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Petoukhov has shown that a family of bisymmetric 2n × 2n matrices encode the structure of the four RNA
and DNA bases and 64 codons that make up the 20 amino acids in all living structures. He discovered that the
elements of the square roots of these matrices are all powers of the golden mean. We have generalized his matrices
and shown that the square roots of general bisymmetric matrices are generalizations of the golden mean including
a subclass that correspond to the family of silver means. Powers of these matrices are also shown to generate
all Pythagorean triples. The integers in these matrices are identical to the set of integers in a table attributed to
the second century Syrian mathematician, Nicomachus, who used them to describe the ancient musical scale of
Pythagoras.
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1. Introduction
Petoukhov (2001, 2004), (He, 2005) has studied a fam-

ily of bisymmetric 2n × 2n matrices that code the struc-
ture of the four DNA/RNA bases, the 64 codons that make
up the 20 amino acids in all living structures, and beyond
that, the proteins assembled from the amino acids as build-
ing blocks. As the result of his studies he has found that
the amino acids express certain degeneracies, 8 with high
degeneracy containing 4 or more codons, and 12 with low
degeneracy, containing less than 4 codons. These degenera-
cies are propagated through the 17 different genome classes
of RNA/DNA. The particular class of DNA/RNA that we
will be studying in this paper is the class of mitochondrial
DNA. Although different groups of codons correspond to
the same amino acid in different genome classes, the qual-
ity of the degeneracy (high or low) is preserved. The first
matrix of the family expresses the fact that two of the RNA
bases have 3 hydrogen bonds while the other two have 2
hydrogen bonds. The elements of the rows and columns of
this family of matrices reproduce the sequences of musical
fifths, i.e., integer ratios of 3:2, found in a table attributed
to the Syrian mathematician of the first and second century
AD, Nicomachus (Kappraff, 2000a). The integer values in
this table have multiplicities given by the rows of Pascal’s
triangle. The square roots of this family of matrices have
entries that are all powers of the golden mean. A brief dis-
cussion of Petoukhov’s approach to genetic coding is given
in Appendix A.

We have generalized Petoukhov’s matrices to a family of
bisymmetric matrices in which the first 2× 2 matrix has
a pair of positive real numbers as elements, but are other-
wise arbitrary. Bisymmetric matrices are matrices whose
elements are symmetric with respect to both left and right
leaning diagonals. We derive general formulas for the ele-
ments of the square root of this matrix. They are irrational

numbers that are generalizations of the golden mean. In fact
for a subclass of the matrices the elements of the square root
matrix are generalizations of the golden mean known as sil-
ver means. Finally, we show that when the elements of the
bisymmetric matrix are positive integers, powers of these
matrices generate Pythagorean triples.

2. Petoukhov’s Genomic Matrices
Petoukhov has shown that the four nitrogenous bases that

make up RNA and DNA, adenine, cytosine, guanine, and
uracil/thymine: A, C, G, U/T are equivalent in two different
ways.

a. C = U and A = Gaccording to the relation, “pyrimidine
or purine.”

b. C = G and A = U/T according to the relation, “pos-
sesses three hydrogen bonds or two hydrogen bonds
(Watson, 1953).”

These two properties characterize a family of matrices re-
lated to the four bases. The first of these matrices, the 2× 2
RNA Matrix 1, specifies the four bases in which C is coded
by 1

¯
1, A by 1

¯
0, U by 0

¯
1 and G by 0

¯
0. For relation a) C and

U are pyrimidines and are assigned the value 1 in column
1 while A and G are purines and are assigned the value 0
in column 2 . For relation b) C and G have three hydrogen
bonds coded by 1

¯
1 and 0

¯
0 respectively in Matrix 1, while

A and U have two hydrogen bonds coded by 1
¯
0, and 0

¯
1 re-

spectively. In this manner the bases are assigned the values
3 and 2 respectively along the two diagonals of Matrix M1

shown below.

[ 1 0

1 C A

0 U G

]
(1)
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M1 =
[ 1 0

1 3 2

0 2 3

]
.

