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Visualization of Cardiac Parasympathetic Nervous Activity
in Form
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In the field of medical science, the invisible real forms of organs may be visualized using advanced technology.
Few studies have visualized physiological condition in form. The purpose of this study is to visualize cardiac
parasympathetic nervous activity in form. The power of high-frequency component of R-R interval time series
derived from ECG (HF: 0.15–0.4 Hz) is an index of cardiac parasympathetic nervous activity. This index is
visualized as a form. To realize real-time and continuous visualization of cardiac parasympathetic nervous
activity, we developed a new method for calculation of HF power. The estimated accuracy of this method
for calculating HF power was the same as in the conventional method. From an experiment comparing the
various kinds of image, visualization using an apple with a facial expression was considered to have a related
physiological and psychological relaxation effect.
Key words: Heart Rate Variability, Cardiac Parasympathetic Nervous Activity, Power Spectrum Analysis, High
Frequency Component, Visualization

1. Introduction
In the field of medical science, the invisible real forms

of organs may be visualized using advanced technology
(Swenberg, 1988). Few studies have visualized physiologi-
cal condition as a form. One such example is visualization
of muscle activity by a moving CG avatar (Matsukawaet
al., 2007; Choiet al., 2007). The other example is indicat-
ing the heart rate by music (Yokoyamaet al., 2002). But it
seems there is no example in which autonomic nervous bal-
ance is visualized in form. The purpose of this study is to
visualize cardiac parasympathetic nervous activity in form.

The heart rate time series derived from electrocardio-
graph (ECG) is fluctuated by the effect of cardiac autonomic
nervous control. A heart rate time series reportedly con-
tains well-defined rhythms, which have been successfully
shown to contain physiological information (Sayers, 1973;
Akselrodet al., 1981). The major components of this fluc-
tuation are Mayer rhythm and respiratory sinus arrhythmia
(RSA). The Mayer rhythm reflects the systolic rhythm of
speripheral blood vessels. The band-width of this rhythm
is from 0.04 to 0.15 [Hz]. This is called the low-frequency
component (LF). Its physiological interpretation is still con-
troversial. Both sympathetic and parasympathetic contribu-
tions can be involved (Ceruttiet al., 1995). The frequency
of RSA is synchronized with the respiratory frequency. The
frequency of this rhythm is from 0.15 to 0.4 [Hz], and this
frequency is called the high-frequency component (HF).
This rhythm is due to the intrathoracic pressure changes
and mechanical variations caused by the breathing activ-
ity. It is mediated by the vagus nerve on the heart (Cerutti
et al., 1995). These components are used as indices of au-
tonomic nervous balance. The power of HF is an index of
cardiac parasympathetic nervous activity, and the ratio of

LF power to HF power is related to sympathetic nervous
activity (Montanoet al., 1994; Task Force of the European
Society of Cardiology and the North American Society of
Pacing and Electrophysiology, 1996).

In this study, HF power, which is an index of cardiac
parasympathetic nervous activity, is visualized in form. HF
power is calculated from the power spectrum in general.
The power spectrum is calculated using Fourier transform,
the maximum likelihood method or auto regressive model
etc. (Kay and Marple, 1981). These methods are not appro-
priate for real-time calculation, because they require com-
plex calculation procedures. To realize real-time and con-
tinuous visualization of cardiac parasympathetic nervous
activity, we developed a new method for calculation of HF
power. This method can calculate HF power continuously
using a short time window.

To visualize the cardiac parasympathetic nervous activ-
ity reflected in the HF power of heart rate time series in
form, it becomes possible to monitor the unsteady change
of autonomic nervous activity caused by various actions in
daily life. This monitoring technique can be used for daily
health care management, relaxation treatment, stress or fa-
tigue monitoring and so on.

2. Algorithm for Calculation of HF Power
A time series of R-R intervals was used for analysis. R-

R interval is the interval of two-neighboring R peaks in the
ECG signal. R peak corresponds to the depolarization of the
ventricles. HF power is estimated from subtraction of the
neighboring two extremals in the R-R interval time series.
The procedure is described as follows.
1) Detection of an extremal

A k-th extremalTk at pointPk is equal tor(i) in Eq. (2),
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Fig. 1. R-R interval time series. Points P1 to P4 are extremals. From tp1
to tp4 are the times at extremal. T3 and T4 are the extremals contained
in HF wave.

while {r(i), i = 1, 2, . . . , N } satisfies Eq. (1):

