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We derived 14 types of tiling cases under a restricted condition in our previous report, which studied plane
tilings with congruent convex pentagons. That condition is referred to as the category of the simplest set of node
(vertex of edge-to-edge tiling) conditions when the tile is a convex pentagon with four equal-length edges. This
paper shows the detailed properties of convex pentagonal tiles with four equal-length edges and tiling patterns.
Furthermore, we present the relationship between the idiomatic expression in various overviews and our results.
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1. Introduction
In the typical review of the convex pentagonal tiling

problem, convex pentagonal tiles*1 are numbered and clas-
sified almost in the order that corresponds to the publi-
cations (Schattschneider, 1978; Grünbaum and Shephard,
1987; Sugimoto and Ogawa, 2005, 2006b). This classifica-
tion shows few systematic properties because it consists of
not only the edge-to-edge*2 tiling (EE tiling), but also non-
edge-to-edge tiling (NEE tiling). However, they shift from
common patterns with a higher degree of freedom to pat-
terns with many restrictions and little remaining freedom.
Still, from a consistent viewpoint this classification has no
logic.

In our previous report (Sugimoto and Ogawa, 2005; here-
after, we refer it as Report I), we discussed the existence of
pentagonal tiles with four equal-length edges by applying
“the simplest node condition.” Note that, in our study, a
point that is the common vertex of k polygons (tiles) in an
edge-to-edge tiling is called a node of valence k (Sugimoto
and Ogawa, 2005, 2006b). Then, if the number and kind of
nodes in EE tiling are restricted to one kind of 4-valent node
and two kinds of 3-valent nodes (including the case when
the two kinds are identical), we call that the condition is the
simplest node condition. In Report I, we detailed the logic
to screen pentagons by restricting candidates, and explained
and exemplified the complicated process throughout. As a
result, we derived 14 kinds of concentration methods that
allow the EE tiling in accordance with the node restriction
(the relations of angles among three nodes which are given
from the simplest node condition). However, we could not

*1A single congruent polygon that tiles the Euclidean plane is called a
polygonal tile.

*2The tiling by convex polygon is called edge-to-edge if any two convex
polygons either do intersect or share only one vertex or only one edge.

describe the actual tiling patterns*3, etc. Therefore, there
are two primary purposes of this report: finding the relation-
ship between our results and the convex pentagonal tiles (or
tiling patterns) in past studies and summarizing how much
we have achieved in deriving previously discovered tiles in
a consistent manner. Throughout the report, we will con-
sider only EE tiling. Hereafter, unless noted otherwise, an
EE tiling is written simply as “tiling.”

Section 2 explains the terms used in this report. Section
3 introduces tilings under the node restriction (the relations
of angles among three nodes which are given from the sim-
plest node condition). In Sec. 4, we stop applying the node
restriction to tiling and introduce possible tilings that are
formed of only 3- and 4-valent nodes with convex pentag-
onal tiles with four equal-length edges of Sec. 3. In Sec. 5,
as to the convex pentagons eliminated by the topological
judgment but confirmed by the geometric judgment in Re-
port I, we analyze whether tiling is possible when the node
restriction is not applied and discuss the properties of each
pentagon. In Sec. 6, we classify and describe the equilat-
eral convex pentagonal tiles in relationship to the convex
pentagonal tiles with four equal-length edges that are men-
tioned in Secs. 3 and 5. Finally, Sec. 7 compares and sum-
marizes the convex pentagonal tiles mentioned in both past
reports and our study.

2. Preparation: Terms, etc.
The vertices and edges of pentagons are referred to by

the nomenclature described in Fig. 1(b). In addition, as to
pentagons with four equal-length edges, these four edges
are defined as a, b, c, and d, and the edge e between
the vertices D and E of the pentagon is the sole edge of

*3In this study, the tiled arrangement of polygons on a plane is referred
to as a tiling pattern.
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different length. Therefore, for the pentagonal tilings, the
edges DE of adjacent polygons may be joined in a regu-
lar (mirror-reflected) or reversed (point-symmetric) pattern.
Note that in this study, the mirror-reflected case is called a
DE-regular pattern, and the point-symmetric case is called
a DE-reversed pattern. We can consider that the pentag-
onal pairs that are of DE-regular or DE-reversed patterns
are the units of tiling (Sugimoto and Ogawa, 2005).

The most important objective of this report is to collect
all convex pentagonal tiles. For these convex pentagonal
tiles, there are some possible tilings other than those with
simple periodic structures under the node restriction. There-
fore, another purpose of this study is to mention these prop-
erties. The terms used in this study are then explained in
order to depict the tiling properties described below.

Tiling is inseparably connected to crystallography be-
cause both studies use periodic structures. However, the
premises behind the idea of the unit cell of the periodic
structure are different between the case of crystallography,
which is concerned with point location, and the case rele-
vant to tiling. We need considerations for tiling other than
the point location. In this study, the criterion of the pen-
tagonal tile is an actual perception that several pentagons
certainly form a periodic structure. Our central task is not
to classify the tiling by crystalline structures (group of plain
surfaces). Therefore, we call the tiling region that can form
a periodic structure only with translation of a “fundamen-
tal region” instead of the term “unit cell.” In this study, we
adopt the fundamental region consisting of several pairs of
regular or reversed patterns mentioned above for all convex
pentagons with four equal-length edges. Also in this study,
the fundamental region that can be made of the minimum
number of tile pieces is particularly called the smallest fun-
damental region (Sugimoto and Ogawa, 2004). The small-
est fundamental region is required for considering tiling
properties described hereinafter.

As mentioned above, tilings other than periodic struc-
tures made only with translations of the smallest funda-
mental region, are possible for some of our tilings. For
example, the tiles in Fig. 1(b), C22-T1E (DE-regular 7),
form the smallest fundamental region (the pale gray re-
gion) with four pieces and can form a periodic tiling by
it. However, the C22-T1E tiles can mix the smallest fun-
damental region (the dark gray region) rotated by 180◦ in
one tiling without breaking the node restriction as shown in
the illustration. From this property, the C22-T1E tile can
make the periodic tiling of only the smallest fundamental
region, and the many periodic tilings by freely combining
the smallest fundamental regions with those rotated by 180◦

(e.g., periodic tiling of the fundamental region consisting of
eight pentagons made by combining the single smallest fun-
damental region and the single smallest region rotated by
180◦). In addition, this combination allows quasi-periodic
and random arrangements in one-dimension. We name this
kind of tiling multipatterned tiling because it allows sev-
eral kinds of tiling (Sugimoto and Ogawa, 2004). As shown
in Fig. 4(b), the fundamental region formed by pentagonal
tiles that cannot allow multipatterned tiling is always the
smallest fundamental region.