Matrix 2 shows that the bit strings that code the four bases
are organized according to binary reflecting Gray code val-
ues of the numbers in parentheses.

Mcoord =
[

11(2) 10(3)

01(1) 00(0)

]
. (2)

To obtain the Gray code value of an integer start with 0
equal 0 in Gray code. Then take the Gray code value of an
integer and change 1 to 0 or 0 to 1 in the least significant
place so long as it does not reproduce a Gray code value al-
ready obtained to obtain Gray code for the next integer. For
example, 1 is represented by 1 (or 01) in Gray code, but 2
changes 01 to 11. Notice that adjacent values in Matrix 2,
including wrap-around, differ by a single bit. We used Gray
code because the amino acids organize themselves so that
a mutation of a single base within a codon would still pre-
serve the identity of the amino acid, i.e., indices of adjacent
codons within a single amino acid should differ by no more
that a single digit as you can see by examining the amino
acids in Matrices 4(a) and (b). The codons for any amino
acid lie in adjacent rows and columns and therefore, their
Gray code representations differ by a single bit. Petoukhov
organized these matrices using binary and got essentially
similar results which is remarkable since adjacent binary
indices need not differ by a single code digit, yet the amino
acids organize themselves in binary in just this manner.

The 4 × 4 matrix M2 is shown below. The rows and
columns are numbered from bottom to top and right to left
by binary reflecting Gray code.




10 11 01 00

10 CG CU AU AG
11 C A CC AC AA
10 U A UC GC G A
11 U G UU GU GG


 (3a)

M2 =




10 11 01 00

10 9 6 4 6
11 6 9 6 4
10 4 6 9 6
11 6 4 6 9


 (3b)

and the indices are organized again by binary reflecting
Gray code,

Mcoord =




1010(12) 1011(13) 1001(14) 1000(15)

1110(11) 1111(10) 1101(9) 1100(8)

0110(4) 0111(5) 0101(6) 0100(7)

0010(3) 0011(2) 0001(1) 0000(0)




where 1010, i.e., 1
¯
1, 0

¯
0 corresponds to CG and so we

assign it the product of the corresponding hydrogen bonds,
3 × 3 = 9. Likewise 1011, i.e., 1

¯
1, 0

¯
1, corresponds to CU

and so is assigned the value 3 × 2 = 6, etc. These numbers
correspond to the number of ways that the hydrogen bonds
can interact between bases. When represented in binary as
Petoukhov did, M2 = M1 ⊗ M1 where ⊗ is the symbol

for tensor product. Likewise Mn is represented by a tensor
exponentiation of the nth degree. Continuing with our Gray
code representation, M3 results in the 8 × 8 matrix,

M3 =




CGG CGU CUU CU G AU G AUU AGU AGG
(Arg) (Arg) (Leu) (Leu) (Met) (I le) (Ser) (Stop)

CG A CGC CUC CU A AU A AUC AGC AG A
(Arg) (Arg) (Leu) (Leu) (Met) (I le) (Ser) (Stop)

C AA C AC CCC CC A AC A ACC AAC AAA
(Gln) (His) (Pro) (Pro) (T hr) (T hr) (Asn) (Lys)

C AG C AU CCU CCG ACG ACU AAU AAG
(Gln) (His) (Pro) (Pro) (T hr) (T hr) (Asn) (Lys)

U AG U AU UCU UCG GCG GCU G AU G AG
(Stop) (T yr) (Ser) (Ser) (Ala) (Ala) (Asp) (Glu)

U AA U AC UCC UC A GC A GCC G AC G AA
(Stop) (T yr) (Ser) (Ser) (Ala) (Ala) (Asp) (Glu)

U G A U GC UUC UU A GU A GUC GGC GG A
(T r p) (Cys) (Phe) (Leu) (V al) (V al) (Gly) (Gly)

U GG U GU UUU UU G GU G GUU GGU GGG
(T r p) (Cys) (Phe) (Leu) (V al) (V al) (Gly) (Gly)