(r(i) − r(i − 1))(r(i + 1) − r(i)) < 0 (1)

Tk = r(i) (k = 1, 2, . . . , M) (2)

where r(i) is the i-th R-R interval. The R-R interval
presents the interval of two neighboring heart beats in ECG.
N is the number of R-R intervals and M is the number of
extremals.
2) Calculation of the power of HF

HFPk in Eq. (3) shows the local power derived from
the two neighboring extremals, Tk+1 and Tk , which are the
(k+1)-th and k-th extremals. |Tk+1−Tk | is the peak-to-peak
value of the wave containing the points Pk+1 and Pk :

HFPk = (|Tk+1 − Tk |/2)2. (3)

3) Detection of high-frequency component
The frequency band of HF is 0.15 to 0.4 Hz. The period

of signal fluctuating with 0.15 Hz is 6.7 sec. The time at
Pk is described as tpk . The interval of tpk+1 and tpk is the
half period of a wave containing Pk+1 and Pk . If the interval
of tpk+1 and tpk is not over 3.35 [sec], the wave containing
Pk+1 and Pk is detected as HF (Eq. (4)).

2(tpk+1 − tpk) ≤ 6.7(sec). (4)

An example of the R-R interval time series and the points
observing extremal (•) are presented in Fig. 1. The abscissa
shows the time and the ordinate indicates the R-R intervals.
Tk is the k-th extremal. The time at observing extremal is
described as tpk(k = 1, 2, 3, 4). In this figure, the interval
of the neighboring extremals P2 and P1 is 4 [sec], that is
(tp2 − tp1). This time interval is longer than 6.7/2 = 3.35
[sec]. The time series from tp1 to tp2 is the part of the low-
frequency waveform. In this case, the power of HF is output
as zero. The interval of neighboring extremals P3 and P4 is
1.6 [sec], which is less than 3.35 [sec]. P3 and P4 are part of
the high-frequency component. The power of this HF wave
is (|T4 − T3|/2)2.

3. Evaluation of Proposed Method
Calculation accuracy of the proposed algorithm was eval-

uated using a simulated time series. In this analysis, sinu-
soidal time series with the amplitude one, whose frequency
components varied randomly at each period, were gener-
ated. The frequency band of the component is 0.04 to 0.45

Fig. 2. Detection of HF wave. Above: R-R intervals (simulation). Middle:
Frequency of R-R interval time series. Below: Result of detection.
1: HF, −1: LF.

[Hz]. The result is shown in Fig. 2. The simulated R-
R interval time series is shown above, with the frequency
change of this time series in the middle, and the power cal-
culated using the proposed method indicated below. In this
power, the positive value shows the power estimated as HF,
and the negative value shows the power estimated as LF.
The horizontal line at 0.15 [Hz] in the middle shows the
threshold between LF and HF. Dotted vertical lines show
the position detecting low-frequency components. At the
waveform position with frequency exceeding the threshold
frequency, the power is calculated as positive, which means
HF.

4. Evaluation Using Measured R-R Interval Data
The proposed method was compared with conventional

methods such as the fast Fourier transform (FFT) (Cooley
and Tukey, 1965), auto regressive (AR) method (Akaike,
1969) and wavelet transform (Gabor Transform) (Akay and
Mello, 1997).

FFT is a method for efficiently computing the discrete
Fourier transform of time series. The power spectral density
function calculated from the discrete Fourier transform is
represented by Eq. (5).

PFFT( f ) =
∣∣∣∣∣

N∑
t=1

r(t) exp(− j2π f t	t)

∣∣∣∣∣
2

. (5)

In this equation, r(t) is the time series of R-R intervals, N is
the number of data (N is the power of two in FFT method),
j is the imaginary unit, f is the frequency and	t is the
sampling interval of the time series.

To calculate the power spectral density function using
AR method, an AR model is estimated from the time series.
The AR model represented by the following equation is the
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Fig. 3. Images displayed to participants. (a) Numeric character representing HF power; Numeric. (b) Apple representing HF power with facial
expression; Apple. (c) Wire-frame sphere; Sphere1 (Speed of animated motion is according to the HF power); Sphere2 (Speed of animated motion is
in inverse proportion to HF power).

linear prediction model of time series:

r(t) =
p∑

k=1

a(k)r(t − k) + Z(t) (6)

where r(t) is the time series of R-R intervals, a(k) is the
linear prediction coefficient, p is the order of the autore-
gressive process, and Z(t) is the prediction error, which is
the white noise. The optimal order of the autoregressive
process is selected as the minimized the final prediction er-
ror (FPE) described below:

FPE(k) = Z2
sd

N + k

N − k
. (7)

Z2
sd is the variance of Z(t) and N is the number of data.