3. Tiling Using Convex Pentagonal Tiles with Four
Equal-length Edges in Accordance with the
Node Restriction

In this section, as to the 14 kinds of concentration meth-
ods deduced in Report I, we clarify the relationship between
the classification corresponding to our working process and
the idiomatic expressions used in conventional reports. Ad-
ditionally, the properties of each tiling are explained.
3.1 Classification and properties of convex pentagonal

tiles
The 14 kinds of concentration methods are initially clas-

sified from the two viewpoints of “C” and “T”. “C” indi-
cates the classification focusing on the combinations of five
vertices of tiles appearing in three relational expressions
(expressions that include only angles) of the node restric-
tion. “T” indicates the classification focusing on the id-
iomatic expressions of the conditions of angles and edges
satisfied by convex pentagons in order to allow tiling by
considering the relative relationship of the five vertices.
Here, cautions for the idiomatic expressions are described.
As discussed above, the 14 kinds of convex pentagonal tiles
on a plane mentioned in the reviews include EE and NEE
tiling. Some cases that illustrate NEE tiling (i.e., type 1
and type 2 in the conventional expressions) include special
cases that allow EE tiling. The tilings in our results that fall
under this classification belong to special cases. They are
EE tiling.

First, we focus on the combinations of vertices used in
one kind of 4-valent node and two kinds of 3-valent nodes.
The format of node restriction can be classified into the four
kinds as shown in Table 1. The three equations described
in the format of the node restriction express the pattern of
concentration of one kind of 4-valent node and two kinds
of 3-valent nodes, respectively, in terms of tiling. Five
vertices (angles) A, B, C , D, E of a pentagon correspond
to Xi (i = 1, . . . , 5), respectively. For example, the node
restriction of the DE-regular 7 in Table 3 of Report I is one
kind of 4-valent node 2D + 2C = 360◦ and two kinds of
3-valent nodes 2B + A = 2E + A = 360◦. Assuming
X1 = D, X2 = C , X3 = B, X4 = E , X5 = A, the node
restriction equation of DE-regular 7 can be expressed as
2X1 + 2X2 = 2X3 + X5 = 2X4 + X5 = 360◦ by using
Xi (i = 1, . . . , 5). Based on the simplest node condition,
each Xi is contained in twice in three equations expressing
the node restriction. The four kinds of format of node
restriction are called C22, C20, C12, and C11. The numbers
following C are corresponding to the category in Table 1 of
Report I. That is, the first digit is the number of degeneracy
(the number of vertices of the same kind appearing in one
node) in the 4-valent node. The second digit indicates the
number of degeneracy in the 3-valent nodes. C20 is the
case in which two kinds of 3-valent nodes are reduced to
one. Therefore, the classification that uses C for 14 kinds of
concentration methods corresponds to the figures shown in
the classification column in Tables 3 and 4 in Report I. This
classification has been completed.

We then classified the tiles in 14 kinds of concentration
methods by considering the position of vertices participat-
ing in the 3-valent node. At first, tiles are classified into
five types of convex pentagonal tiles called type 1, type 2,
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Table 1. Classification focusing on the combination of vertices that constitute nodes.
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Table 2. Conditions of tiles and properties of tilings.
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m
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E
quilatrral

M
ultipatterned

Smallest 
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Pieces Symmetry
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Figure
number

A + B + C = 360  , A = C     (a = d, b = c    )#1  #2°  

 #2E + A + B = 360  , B = E  (a = b    )°  

B + D + E = 360  , D = E  #3°  

A + B + C = 360   (a = d             ) #2, #4, #5°  

A + B + C = 360   (a = d         ) #2, #4°  

C + D + E = 360   (a = c    )#2°  

B + D + E = 360   (a = c, b = d         ) #2, #6°  

C + D + E = 360  , C = 2B #7°  

2E + C  = 2B + A = 360 °  

2C + B  = 2E + A = 360 °  

2D + B  = 2E + A = 360 °  

A + B + C = 360  , C = 2D °  

C + D + E = 360  , C = 2A  (a = c = d    ) #2°  

B + D + E = 360  , B = 2A °  

#1: D = E = 90◦ when a = d, b = c is considered. #2: The condition for edges a = b = c = d is not essential for tiling. #3: A = C = 90◦ when
a = b = c = d is considered. #4: Adding the relationship of b = c to make tiles satisfy a = d, b = c allows periodic tilings with contacting methods
between the edges AB and BC that are different from a single condition of a = d and multipatterned tilings. #5: The smallest fundamental region is
formed of four pieces of tile if and only if the edge condition is only a = d. #6: Tiles satisfying a = b = c = d allow multipatterned tilings. #7: The
angular conditional equations are obtained from a = b = c = d and the node restriction. On the contrary, use a = b = c = d and the relationship of
C = 2E − 2D obtained from the angular conditional equation for deriving the node restriction from the angular conditional equations. #8: This will
be the equilateral convex pentagonal tile belonging to type 8 and type 2 because of the angular relationship if and only if it is an equilateral pentagon.
#9: It is considered to be the same pattern if there is no vertex sign because it is a pentagon that is symmetrical to the axis passing through the midpoint
of vertex B and edge DE . #10: Convex pentagons satisfying the condition of edge a = b = c = d are used in the figure of the report.

type 7, type 8, and type 9 in accordance with the idiomatic
expressions. They are indicated by the signs T1, T2, T7,
T8, and T9, respectively. Furthermore, T1 is classified into
three categories by the positional relationship between the
edges and angles, and T2 is classified into both the spe-
cial and normal cases. T1 is a convex pentagonal tile (with
parallel edges) where the three adjacent internal angles of
a pentagon sum to 360◦. In the 14 kinds of concentra-
tion methods, there are three kinds where the three adja-
cent internal angles sum to 360◦ (i.e., A + B + C = 360◦,
C + D + E = 360◦, and E + A + B = 360◦). These
three kinds were expressly indicated as T1A, T1C, and T1E
because we perceive vertices D and E of a convex pen-
tagon with four equal-length edges to be special. Tiles of
DE-regular 10 classified as T2 require the condition of
a = b = c = d in accordance with the node restriction.
Therefore, A = C = 90◦ is derived forming a tiling pattern
with a higher symmetric property. Additionally, to be pre-
cise, it is a convex pentagonal tile that belongs to both type

2 and type 4 in the idiomatic expression (see Fig. 1 in Re-
port I). Therefore, the tile of DE-regular 10 is expressed as
T2&4. As a result, the tiles in the 14 kinds of concentration
methods are classified into eight kinds of T1A, T1C, T1E,
T2, T2&4, T7, T8, and T9. Table 2’s column of tile group
shows all eight varieties.