(4a)

and,

M3 =




100 101 111 110 010 011 001 000

100 27 18 12 18 12 8 12 18

101 18 27 18 12 8 12 18 12

111 12 18 27 18 12 18 12 8

110 18 12 18 27 18 18 8 12

010 12 8 12 18 27 18 12 18

011 8 12 18 12 18 27 18 12

001 12 18 12 8 12 18 27 18

000 18 12 8 12 18 12 18 27




(4b)

where 100100, i.e., 1
¯
1, 0

¯
0, 0

¯
0 corresponds to CGG so

we assign it the product 3 × 3 × 3 = 27, 111100, i.e.,
1
¯
1, 1

¯
0, 1

¯
0 corresponds to CAA so we assign the product

3 × 2 × 2 = 12, etc. In Matrix 4a the 20 amino acids are
listed in parentheses. Notice that there are 8 amino acids
with high-degeneracy (4 or more codons) and 12 with low-
degeneracy (less than 4 codons). If the high degeneracy
codons in Matrix 4a are shaded gray the resulting pattern
has 2-fold rotational symmetry as shown in Fig. 1, while if
all matrix locations in Matrix 4b of a given integer value
are coded by a different color, the resulting pattern has the
symmetry of D2, symmetric in both diagonals as shown in
Fig. 2(a). When the elements of the matrix are ordered
according to binary, as Petoukhov did, the result is shown in
Fig. 2(b), also with D2 symmetry. The designs in Figs. 2(a)
and (b) inspired the American quilter, Elaine Ellison to
create the lovely quilts shown in Fig. 2(c) which she named,
“The music of the Genes” for reasons that will be described
below. Petoukhov has shown that while there are 17 known
genome classes of DNA/RNA, if a codon codes for one
amino acid in one class of DNA but another amino acid in a
different DNA/RNA class, the degeneracy will be preserved
so that the pattern of Fig. 1 is invariant over all 17 genome
classes of DNA/RNA (Petoukhov, 2005). Also note that
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Fig. 1. High and low degeneracy amino acids.

Table 1. The Nicomachus Triangle, T (n, k).

1

2 3

4 6 9

8 12 18 27

16 24 36 54 81

32 48 72 108 162 243

64 96 144 216 324 486 729

etc.

Table 2. Pascal’s Triangle.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

etc.

bit strings of adjacent codons that make up an amino acid
necessarily differ by a single bit because of the nature of
binary reflecting Gray code.

Notice that in M2 the natural numbers 4, 6, 9 appear while
in M3 the natural numbers 8, 12, 18, 27 appear, with each
row and column having the same sequence of positive in-
tegers with no integer appearing adjacent to itself in a row
or column. These sequences come from a triangle of num-
bers attributed to the 2nd century AD Syrian mathemati-
cian Nicomachus (Kappraff, 2000) and represent succes-
sive sequences of musical fifths. The Nicomachus Trian-
gle, T (n, k), is reproduced in Table 1 where the integers
in the n-th row are {2n−k3k, 0 ≤ k ≤ n}; n ≥ 0. Here if
the central integer 6 is thought to be the length of a string
representing a fundamental tone, then 4 and 9 of row 3
represent the string lengths corresponding to rising and
falling musical fifths, ratios of 2:3 and 3:2. Also the fifth
row represents the string lengths that give rise to a penta-
tonic scale with fundamental string length of 36 units while
the integers in row 7 represent string lengths of a heptatonic
scale with 216 as the string length of the fundamental. The

22227777 11118888 11112222 11118888 11112222 8888 11112222 11118888

11118888 22227777 11118888 11112222 8888 11112222 11118888 11112222

11112222 11118888 22227777 11118888 11112222 11118888 11112222 8888

11118888 11112222 11118888 22227777 11118888 11112222 8888 11112222

11112222 8888 11112222 11118888 22227777 11118888 11112222 11118888

8888 11112222 11118888 11112222 11118888 22227777 11118888 11112222

11112222 11118888 11112222 8888 11112222 11118888 22227777 11118888

11118888 11112222 8888 11112222 11118888 11112222 11118888 22227777

(a)

