputs
from all oscillators and to process them rapidly, particularly
when the number of oscillators becomes large. Thus, the
present method will eventually be used without practical
restrictions.

When Max[|Ak |, |Bk |] is large, the present method is
not applicable because

∑2M+1
m=1 |�m | becomes large. Hence,

q̃(ψ) cannot have large Fourier components in the harmon-
ics where q f (ψ) has small components. In spite of such
restriction, in most of cases we can select q̃(ψ) that leads
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to a target state by properly selecting the positions of the
nodes, the parameter ε′

βγ , the functional form of p(x j ), and
the vector r. Thus, the arbitrary properties of these quanti-
ties will be beneficial for expanding the applicability of the
present method.

We have noticed that there exist cases where the control
happens to fail. In fact, we have found that the states ob-
tained through the feedback (Fig. 7) are not completely con-
sistent with those obtained from the simulation of Eq. (8)
(Fig. 3). The reason for such failure of the control is con-
sidered as follows. First, when the system has several stable
states under the given target coupling function and positions
of the nodes, it may be attracted into a state other than the
target state. Second, the contribution of the fast-oscillating
terms in the coupling function (see details in Miyazaki and
Kinoshita (2006b)), which is eliminated due to the phase-
averaging process (Eqs. (4) and (7)), may mislead to a state
other than the target state. Unfortunately, it is difficult to
evaluate the contribution of these terms, and hence it is still
unclear in what cases the control fails at the present stage.

In conclusion, we have proposed a generalized method to
control coupled oscillators by using multi-linear feedback.
This method has wide applicability, and will lead to vari-
ous practical applications such as the desynchronization of
pathologically-activating neurons and the control of robots
performing cyclic actions.
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