Tables 2 and 3 express the 14 kinds of concentration
methods using new classification signs (nominal designa-
tions) and summarize the properties of each convex pen-
tagonal tile and tiling (Sugimoto and Ogawa, 2004). C20-
T1A falls under DE-regular 11 and DE-reversed 3 because
these two tilings have the same node restriction and same
tiles. Their only difference is whether they are DE-regular
or DE-reversed. It should be noted that even the convex
pentagons categorized into T1A, T1C, T1E, and T2 (be-
cause the sum of their internal angles is 360◦) have different
structures depending on each additional condition. As a re-
sult, there are 13 kinds of the convex pentagon tiles with
four equal-length edges in this section.
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Table 3. Relationship amog internal angles A, B, C , D, and E , and length of edge e as to pentagons in Table 2.
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Table 2’s columns of 4-valent and 3-valent nodes show
the node restriction of each tiling. For example, 4-valent
node DDE E and 3-valent nodes CC B and AAB of C22-
T1A indicate that tiling is formed by only three nodes of
2D + 2E = 360◦, 2C + B = 360◦ and 2A + B =
360◦. Table 2’s columns on the conditions of tile other than
a = b = c = d show the necessary and sufficient (an-
gular) conditions that allow tiling in accordance with the
node restriction. However, alleviated conditions of edges
are also shown if tiling is possible with the node restric-
tion, instead of the convex pentagons with four equal-length
edges (i.e., a = b = c = d) that are a focus of this study.
That is, we started with the premise that DE edges border
each other only in convex pentagons with four equal-length
edges. However, in many cases, the equilateral convex pen-
tagons are included, and if #2 is attached, three or four kinds
of edge lengths are included. Table 2’s column of DOFs
shows the degree of freedom for the shape of each convex
pentagon with four equal-length edges, assuming these pen-
tagons satisfy the condition a = b = c = d = 1. The col-
umn of symmetry property of tile in Table 2 indicates “Y”
when a pentagon is always symmetrical (e.g., a pentagon
that is always symmetrical to the axis passing through the
midpoint between vertex B and edge DE) and “N” for other
cases. The column of equilateral indicates “Y” if the tiles
can be equilateral convex pentagons without breaking the
conditions and “N” for other cases. Note that, when C12-T8

tiles are equilateral convex pentagons, the tiles are symmet-
rical to the line connecting the midpoint of the vertex D and
edge AB and become an equilateral convex pentagonal tile
belonging to both type 8 and type 2 (Both type 8 and type 2
tiling are possible). Table 2’s column of multipatterned in-
dicates “Y” when multipatterned tiling is possible without
breaking the node restriction and “N” for other cases. The
column of pieces for the smallest fundamental region indi-
cates the number of pieces of convex pentagons with four
equal-length edges required for forming the smallest funda-
mental region. For reference purposes, the column of sym-
metry group indicates the kind of symmetry group for plane
about the periodic tiling with the smallest fundamental re-
gion. The rightmost column of the figure number indicates
corresponding figures.

In Figs. 1, 2, 3, 4, and 5, tiles of convex pentagons with
four equal-length edges (a = b = c = d) were used
(Sugimoto and Ogawa, 2004). The pale gray pentagons in-
dicate the smallest fundamental region. The shape of the
smallest fundamental region is selected based on the pair
of DE-regular or DE-reversed. Note that some figures do
not have periodic tiling patterns in the range shown. If the
study’s objective were restricted to the existence of periodic
arrangement, that work would be straightforward. How-
ever, our interests include random arrangement, probability
of quasi-periodic arrangements, and mutual relationships
with other classifications that we mentioned earlier in the
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Fig. 1. Tilings of C22. (a) C22-T1A. (b) C22-T1E. (c) C22-T2&4.
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Fig. 2. Tilings of C20. Cases of C20-T1A. (a) DE-reglar pattern. (b) DE-reversed pattern. (c) Combination of DE-reglar pattern and DE-reversed
pattern.

study in which the focus is restricted to convex pentagons
with four equal-length edges. We would like to discuss
these problems to some degree. In the cases that the mul-
tipatterned tiling is possible for a pentagonal tile, though it
might be inconsiderate for crystallographers, the figure of
periodic tiling will be omitted if we had considered a sim-
ple periodical arrangement to be apparent. In this report,

we inserted these arrangements so that readers can under-
stand that multipatterned tiling (random or quasi-periodic
arrangements) would have been possible. Remember that
the convex pentagon tiles used in this study always have a
periodic arrangement. We expect that the periodic tiling us-
ing the smallest fundamental region can be easily imagined
from the node restriction and illustrations.
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Table 3’s column concerning the internal angles of tiles
and additional information about internal angles indicate
the relationship among internal angles (A, B, C , D, E)
using α, β, γ , δ, and θ (see Fig. 6 for positions) can be
determined by dividing the inside of a pentagon, as in the
geometrical discussion in Section 5 of Report I. The column
of edge length � and range in Table 3 shows the equation
and the range expressing the length � of e (edge DE), which
alone has a different length assuming a convex pentagon
with four equal-length edges with a = b = c = d = 1.
3.2 Discussion

Figure 2(a) is a tiling with C20-T1A tiles in DE-regular.
As shown in this figure, in DE-regular, the C20-T1A tiles
satisfying a = d, b = c form the periodic tiling with the
smallest fundamental region (the pale gray region). In ad-
dition they allow multipatterned tiling by freely combining
a module of the smallest fundamental region and that of

the smallest fundamental region rotated by 180◦ (the dark
gray region). If the C20-T1A tiles satisfy only the condi-
tion of edge a = d, four pentagons (one smallest funda-
mental region and one smallest fundamental region rotated
by 180◦ in Fig. 2(a)) can form the smallest fundamental re-
gion and allow only periodical tiling. Note that the smallest
fundamental region differs with the tiles which satisfy only
a = d, and the tiles which satisfy a = d, b = c.