22227777 11118888 11118888 11112222 11118888 11112222 11112222 8888

11118888 22227777 11112222 11118888 11112222 11118888 8888 11112222

11118888 11112222 22227777 11118888 11112222 8888 11118888 11112222

11112222 11118888 11118888 22227777 8888 11112222 11112222 11118888

11118888 11112222 11112222 8888 22227777 11118888 11118888 11112222

11112222 11118888 8888 11112222 11118888 22227777 11112222 11118888

11112222 8888 11118888 11112222 11118888 11112222 22227777 11118888

8888 11112222 11112222 11118888 11112222 11118888 11118888 22227777

(b)

(c)

Fig. 2. (a) RNA matrix of amino acids—Gray Code ordering. (b) RNA
matrix of amino acids—Binary ordering. (c) “The Music of the Genes” .
A quilt pattern by Elaine Ellison.
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Triangle T (n, k) in Table 1 has the property that every row,
column, diagonal, and line joining any two elements con-
tains a nontrivial geometric progression.

T (n, k) is the triangle of coefficients in the expansion
of (2 + 3x)n; given by the generating function 1/(1 −
y(2 + 3x)). For example, 8, 12, 18, 27 are generated by
(2 + 3x)3 = 8 + 3 × 12x + 3 × 18x2 + 27x3 where we see
that there is one 8, one 27, three 12’s and three 18’s in each
row or column of matrix M3. Furthermore if we set x = 1
we find the sum of the elements in each row or column of
Mn equals 5n . For M3 the sum = 125. In other words,
successive integers from a row of the Nicomachus triangle
are multiplied by successive integers from rows of Pascal’s
Triangle, given in Table 2, e.g., (1, 3, 3, 1) · (8, 12, 18, 27)

where · denotes dot product in order to sum the row and
column elements of M3.

Petoukhov has shown that,

P1 = M1/2
1 =

[
τ 1/τ

1/τ τ

]
(5)

where τ = (1 + √
5)/2 is the golden mean. Associating τ

with 1
¯
1 and 0

¯
0, and 1/τ with 1

¯
0 and 0

¯
1, we obtain matri-

ces of the square roots of each of the higher Mn matrices
denoted by Pn . For example,

P2 = M1/2
2 =




τ 2 1 1/τ 2 1
1 τ 2 1 1/τ 2

1/τ 2 1 τ 2 1
1 1/τ 2 1 τ 2


 (6)

1010 corresponds to τ × τ = τ 2, 1100 corresponds to
1/τ × 1/τ = 1//τ 2, and 1011 corresponds to τ × 1/τ = 1.

3. Generalized Bisymmetric Matrices
We have been successful in generalizing Petoukhov’s

RNA matrices to bisymmetric matrices of the form

M1 =
[

a b
b a

]
. (7a)

The higher order matrices Mn are determined in a similar
manner as was done for the matrix with a = 3 and b = 2.
They contain columns and rows with integers from each
column of the generalized Nicomachus Triangle in Table 3
with multiplicities given by Pascal’s Triangle. For example,
analogous to Matrix 3b, using elements of row 3 of Table 3.

M2 =




a2 ab b2 ab
ab a2 ab b2

b2 ab a2 ab
ab b2 ab a2


 . (7b)

The elements of Mn are generated by (b + ax)n with each
row and column of Mn summing to (a + b)n . On the other
hand in Secs. 4, 5, and Appendix B we show that the square
root of the M1 and M2 matrices can be expressed as,

P1 =
[
α β

β α

]
(8a)

and

Table 3. Generalized Nicomachus Triangle.

1

b a

b2 ab a2

b3 ab2 a2b a3

b4 ab3 a2b2 a3b a4

P2 =




α2 αβ β2 αβ

αβ α2 αβ β2

β2 αβ α2 αβ

αβ β2 αβ α2


 (8b)

where,

α = b

2β
(9a)

and

β =
√

a − √
a2 − b2

2
. (9b)

Therefore α and β are real for a > b and complex for
a < b. Since P2

1 = M1, it follows that,

a = α2 + β2, (10a)

b = 2αβ, (10b)

and from this it follows that,

α + β = √
a + b, (11a)

and
α

β
+ β

α
= 2a

b
. (11b)