The power spectral density function (PAR( f )) is de-
scribed in Eq. (8).

PAR( f ) = Z2
sd∣∣∣∣1 −

p∑
k=1

a(k) exp(− j2π f k)

∣∣∣∣
2 . (8)

In this equation f is the frequency.
Wavelet transform is one of the popular time-frequency

analysis methods. This method is useful for the analysis

of non-stationary time series. Wavelet transform provides a
flexible time-frequency window according to observing fre-
quency. Gabor transform is one of the wavelet transforms.
The power spectral density function derived from the Gabor
transform is described in below:

Pwt ( f ) =
∣∣∣∣∣∣

N∑
t=1

exp
(
− (t−b)2

4 f

)

2
√

π f
exp(− j2π f t	t)

∣∣∣∣∣∣

2

. (9)

Gaussian function localizes the Fourier transform of f
around t = b in the Gabor transform.

Next, 170 measured R-R interval time series with 3-
minute long were analyzed. The area of the power spectral
density function with 0.15 to 0.4 [Hz] is defined as the HF
power in FFT and AR methods. A time window with 20
[sec] width is used to calculate power by the wavelet trans-
form. The average of the powers derived from the moving
window 1 [sec] interval is defined as the HF power in the
wavelet transform.

The correlation coefficients of the proposed method and
other methods are shown in Table 1. A large correlation
coefficient is presented in the AR model and in the wavelet
transform. The accuracy of estimation of the HF power is
the same as with the conventional methods.
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Table 1. Correlation coefficients between proposed method and conven-
tional method. AR: auto regressive model, FFT: fast Fourier transform,
Gabor: wavelet transform (Gabor transform).

Method AR FFT Gabor

r 0.98 0.92 0.98

The relationship between the ratio of amplitude of HF to
LF (HFA/LFA) and error rate of estimation of HF power
was analyzed. In this simulation analysis, a time series is
generated from Eq. (10). In Eq. (10), LFA and HFA are the
amplitude of LF and HF, respectively. LFF and HFF are the
frequency of LF and HF. The sampling rate is described as
the delta t. 1000 simulated data were analyzed.

r(t) = LFA sin(2πLFFt	t)+HFA sin(2πHFFt	t). (10)

Table 2 shows the high calculation accuracy, when
HFA/LFA is larger than 0.4. Almost all data with HFA/LFA
larger than 0.4 had a small error rate of less than 0.1. The
average error rate of these data, whose HFA/LFA is larger
than 0.4, was 8%. The dominant frequency of HF (HFF)
and dominant frequency of LF (LFF) were used for calcula-
tion of evaluation parameter of the estimation accuracy. The
new evaluation parameter is (HFA/LFA-(HFF-LFF)). The
average error rate of this data, with (HF/LF-(HFF-LFF))
larger than 1.0, is 5%.

5. Experiment for Evaluating Effects of Visualiz-
ing Cardiac Parasympathetic Nervous Activity
in Form

5.1 Visualizing method
The R-R interval time series were measured using a

portable heart rate monitor (LRR-03 GMS). The measured
R-R interval was transmitted to the PC through RS-232C.
HF power was calculated from the R-R interval time series.
These HF powers were reflected in the CG images.

A moving average with 20-beat window width was ap-
plied to the time series of HF powers. This moving average
method can prevent any abrupt change of the image. To
avoid personal differences, the HF power was normalized
by measuring data while sitting at rest.

Three kinds of image were prepared. In Fig. 3, (a) is a nu-
meric character with large font-colored orange (Numeric).
(b) shows three apples with facial expressions (Apple). (c)
shows a wire-frame sphere model by 3-D computer graph-
ics (Sphere1 and Sphere2).