Figure 2(b) is tiling with C20-T1A tiles in the DE-
reversed pattern. The following allow periodic tiling us-
ing the smallest fundamental region (the pale gray region)
and multipatterned tiling by using reflective symmetry of
the smallest fundamental region (the dark gray region) con-
currently: the cases of C20-T1A satisfying a = d, b = c
in DE-reversed (Fig. 2(b)), C20-T1C (Fig. 3(a)), C20-T2
satisfying a = b = c = d (Fig. 3(b)), and C12-T1C
(Fig. 4(a)). C20-T1A tiles satisfying only the edge con-
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dition of a = d and C20-T2 tiles satisfying only a = c,
b = d both allow only periodic tiling using the smallest
fundamental region.

As shown in Fig. 2(c), C20-T1A tiles satisfying a = d,
b = c allow multipatterned tiling with DE-regular and
DE-reversed mixed without breaking the node restriction.

C22-T1A tiles in Fig. 1(a) and C22-T1E tiles in Fig. 1(b)
allow periodic tiling using the smallest fundamental region
(the pale gray region) as well as multipatterned tiling by
using the smallest fundamental region and the smallest fun-
damental region rotated by 180◦ or mirrored (the dark gray
region). As each figure shows, the smallest fundamental
region rotated by 180◦ has the same shape as the smallest
fundamental region mirrored. In the C22-T1A tiling pattern
in Fig. 1(a), the pentagon is symmetrical to the axis passing
through vertex B and edge DE . Additionally, the smallest
fundamental region is symmetrical. Therefore, all patterns
can be considered to be the same if the vertex sign is not en-
tered. On the other hand, two C22-T1E tiles bonded on the
edge d (C D-reversed) are a hexagon. If we consider that
the element of tiling is the hexagonal shape, we can see that
tiling is the always same pattern.

C22-T2&4 tiles forming the tiling pattern in Fig. 1(c)

cannot allow multipatterned tiling under the node restric-
tion. The pentagon is symmetrical to the axis passing
through the midpoint between vertex B and edge DE .
Therefore, C22-T2&4 tiles can form the tiling pattern as in
Fig. 1(c) without observing the node restriction. (As men-
tioned above, we can form the tiling with the nodes used in
type 4 because C22-T2&4 tiles also belong to type 4.) They
all have the same pattern unless tile vertex signs are entered.

As shown in Fig. 5(b), the C11-T1C tile has two methods
for combining the smallest fundamental regions through
translation. Therefore, C11-T1C tiles allow multipatterned
tiling only with the translation operation. However, the
C11-T1C tile consists of three congruent isosceles trian-
gles: AB E , C E B, and C DE . If we consider that tiling
is formed of the smallest fundamental region composed of
four bonded congruent isosceles triangles with different di-
rections, a tiling is periodic with the same pattern at all
times.

Figure 4(b) C12-T7, (c) C12-T8, and (d) C12-T9 cor-
respond to the idiomatic expressions of type 7, type 8,
and type 9, respectively. The tilings with C12-T1C in
Fig. 4(a), C11-T1A in Fig. 5(a), and C11-T2 in Fig 5(c) are
also shown by Marjorie Rice (Schattschneider, 1978, 1981;
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Grünbaum and Shephard, 1987).
The tilings by C22-T1E in Fig. 1(b), C20-T2 in Fig. 3(b),

and C11-T1C in Fig. 5(c) are known for several periodic
tilings. However, we have not found descriptions that they
allow multipatterned tiling using the convex pentagons of
this study. Therefore, they are new pentagon tiling pat-
terns. On the other hand, we found the descriptions in
Schattschneider (1978) that C20-T1A, C20-T1C, and C12-
T1C tiles allow multipatterned tiling in the same manner as
our study. However, we concluded on our own that C20-
T1A, C20-T1C, and C12-T1C tiles allow multipatterned
tiling. The quasi-periodic or random tiling patterns made
by multipatterned tiling in this report are one-dimensional.

4. Tilings Using 13 Kinds of Convex Pentagons
with Four Equal-length Edges without Apply-
ing Node Restriction

4.1 Conditions of tile
Before getting into the theme of this section, we should

have an exact understanding of the conditions of tile. We
should first confirm the conditions of tile mentioned in the
idiomatic expressions. For example, the convex pentagon
tile belonging to type 1 in the idiomatic expression is ex-
pressed by a condition where the adjacent internal angles in
a convex pentagon total 360◦ (e.g., A + B + C = 360◦).
Therefore, all convex pentagons satisfying that condition
are categorized into the convex pentagon tile of type 1. That
is, that the adjacent internal angles in a convex pentagon
sum to 360◦ is a necessary and sufficient condition for con-
vex pentagonal tiles belonging to type 1 in order to allow
tiling. Note that, in the case of type 1, the tile requires
a condition of edge in addition to the condition of angle
mentioned above to be an EE tiling. For example, if a con-
vex pentagon’s adjacent internal angles total 360◦, and ex-
pressed as A+ B +C = 360◦, the tile requires the condition
of edge to be a = d in order to be EE tiling. On the other
hand, the conditions of each convex pentagon with four
equal-length edges (that are mentioned in Table 2) are nec-
essary and sufficient conditions for allowing tiling under the
node restriction. These conditions are shown in Sec. 3. The
conditions of convex pentagon with four equal-length edges
(that are mentioned in Table 2) sometimes completely co-
incide with the conditions of tile described in the idiomatic
expressions. However, in most cases, these conditions differ
from one another. In this section, we focus on the difference
in the meanings of these conditions. We also discuss what
tilings can be formed of only 3- and 4-valent nodes when the
13 kinds of convex pentagon with four equal-length edges
do not apply the node restrictions. We then summarize the
results.
4.2 Tilings allowed by 3- and 4-valent nodes

More specifically, we discuss what kinds of tilings are
possible with C22-T1A convex pentagons with four equal-
length edges that are shown in Table 2. As mentioned in
Sec. 3, C22-T1A tiles allow the tilings using one 4-valent
node, DDE E (2D + 2E = 360◦), and two 3-valent nodes,
CC B (2C + B = 360◦) and AAB (2A + B = 360◦).
However, as mentioned above, the angular condition for
C22-T1A tiles belonging to type 1 is A + B + C = 360◦

for allowing tiling. (A = C , which was included in the

original condition, is not required.) Meanwhile, a con-
vex pentagon with four equal-length edges with an angu-
lar condition of A + B + C = 360◦ falls under the C20-
T1A tile mentioned in Sec. 3. This C20-T1A tiles allow
tilings using 4-valent node DDE E and 3-valent node ABC
(A + B +C = 360◦). Therefore, C22-T1A tiles allow tiling
using the nodes “DDE E , CC B, AAB” as well as the nodes
“DDE E , ABC .” In contrast, C20-T1A tile allows tiling
using the nodes “DDE E , CC B, and AAB” if and only if
it satisfies the relationship of A = C .