Also, α and β are roots of the fourth degree polynomial,

x4 − (α2 + β2)x2 + α2β2 = 0. (12)

Making use of Eqs. (9a), (9b), Eq. (12) is rewritten,

x4 − ax2 + b2

4
= 0 (13)

where using Eqs. (9a) and (10a),

a = b2

4β2
+ β2. (14)

Equation (13) can also be rewritten as,

x4 = ax2 − b2

4
, (15)

and if we consider the geometric sequence,

1, α2, α4, α6, α8, . . . (16)

where,

α2n = aα2n−2 − b2

4
α2n−4, (17)
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this corresponds to a generalized “Fibonacci” sequence,
{cn} in which,

c1 = 0, c2 = 1 and cn = acn−1 − b2

4
cn−2. (18a)

The ratio of successive terms, cn+1/cn approaches α2 in the
limit where, in the case that α is complex, then α2 denotes
the square of the absolute value. Also cn+1/cn approaches
α2 from below.

If we let gn = c2
n − ck−1ck−2 then gn can be shown to

satisfy the recursion,

gn = a2gn−1 +
(

b4

16
− a2b2

4

)
gn−2. (18b)

Setting b = 2 and letting a = N 2 ± 2, Eq. (14) reduces to,

1

β2
+ β2 = N 2 ± 2 (19a)

and
α = 1/β. (19b)

It follows that,

1

β
∓ β = N . (20a)

Since α = 1/β, Eq. (20a) is rewritten,

α ∓ 1

α
= N . (20b)

We refer to solutions of the equations,

x − 1/x = N and x + 1/x = N (21)

as the N -th silver means of the first and second kind respec-
tively and denote them as SM1(N ) and SM2(N ) (Kappraff,
2000b). When N = 1, x = SM1(1) = τ , the golden mean.
Therefore, in Eq. (20b), α = SM1(N ) or α = SM2(N ).

As a result of Eq. (21), α satisfies one of the equations,

x2 = N x ± 1. (22)

Therefore, the sequence

1, α1, α2, α3, α4, . . . (23)

is a generalized Pell sequence (Kappraff, 2000b) and satis-
fies the recursion,

αn = Nαn−1 ± αn−2 (24)

as does the sequence, {ck} where,

ck = Nck−1 ± ck−2 (25a)

where cn+1/cn approaches α in the limit. We also find that
when b = 2, Eq. (18b) has the special solution: gn = k, i.e.,

c2
n − cn−1cn−2 = k for all n. (25b)

This means that if k = 0, the sequence {cn} is a geomet-
ric sequence. Otherwise it is an approximate geometric se-
quence.

Table 4. Generalized Nicomachus Triangle Generated by (3, 5).

1

3 5

9 15 25

27 45 75 125

81 135 225 375 625

We consider eight examples:

Example 1. a = 3, b = 2, N = 1. α = SM1(1) = τ

and β = 1/τ , row and column elements are generated by
(2 + 3x)n , row and column sum = 5n . Sequence (18a)
yields {0, 1, 3, 8, 21, . . . }, even indexed Fibonacci terms
with ratio of successive terms approaching τ 2. In Eq. (25b),
we find that k = 1. The golden mean has found many
applications. LeCorbusier made it the basis of his Modulor
system of architectural design (Kappraff, 2000c).

Example 2. a = 6 , b = 2, N = 2. Replacing
this into Eq. (9) yields α = SM1(2) = 1 + √

2, β =
1/(1 + √

2), row and column elements are generated by
(2 + 6x)n , row and column sum = 8n . Sequence (18a)
yields: {0, 1, 6, 35, 204, . . . }, approaching α2. In Eq. (25b),
we find that k = 1. The proportion, 1 + √

2 is commonly
known as the silver mean and was the basis of the system of
proportions used in the Roman Empire (Kappraff, 2000c).

Example 3. a = 5, b = 4, α = 2, β = 1, row and
column elements generated by (4 + 5x)n , row and column
sum = 9n . Sequence (18a), i.e., cn = 5cn−1 −4cn−2, yields:
{0, 1, 5, 21, 85, 341, 1365, . . . } = {cn = (4n − 1)/3} as the
ratio of successive terms tends to 4.