The value of (a) reflects the HF power. If the power
is large, the cardiac parasympathetic nervous activity is
large, and the value is thereby increased. A face in (b),
in which the three aspects are smile (large HF power), neu-
tral (medium HF power) and pain (small HF power), was
prepared. In sphere1, the speed of the animated motion of
the sphere was increased according to the HF power. In
sphere2, the speed of the animated motion of the sphere
was decreased according to the HF power.
5.2 Experimental method

The volunteer participants in this experiment were 19 (14
men and 5 women) healthy students aged 18 to 24 years

Fig. 4. A photo of one participant during the experiment.

old (21.4 ± 1.4; average ±SD). The relationship between
emotional stress and heart rate variability was independent
of gender (Dishman et al., 2000). So, it is considered that
the unequal number of participants’ gender did not affect
the experimental results. A photo of one participant dur-
ing the experiment is shown in Fig. 4. The protocol of the
experiment is shown in Fig. 5. Each participant was given
sufficient explanation of the experiment and gave written
consent. In the first three minutes, R-R intervals were mea-
sured to use the normalization procedure. Participants sat
for one minute, then performed mental arithmetic for 3 min-
utes and watched a cartoon reflecting the HF power or re-
laxation video for three minutes. The numeric character,
an apple, two kinds of animation of wire-frame sphere and
relaxation video without reflection of the HF power, were
compared. The relaxation video was about animals. The
order of displaying the content was determined randomly.
5.3 Results and discussion

The average of the HF powers while sitting at rest for
three minutes and the average of the HF powers while
watching images for three minutes were calculated. The
average and standard deviation of these values derived from
sitting at rest for three minutes while watching four kinds of
images reflecting HF power. Watching the relaxation video
served to standardize the values. In this case, the average
was zero, and the standard deviation was one in each par-
ticipant.

The relationship between the condition (sitting rest, nu-
meric character, apple, sphere1, sphere2, relaxation video)
and the HF power averaging for three minutes is presented
in Fig. 6. The black circles show the average of 14 par-
ticipants, the top of the bar indicates the maximum values
among 14 participants, and the bottom of the bar shows the
minimum value. HF power while sitting at rest was signif-
icantly (p < 0.01) less than the other conditions. The HF
power while watching the apple was significantly greater
than watching sphere1 (p < 0.01). In this result, the image
reflecting HF power has the effect of increasing HF power.
It is considered that the images reflecting HF power can ac-
tivate cardiac parasympathetic nervous activity.

Subjective evaluations were performed. As for the lik-
ability of the image, the relaxation effect, fatigue, sleepi-
ness and suiting one’s mood were evaluated. The partici-
pants were required to answer the degree of their agreement
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Table 2. Histogram of HFA/LFA. >0.1: Error rate larger than 0.1, <=0.1: Error rate less than 0.1.

0–0.2 0.2–0.4 0.4–0.6 0.6–0.8 0.8–1.0 1.0–1.2 1.2–1.4 1.4– Subtotal (>0.4) Total

>0.1 96 55 17 26 11 8 4 2 68 219

<=0.1 0 11 60 70 83 83 76 398 770 781

Fig. 5. Experimental protocol.

Fig. 6. Relationship between condition and average of HF power.

Fig. 7. Relationship between image and evaluation score of relaxation effect.

with each question: “Very much agree” , “Agree” , “yes and
no (neutral)” , “Do not agree” and “Completely disagree.”
In the questionnaire, a visual analogue scale (VAS) was
used. “Completely disagree” was assigned 1 and “Very
much agree” was assigned 5 for statistical analysis.

One-way analysis of variance (ANOVA) was applied to
all questions to analyze the significance of the variance
among images. The relaxation effect varied significantly
(p < 0.05). In Fig. 7, the average answer about the relax-
ation effect is shown while watching the numerical charac-
ter, apple, sphere1, sphere2 and relaxation video. The re-
laxation effect of the relaxation video was the very highest
among other images. The relaxation effect of the apple was
larger than sphere2, in which the velocity of motion (ani-
mation) is decreased according to the HF power. The apple
image is considered to offer psychological relaxation.

6. Conclusion
The purpose of this study was to visualize car-

diac parasympathetic nervous activity in form. Cardiac
parasympathetic nervous activity was estimated from the
heart rate time series in real time. An estimation method
was proposed in this study. The estimated accuracy of this
method was the same as in the conventional method, such
as the AR method and the wavelet method. This parameter
called HF power, which is reflected in the cardiac parasym-
pathetic nervous activity, was visualized using various im-
ages. From the experiment comparing the various kinds of
image, visualization using the apple with facial expressions
was considered to have a related physiological and psycho-
logical relaxation effect.

In future study, sphygmography will be used to estimate
HF power for application in daily life. The sphygmography
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can be measured without attaching electrodes. It can be
measured using photoelectric transducer, which is a simple
and convenient sensor. The HF power of sphygmography
calculated from the complex demodulation method report-
edly contains the same information as the HF power derived
form the R-R interval time series (Sakakibara et al., 2008).
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