Table 4 summarizes the results of the discussion men-
tioned above concerning the 13 kinds of convex pentagons
with four equal-length edges from Table 2 (Sugimoto and
Ogawa, 2006a). Note that C12-T8 and C12-T9 tiles in Ta-
ble 2 have no bearing on this section because they do not
allow tiling in a node restriction other than that which is
applied.

The column of combinations of nodes usable in the tiling
in Table 4 shows all combinations of 3- and 4-valent nodes
usable in the tiling of each number. Tilings with the num-
bers of 1, 3, 5, 6, 7, 9, 10, and 12 satisfy the simplest node
condition. Other tilings with the numbers of 2, 4, 8, 11, and
13 do not satisfy the simplest node condition if all nodes
in the table are used. However, even in the case that the
simplest node condition is not satisfied, the relative ratio
of the total number of 3- and 4-valent nodes in the pattern
V3 : V4 ≈ 2 : 1 (Vk : total number of nodes of valence
k) is true if a tiling pattern is maximum and finite. Ta-
ble 4’s column of connecting method shows how tiling is
performed, namely either by using DE-regular or by using
DE-reversed. Both methods are entered into the numbers
1, 2, and 11 because both DE-regular and DE-reversed can
be used for tiling. In the case of number 1, either DE-
regular, DE-reversed, or both can be used for tiling using
the nodes “DDE E , ABC” in the table. On the other hand,
in the case of numbers 2 and 11, both DE-regular and DE-
reversed should be used for all five kinds of 4-valent nodes
and three kinds of 3-vaent nodes in one tiling. However,
if used nodes are selected and restricted, tilings of either
connection method are allowed. Note that the number of
combinations of usable nodes is larger for numbers 2 and
11 than other numbers because those pentagons are sym-
metrical to the axis passing through the midpoint of the ver-
tex B and edge DE (see Figs. 7(a) and 8(a)). Therefore,
in the case of numbers 2 and 11, all tiling patterns can be
considered to be the same unless there are vertex signs. Ta-
ble 4’s multipatterned column indicates “Y” for the case in
which multipatterned tiling is possible when using the com-
bination of nodes entered in the corresponding column and
“N” for other cases. In the column of figure of correspond-
ing tiling pattern, related figure numbers were showed. The
column of conditions of tile (case to realize the combination
of nodes in tiling) other than a = b = c = d shows the nec-
essary and sufficient conditions that convex pentagon tiles
should satisfy using the combinations of usable nodes. Sim-
ilarly in Table 2, even if the convex pentagon does not have
edges a = b = c = d, which is the focus of this study,
the conditions of edges that are alleviated as possible were
surrounded by parentheses if tiling is possible with the node
restriction. Table 4’s rightmost column, “Pertinent tiles in
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Table 4. Tiling (where node restrictions have not been applied) using the 13 kinds of convex pentagons with four equal-length edges that are discussed
in Sec. 2.

 
 

1 DDEE  ABC  
#1

Y Fig. 2

2
DDEE , DEEE , DDDE , 
DDDD , EEEE  

ABC , CCB , AAB
#2
 Y#3 Fig. 7 (a) 

3 DDAB  ABC , EEC   N Fig. 5 (a)

4 DDAB, DDCA  ABC, EEC , BBA  Y Fig. 7 (b) A = 90  , B = C = 135  , D = 67.5  ,  E = 112.5oooo

5 DDCA  EEC , BBA   Y Fig. 4  (b)

6 AABB  CDE   Y Fig. 3 (a)

7 AADE  CDE , BBC   Y Fig. 5 (b)

8 AADE , AABB  CDE , BBC   Y Fig. 7 (c) 

9 DDBC  EEB , AAC   Y Fig. 4 (a)

10 CCAA  BDE   Y Fig. 3 (b)

11
CCAA, CAAA , CCCA ,  
AAAA, CCCC  BDE , DDB , EEB 

#2
 Y #3 Fig. 8 (a) 

12 AADE  BDE , CCB   N Fig. 5 (c)

13 AADE , CCAA  BDE , CCB   Y Fig. 8 (b) 

List
number

4-valent nodes 3-valent nodes

Combinations of nodes usable in tiling Connecting
method

DE-reversed

DE-regular

DE-regular

DE-regular

DE-regular

DE-reversed

DE-reversed

DE-reversed

DE-reversed

DE-reversed

DE-reular /
DE-reversed

DE-reular &
DE-reversed

DE-reular &
DE-reversed

M
altiptterned

Figure of
corresponding

tiling
pattern

Conditions of tile other than a = b = c = d
(case to realize the combination of nodes in tiling)

A + B + C = 360  , A = C     (a = d, b = c    )#6  #4°  

B + D + E = 360  , D = E  #9°  

A + B + C = 360  , C = 2D°  

A + B + C = 360   (a = d         ) #4, #5°  

C + D + E = 360   (a = c    )#4°  

B + D + E = 360   (a = c, b = d         ) #4, #8°  

C + D + E = 360  , C = 2B #7°  

2E + C  = 2B + A = 360 °  

C + D + E = 360  , C = 2A  (a = c = d    ) #4°  

B + D + E = 360  , B = 2A °  

o #10

C20-T1A,  C22-T1A,  C11-T1A,
C12-T7 (iff A = 90  )

 #10C22-T1A,  C20-T1A (iff A = C)

 #10

o #10

C11-T1A,  C20-T1A (iff C = 2D)     ,
C12-T7 (iff A = 90  )

o #10

o #10

C11-T1A (iff A = 90  )     ,
C12-T7 (iff A = 90  )

o #10C12-T7,  C11-T1A (iff A = 90  )

C20-T1C,  C12-T1C, C11-T1C

 #10C11-T1C,  C20-T1C (iff C = 2A)

 #10C12-T1C,  C20-T1C (iff C = 2B)

C20-T2,  C11-T2,  C22-T2&4

 #10C22-T2&4,  C20-T2 (iff D = E)

 #10C11-T2,  C20-T2 (iff B = 2A)

Pertinent tiles in Table 2

#1: Using either the regular pattern, the reversed pattern, or both enables tilings using the 4- and 3-valent nodes in the corresponding columns. #2: If
there are all five kinds of 4-valent nodes and three kinds of 3-valent nodes in a single tiling, the tiling needs to use both the regular pattern and reversed
pattern. #3: It is considered to be the same pattern if there is no vertex sign because it is a pentagon that is symmetrical to the axis passing through the
midpoint of vertex B and edge DE . #4: The condition for edges a = b = c = d is not essential for tiling. #5: Adding the relationship of b = c to
make tiles satisfy a = d, b = c allows periodic tilings with contacting methods between the edges AB and BC that are different from a single condition
of a = d and multipatterned tilings. #6: D = E = 90◦ when a = d, b = c is considered. #7: The angular conditional equations are obtained from
a = b = c = d and the node restriction. On the contrary, use a = b = c = d and the relationship of C = 2E − 2D obtained from the angular
conditional equation for deriving the node restriction from the angular conditional equations. #8: Tiles satisfying a = b = c = d allow multipatterned
tilings. #9: A = C = 90◦ when a = b = c = d is considered. #10: Tilings are enabled using the 4- and 3-valent nodes entered in the corresponding
column if and only if the tile satisfies the relationship described after “iff” in the parenthesis.