Example 4. a = 5, b = 3, α = 3/
√

2, β = 1/
√

2, row and
column elements generated by (5 + 3x)n , row and column
sum = 8n . The generalized Nicomachus Triangle in Table
4 is generated from {3n−k × 5k}(0 ≤ k ≤ n). Each column
of this Triangle represents a sequence of musical fifths and
recreates the ancient Pythagorean scale, whereas any three
successive columns generates the tones of the ancient Just
scale (McClain, 1976; Kappraff, 2000).

Example 5. a = 4, b = 3, α =
√

(4 + √
7)/2, β =√

(4 − √
7)/2, row and column elements generated by (4+

3x)n , row and column sum = 7n .

Example 6. a = 7, b = 2, N = 3, α = SM2(3) = τ 2,
β = 1/τ 2, row and column elements generated by (2+7x)n ,
row and column sum = 9n .

Example 7. a = 1, b = 1, α = 1/
√

2, β = 1/
√

2. Row
and column elements are generated by (1 + x)n . All ele-
ments of the generalized Nicomachus Triangle (see Table 3)
are ones but taking into account multiplicity yields Pascal’s
Triangle (see Table 2) whose (n, k)-th element is equal to
n!/(k!(n − k)!). The ratio of successive terms in Sequence
20, i.e., c1 = 0, c2 = 1 and cn = cn−1 −(1/4)(cn−2), yields:
1, 3/4, 2/3, 5/8, 3/5, 7/12, 4/7, . . . approaching the value
of 1/2. These ratios are the fundamental, musical fourth,
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Table 5. Generalized Nicomachus Triangle Generated by (1, 2).

1

2 1

4 2 1

8 4 2 1

16 8 4 2 1

Table 6. Square of Pascal’s Triangle.

1

2 1

4 4 1

8 12 6 1

16 32 24 8 1

fifth, minor sixth, major sixth of the ancient Just scale, and
two approximations to the major and minor sevenths, all
approaching the octave value of 1/2. If the modulus M of
a pair of successive approximating fractions a/b and c/d is
defined as M = (ad − bc) then all moduli of the approxi-
mating sequence have the value 1, e.g., (1×4−1×3) = 1,
(3 × 3 − 4 × 2) = 1, etc. As a result, the approximating
fractions appear as elements of successive rows of the Farey
Table to the right of 1/2 (Kappraff, 2000b).

Example 8. a = 1, b = 2, N = i , α = SM1(i) =
eiπ/6, β = e−iπ/6, row and column terms are generated by
(2+x)n , row and column sum = 3n . The generalized Nico-
machus Triangle yields Table 5. Multiplying the elements
of Table 5 by the elements of Pascal’s Triangle to account
for multiplicity yields the square of Pascal’s Triangle, a tri-
angle whose (i, j)-th entry is (i, j) × 2i− j where (i, j) is
the element of the i-th row and j-th column of Pascal’s Tri-
angle. The rows of Table 6 give the number of vertices,
edges, faces, cells, etc of hypercubes, of increasing dimen-
sion, e.g., H0 (point) V = 1; H1 (line segment) V = 2, E = 1;
H2 (square) V = 4, E = 4, F = 1; H3 (cube) V = 8, E = 12,
F = 6, C = 1; H4 (tesseract) V = 16, E = 32, F = 24, C = 8,
hypercube = 1. Sequence (18a) generates the sequence: 0,
1, 1, 0, –1, –1, 0, 1, 1, . . . , and the ratio of successive terms
should approach α2 = 1. In fact, the ratio of a subsequence
approaches 1 identically as it should. In Eq. (25b), we find
once again that k = 1.

If a = 2, b = 1, then the generalized Nicomachus
Triangle is identical to the one for a = 1, b = 2 but
the columns are in reverse order. On the other hand α =√

(2 + √
3)/2 and β =

√
(2 − √

3)/2 .