Table 2,” shows the pertinent convex pentagons with four
equal-length edges of Table 2. In this column, C12-T7 (iff
A = 90◦) or C20-T1A (iff A = C) indicate that the C12-T7
tile allows the tilings of numbers 1, 3, and 4 if and only if
it satisfies A = 90◦, or C20-T1A tile allows the tilings of
number 2 if and only if it satisfies A = C .

For the same reasoning as that of the previous section, it
should be noted that some tiling patterns are not periodical
in the range of Figs. 7 and 8. In addition, the shape of the
smallest fundamental region is selected based on the pair of
DE-regular or DE-reversed. This shape is colored in the
figures. However, Figs. 7(a) and 8(a) have the same tiling
pattern unless there are the vertex signs. Therefore, there
is not a mark of the smallest fundamental regions or funda-
mental regions. The eight pentagons colored in Figs. 7(b)
and 8(b) are required for forming the smallest fundamental
region for tiling that allows two kinds of 4-valent nodes with
numbers 4 and 13 in Table 4. However, we should consider
that the pentagons, including the four pale gray pentagons
shown in Figs. 7(b) and 8(b) and the four pentagons in dark
gray (i.e., the region rotated by 180◦ or mirrored), are mul-
tipatterned tilings by two kinds of basic elements. This situ-
ation arises because we can use two kinds of 4-valent nodes
allowing multipatterned tiling due to the fact that we can
combine freely two kinds of one-dimensional modules con-
sisting of the four basic elements of pentagons. Meanwhile,
two kinds of 4-valent nodes are used for tiling of number 8
in Table 4. As shown in Fig. 7(c), three different layouts of

the vertical directions of the figure are enabled by the paral-
lel shift of the smallest fundamental region that consists of
four pentagons, signifying that multiple tiling is possible.
4.3 Discussion

We are not aware of any reports pointing out the prop-
erties of multipatterned tiling with convex pentagons using
the combinations of nodes of numbers 4, 8, and 13 of Table
4. Therefore, we consider that this combination is a new
tiling pattern of pentagons.

In the multipatterned tiling using five kinds of nodes
“DD AB, DDC A, E EC , B B A, ABC” of number 4 in Ta-
ble 4, the convex pentagons with four equal-length edges
in the case where the C11-T1A tile is the same shape as
the C12-T7 tile are used. Their tiles satisfy the conditions
A = 90◦, B = C = 135◦, D = 67.5◦, E = 112.5◦, and
a = b = c = d (i.e., they belong to both type 1 and type
7 of the idiomatic expression). This multipatterned tiling
of number 4 in Table 4 is generated since a tiling can con-
tain all node (the node restriction “DD AB, E EC , ABC” of
C11-T1A and the node restriction “DDC A, E EC , B B A”
of C12-T7 in Table 2). Then the multipatterned tiling us-
ing four kinds of nodes “AAB B, AADE , B BC , C DE”
of number 8 in Table 4 uses the convex pentagons with
four equal-length edges, satisfying the angular conditions:
C + D + E = 360◦ and C = 2A. (Actually, the con-
vex pentagon may not have four equal-length edges. See
Table 4, #4.) These conditions, C + D + E = 360◦ and
C = 2A, fall under the C11-T1C tile in Table 2. Therefore,
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they are the necessary and sufficient angular conditions for
tiling that satisfy the node restriction of “AADE , B BC ,
C DE .” On the other hand, since C11-T1C tiles belong to
type 1 (i.e., the condition of type 1 is C + D + E = 360◦),
these tiles can allow the tiling with nodes “AAB B, C DE .”
That is, the convex pentagons with four equal-length edges
that satisfy C + D + E = 360◦, C = 2A enables tiling
using nodes “AADE , B BC , C DE” and tiling using nodes
“AAB B, C DE .” Further, the multipatterned tiling of num-
ber 8 in Table 4 is generated because both nodes can be si-
multaneously used in tiling. However, as explained in Sub-

sec. 3.2, the convex pentagon tiles used in the tiling consist
of three congruent triangles. If we consider that the tiling is
formed of these triangles, we see that the pattern will always
be the same. The multipatterned tiling use four node kinds,
“CC AA, AADE , B DE , CC B” in Table 4, number 13 uses
convex pentagons with four equal-length edges that satisfy
the angular condition, B + D + E = 360◦, B = 2A. These
convex pentagons with four equal-length edges fall under
C11-T2 tiles of Table 2 and belong to type 2. Therefore,
the convex pentagons with four equal-length edges satisfy-
ing B + D + E = 360◦, B = 2A enable tiling using nodes
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Fig. 9. Special tiling by convex pentagons of C20-T2 with A = 72◦

“AADE , B DE , CC B,” just as C11-T2 and also tiling us-
ing nodes “CC AA, B DE” as a type 2 (pentagonal tile that
satisfies B + D + E = 360◦). Furthermore, the multipat-
terned tiling of number 13 in Table 4 is generated because
both nodes were used simultaneously in the tiling.

At the conclusion of this section, we introduce a special
tiling using convex pentagons with four equal-length edges
of C20-T2 and C11-T2 with A = 72◦. As shown in Fig. 9,
the tiling has only one 5-valent node in the tiling pattern.
This tiling always uses the DE-reversed. One kind of 5-
valent AAAAA node, one kind of 4-valent AACC node,
and one kind of 3-valent B DE node are used. What has
no periodicity, however, is a tiling of 5-rotation symme-
try. The tiling in Fig. 9 is a special case in which a 5-
valent node appears only in one center even if the tiling
is continued beyond the illustration. In terms of maxi-
mum and finite tiling, the 5-valent node, which can be ig-
nored on its own, and tiling in Fig. 9 can be considered
to satisfy the relationship of V3 : V4 ≈ 2 : 1 (Sugimoto
and Ogawa, 2006b). Note that, based on Table 3, C20-
T2 tiles reserve freedom θ only by assuming A = 72◦

(α = 54◦). C11-T2 tiles with A = 72◦ fall under C20-T2
tiles satisfying α = 54◦, θ = 54◦. Additionally, a C20-
T2 tile becomes an equilateral pentagon when α = 54◦,
θ = cos−1(3/(4 sin(2π/5))) ≈ 37.945◦. The tiling in
Fig. 9 is also enabled by using this equilateral pentagon
(Hirschhorn and Hunt, 1985).

5. Discussion of Convex Pentagons with Four
Equal-length Edges Eliminated by Topologi-
cal Judgment but Confirmed by the Geometric
Judgment

In Report I, we discussed 33 cases in Tables 3 and 4 of
Report I by (i) topological judgment (graph theory) to in-

vestigate the possibility of tiling using symbolized notation
without breaking down the order of pentagonal meshes, and
(ii) geometric judgment to investigate the possibility of the
existence of the convex pentagon in Euclidean space. As a
result, according to Report I, the convex pentagons of DE-
regular 1–5, 8 in Table 3 and DE-reversed 1, 8 in Table 4
are eliminated by the topological judgment. But they are
confirmed by the geometric judgment (i.e., the convex pen-
tagons exist though their tilings are impossible under the
node restriction). Here, we correct the results of Report I.
In Table 7 of Report I, we classified DE-regular 13, 17, 18
into “N” of the geometric judgment. But the classification
was a mistake. The cases of DE-regular 13, 17, 18 are con-
firmed by the geometric judgment and are eliminated by the
topological judgment. Therefore, in this section, we con-
sider the convex pentagons of DE-regular 1–5, 8, 13, 17,
18 in table 3 and DE-reversed 1, 8 in Table 4 of Report I.

Tables 5 and 6 summarize the properties of convex pen-
tagons with four equal-length edges of DE-regular 1–5, 8,
13, 17, 18 and DE-reversed 1, 8. In addition, they show the
probability of tiling without the node restriction (Sugimoto
and Ogawa, 2006b).

Table 5’s column of node restriction that was applied in
Report I shows 3- and 4-valent nodes of DE-regular 1–5,
8, 13, 17, 18 and DE-reversed 1, 8. They are mentioned
in Tables 3 and 4 of Report I. The next column shows the
necessary and sufficient conditions that convex pentagons
with four equal-length edges should satisfy so that the re-
lationship of the internal angles of each node restriction is
realized. Based on the conditions, DE-regular 2 and DE-
reversed 8 convex pentagons with four equal-length edges
are the same as Table 2’s C22-T1A and C12-T1C tiles, re-
spectively. Therefore, DE-regular 2 and DE-reversed 8
convex pentagons are pentagonal tiles even though they do



104 T. Sugimoto and T. Ogawa

Table 5. Convex pentagons with four equal-length edges that eliminated by topological judgement, but confirmed by geometric judgment.

 1 

 1 
DDEE AAC BBC Y #1 1 N

 2 DDEE CCB AAB Y #2 1 Y  

 3 DDAA BBC EEC  N #3 1 Y

 4 DDAA CCB EEB N #3 1 Y

 5 DDBB AAC EEC N #3 1 Y

 8 DDBB CCA EEA N #3 1 Y

 8 BBDE AAC  CDE Y 1 Y  

DE-reversed

DE-regular
oA + B + C = 360  , A = B 

DE-reversed

DE-regular

DE-regular

DE-regular

DE-regular

DE-regular

Classification of Report I

Connecting
method Case 4-valent node 3-valent nodes

D
O

Fs

E
quilatrral

o   A + B + C = 360  , A = C 

oC + D + E = 360  , C = 2B 

oB + C + E = 360  , B = E 

oE + A + C = 360  , A = E 

 oB + C + E = 360  , C = E 

oE + A + C = 360  , C = E 

Node restriction that 
was applied in Report I

Condition that pentagons 
should satisfy so that the applied 

node restriction is realized

Is EE tiling 
possible in 

other nodes?
Comments

C20-T1AA=B

See Fig. 10. This convex pentanal tile is expressed as                    
                       .

It has the same shape as C22-T1A (DE-reversed 2) tile.

o

It has the same shape as C12-T1C (DE-regular 14) tile.

 13 DDAB EEB  CCA N #4 1 YDE-regular o2E + B = 2C + A = 360

 17 DDCA EEA  BBC N #5 1 YDE-regular

oIt will belong to type 1 when A = B = E = 108  .

o

oIt will belong to type 1 when B = D = 72  .

oIt will be an equilateral pentagon when B = D = 90  .

oIt will belong to type 1 when A = B = E = 108  .

It will belong to both type 2 and type 8 when a = b = c = d = e.

oIt will belong to both type 1 and type 7 when B = C = 135  .

o2E + A = 2B + C = 360 o

oIt will belong to type 8 when B = C = 120  .

 18 AABC DDB EEC N #6 1 YDE-regular o2D + B = 2E + C = 360
It will belong to type 1 when a = b = c = d = e.

o

o

#1: Tilings with the nodes “DDE E , ABC” are enabled if the condition of the edge is “a = d” or “a = d, b = c.” #2: Tilings with the nodes
“DDE E , CC B, AAB” are enabled if the condition of the edge is “a = d, b = c.” #3: Convex pentagon belongs to type 2 and tiling by the pentagons
is NEE. However, in the special cases, the pentagon can form EE tiling. #4: Pentagon can form EE tiling if and only if it satisfies “B = E” or
“a = b = c = d = e (A = B ≈ 98.71◦).” #5: Pentagon can form EE tiling if and only if it satisfies “B = C .” Pentagon can form NEE tiling if and
only if it satisfies “C = E .” #6: Pentagon can form EE tiling if and only if it is equilateral (C = 80◦, D = 100◦). Pentagon can form NEE tiling if and
only if it satisfies “B = E .”