4. Pythagorean Triples and the Square of a 2 × 2
Bisymmetric Matrix

For x, y real numbers with x > y, and

M =
[

x y
y x

]
. (26)

2xyx2 + y2

[x2 + y2]1/2

y

x2 - y2

x

2xyx2 + y2

[x2 + y2]1/2

y

x2 - y2

x

Fig. 3. Pythagorean triples.

The square of this matrix is,

M2 =
[

x y
y x

]2

=
[

x2 + y2 2xy
2xy x2 + y2

]
. (27)

Notice that M2 has values that are the hypotenuse and alti-
tude of a right triangle whose base is x2 − y2. As a result,
if x and y are integers, then {x2 + y2, 2xy, x2 − y2} is a
Pythagorean triple, i.e., three integer sides of a right trian-
gle.

Compare this with the complex number x + iy and its
square, (x + iy)2 = x2 − y2 + 2i xy. Here the argument
of x + iy is doubled while its modulus is squared, i.e., if
tan θ = y/x then tan 2θ = 2xy/(x2−y2) while the modulus
squares from

√
x2 + y2 to x2 + y2 as shown in Fig. 3. The

hypotenuse of this triangle is x2 + y2 so that it is identical
with the triangle in Fig. 3.

We now identify

[
x y
y x

]
with the ordered pair (x, y) or

equivalently with the complex number x+iy so that tan θ =
y/x = c. It can be shown that the ordered pair, (c, 1),
corresponds to a triangle with the radius r of the inscribed
circle, and area A given by,

r = c − 1, A = (c − 1)(c)(c + 1).

It follows that the radius r of the inscribed circle and the
area of triangle (a, b) is,

r = b2(a/b − 1) = ab − b2 (28a)

and
A = b4(a/b − 1)(a/b)(a/b + 1) = ab(a2 − b2). (28b)

It also follows from Eq. (28) that,

r = area

semiperimeter

where this equation holds for triangles that are not right
triangles.

5. Square Root of a 2 × 2 Bisymmetric Matrix
It follows from Eq. (27) that,

[
x2 + y2 2xy

2xy x2 + y2

]1/2

=
[

x y
y x

]
.
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We now pose the problem to find x and y such that,

[
a b
b a

]1/2

=
[

x y
y x

]
(29)

where a is the hypotenuse and b is the altitude of a right tri-
angle with vertex angle θ whose base is

√
a2 − b2, tan θ =

b/
√

a2 − b2 and tan θ/2 = y/x . As a result, using standard
trigonometric identities,

tan θ/2 =
√

1 − cos θ

1 + cos θ
where cos θ =

√
a2 − b2

a
.

After some algebra,

tan θ/2 = a − √
a2 − b2

b

which implies that,

x = kb and y = k(a −
√

a2 − b2). (30)

But, since the hypotenuse of the right triangle with vertex
θ/2 is

√
a, √

x2 + y2 = √
a. (31)

Replacing Eq. (30) into (31) and solving for k it follows
after some algebra that,

x = b

2y
and y =

√
a − √

a2 − b2

2

which agrees with Eqs. (9a) and (9b).

6. Pythagorean Triples and Powers of 2 × 2
Bisymmetric Matrices

For a, b natural numbers with a > b, even powers of an
arbitrary 2 × 2 bisymmetric matrix,

[
a b
b a

]2n

results in a sequence of pairs of whole numbers that are hy-
potenuse and side of Pythagorean triples for all values of n.
The third side will be powers of a2 − b2. If

√
a2 − b2 = c

for c a natural number, i.e., if {a, b, c} is a Pythagorean
triple, then all powers of the bisymmetric matrix results in
hypotenuse and side of Pythagorean triples with the third
side being powers of c. It should be noted that the first num-
ber of these Pythagorean triples, a, represents the length of
the hypotenuse unlike the first number of (a, b) which was
the length of a side.

Example 9. (3,2)

[
3 2
2 3

]2

=
[

13 12
12 13

]
.

Therefore the Pythagorean triple is {13,12,5}

r = 3 × 2 − 22 = 2 and A = (3 × 2)(32 − 22) = 30

[
3 2
2 3

]4

=
[

313 312
312 313

]
with {313, 312, 25}

[
3 2
2 3

]6

=
[

313 312
312 313

] [
13 12
12 13

]
=

[
7813 7812
7812 7813

]
with {7813, 7812, 125}.

Example 10. a = 5, b = 4 where {5, 4, 3} is a triple.

[
5 4
4 5

]2

=
[

41 40
40 41

]
with {41, 40, 9}

where r = 5 × 4 − 42 = 5 and A = (5 × 4)(52 − 42) = 180

[
5 4
4 5

]3

=
[

41 40
40 41

] [
5 4
4 5

]
=

[
365 364
364 365

]
with {365, 364, 27}.

7. Conclusion
Petoukhov’s RNA matrices have led to a generalization

of the golden mean, generalized Fibonacci sequences, gen-
eralized Nicomachus Triangles, and to an algorithm for
generating Pythagorean triples. Pascal’s Triangle plays an
important role. Although Petoukov’s matrices reproduce
the sequences of musical fifths found in the rows of the
Nicomachus Triangle, there is no obvious connection be-
tween the genomic matrices and the musical scale.

Appendix A.

A.1 Petoukhov’s Matrix Genetics
We have demonstrated the symmetry that is uncovered

when the ensembles of genetic multiplets and other genetic
elements are represented by the Petoukhov matrices, and
we have shown how this symmetry results in analyzing
certain patterns in the evolution of all of the known classes
of genetic code (These classes are shown on the NCBI site
http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi).
We have also shown that generalizations of these matrices
reveal sturdy mathematical structures bringing together
generalizations of the golden mean, Fibonacci sequences,
new characterizations of Pythagorean triples, and math-
ematical structures that generalize the musical scale of
Pythagoras.

This work calls attention to the broader results that
Petoukhov has expressed through his papers and books
(Petoukhov, 2008a, b). Petoukhov states that one of the
most important tasks of science is to find a way of creating
order in the study of genetic coding. The work of Petoukhov
describes the utility of matrix methods to represent and to
analyze hierarchical systems of genetic coding for mathe-
matical classification and modeling of natural forms. This
work demonstrates applications to the ordering of genetic
code of special algebras, and other well-known mathemati-
cal structures such as Hadamard matrices, double numbers,
transformations of hyperbolic turns, the golden section, the
Pythagorean musical scale, etc. The results of his analy-
sis suggest that living substances have their own forms of
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creating order and that these forms are connected with spe-
cial algebras which are new to biomathematics. These al-
gebras are related to special multidimensional geometries.
They permit the development of new models in the fields of
molecular genetics, bioinformatics and mathematical biol-
ogy in general. A discovery of these algebras leads to the
construction of biological theories based on a language of
biological algebras. Petoukhov’s results suggest that many
difficulties in the mathematizing of biology may be due to
inappropriate numerical systems (algebras) which are uti-
lized to describe biological structures. These difficulties
can be compared to problem which Hamilton faced when
he tried for many years to find a description of properties of
3D space by means of algebras of 3-dimensional numbers
until he realized that these required the new four dimen-
sional algebra of quaternions.

Appendix B.
Theorem: P2

2 = M2 where,

M2 =




a2 ab b2 ab
ab a2 ab b2

b2 ab a2 ab
ab b2 ab a2


 and P2 =




α2 αβ β2 αβ

αβ α2 αβ β2

β2 αβ α2 αβ

αβ β2 αβ α2


 .

Proof: Let

P1 =
[
α β

β α

]
, Q1 =

[
β α

α β

]
,

M1 =
[

a b
b a

]
and N1 =

[
b a
a b

]
.

P2 and M2 can then be rewritten,

P2 =
[
αP1 βQ1

βQ1 αP1

]
and M2 =

[
aM1 bN1

bN1 aM1

]
.

Using Eqs. (10a) and (10b), a = α2 + β2, b = 2αβ, it
follows immediately that,

P2
2 = M2.

It follows by induction that P2
n = Mn where,

Pn =
[
αPn−1 βQn−1

βQn−1 αPn−1

]
and Mn =

[
aMn−1 bNn−1

bNn−1 aMn−1

]
.
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