Table 6. Relationship among internal angles A, B, C , D, and E , and length of edge e as to pentagons in Table 5.
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#1: α > 30◦ because θ > 0◦. #2: Edge length is the upper limit when α = 45◦. The accurate value of the upper limit is 2
√

2 sin(5π/12). #3: β < 30◦

because 2 sin β < 1. #4: From B < 180◦, the lower limit is 2 tan−1
(√

4 − √
14

/√
4 + √

14
)

≈ 20.70◦. #5: Edge length if the upper limit when

β ≈ 20.70◦. The equation of upper limit is complicated. Therefore, it is omitted. #6: α > 45◦ because cos α/ sin α < 1. #7: From B < 180◦, the

lower limit is 2 tan−1
(√

2
(

7 − √
17

)/ (
1 + √

17
))

≈ 50.18◦. #8: Edge length is the upper limit when β ≈ 50.18◦. The equation of upper limit is

complicated. Therefore it is omitted.
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Fig. 10. Tilings with C20-T1AA=B with using nodes “DDE E and ABC .” (a) Tiling by DE-regular pattern. (b) Tiling by DE-reversed pattern.
(c) Tiling by the combination of DE-reglar pattern and DE-reversed pattern.

not allow tiling with each node restriction of Repot I. On
the other hand, DE-regular 1 and DE-reversed 1 convex
pentagons with four equal-length edges have the same con-
ditions (the same shape) despite their different connecting
methods used in tiling (i.e., DE-regular or DE-reversed).
The DE-regular 1 convex pentagon with four equal-length
edges belongs to type 1 in the idiomatic expression because
of the condition A + B + C = 360◦, A = B. There-
fore, as described in Sec. 4, its tiling is possible by us-
ing 4-valent node DDE E and 3-valent node ABC (see
Fig. 10). DE-regular 1 tile is called C20-T1AA=B because
tiling as C20-T1A tile in Table 2 is possible. Convex pen-
tagons with four equal-length edges of DE-regular 3, 4,
5, 8 belong to type 2 in the idiomatic expression. Tilings
by these pentagonal tiles are non-edge-to-edge (NEE) be-
cause of the edge’s condition a = b = c = d (i.e., DE-
regular 3, 4: b �= e, DE-regular 5, 8: c �= e). However,
in the special cases, the pentagonal tiles can form edge-to-
edge (EE) tiling. When the pentagons of DE-regular 3,
5 satisfy A = B = E = 108◦, they have the relations
A + B + C = 360◦ and a = b = c = d . Therefore, the
pentagons belong also to type 1 and can form EE tiling. If
the pentagon of DE-regular 4 has B = D = 72◦, it belongs
also to type 1 and can form EE tiling because of the rela-
tions C + D + E = 360◦ and a = b = c = d . In addition,
each DE-regular 3, 4, 5, 8 convex pentagons can be an equi-
lateral pentagon. Therefore, those pentagons that belong to
type 2 allow EE tilings if and only if they are equilateral
pentagons. On the other hand, DE-regular 13, 17, 18 con-
vex pentagons with four equal-length edges cannot allow to
tile the plane (these pentagons are not pentagonal tiles in
almost all cases) even if NEE tiling is allowed. However,
in the special cases, these pentagonal will be tileable. DE-
regular 13 convex pentagon with A = 90◦, B = C = 135◦,
D = 67.5◦, E = 112.5◦, and a = b = c = d belongs

to both type 1 and type 7 (i.e., this pentagon is C12-T7 (iff
A = 90◦). See Table 4), and can form EE tiling. If DE-
regular 13 convex pentagon is an equilateral pentagon, it
has the relations A = B ≈ 98.71◦ and A + C + E =
B + C + E = 360◦. Thus, the equilateral pentagon of DE-
regular 13 belongs to both type 2 and type 8, and tilings by
the equilateral pentagons are edge-to-edge. When the con-
vex pentagon with four equal-length edges of DE-regular
17 satisfies B = C = 120◦, it belongs to type 8 (tiling by
the pentagonal tile of type 8 is edge-to-edge). If DE-regular
17 pentagon with a = b = c = d has C = E ≈ 137.05◦

(i.e., this pentagon has E + A + C = 360◦), it belongs to
type 2 and allows NEE tiling. Note that an equilateral pen-
tagon of DE-regular 17 is not tileable. When DE-regular
18 pentagon is an equilateral pentagon, it has the relation
E + A + B = 360◦ (A = 60◦, B = 160◦, C = 80◦,
D = 100◦, E = 140◦). Thus the equilateral pentagon of
DE-regular 18 belongs to type 1 and can form EE tiling.
Then, DE-regular 18 convex pentagon with B = E be-
longs to type 2 and allows NEE tiling because of the rela-
tions B + C + E = 360◦ and a = b = c = d. Based on the
above discussions, Table 5 column titled “Is EE tiling pos-
sible in other nodes?” indicates “Y” if EE tiling is possible
in all cases and “N” if EE tiling is impossible without the
special cases. Table 5’s column of DOFs shows the degree
of freedom concerning the shape of convex pentagons with
four equal-length edges, assuming that these convex pen-
tagons satisfy the condition a = b = c = d = 1. The col-
umn of the equilateral indicates “Y” if a convex pentagon
with four equal-length edges can be an equilateral convex
pentagon without breaking the conditions that a convex pen-
tagon with four equal-length edges should satisfy. The col-
umn indicates “N” for other cases. Each DE-regular 3, 4, 5,
8, 13, 18 convex pentagons can be an equilateral pentagon
and is tileable. Details of equilateral pentagonal tiles are
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Table 7. Classification of the equilateral convex pentagonal tiles obtained from our convex pentagons with four equal-length edges.

A

B C

DE

A

BC
D

E

A

B C

DE

A
B

C D

E

A

B C

DE

C12-T1C  (DE-regular 14) 
C11-T1A  (DE-regular 21) 

o40=  
o20=

C22-T1A  (DE-reversed 2)

C22-T1E  (DE-regular 7) 

C20-T1A  (DE-regular 11)#1 

C20-T1C  (DE-reversed 4) #2 

o60=  
o60=  

oo 90,60 == D #3 
o60=D #3, o45=  

C12-T8  (DE-regular 12) 

DE-regular 3 

o68.24  #4 
oo 65.40,35.49
oo 68.24,65.40

o68.24

C22-T2&4  (DE-regular 10)

C20-T2  (DE-reversed 5)

( ) o41.4143cos 1=  

oo 23.39,76.37
 #5 

o85.32  

C12-T7  (DE-regular 16) o56.54  #6 

ET1 oo

ooo

140,60

160,80,100

==
===

ED

CBA

ET1-R o

oo

90

,150,60

==

===

DC

EBA  

ET2 
o

oo

71.98

,645.130,29.81

=

=

DC

EBA

ET2-R o

oo

295.114

,90,41.131

=

==

DC

EBA

ET7 
o

oo

oo

37.135

,93.99,26.89

,56.144,88.70

E

DC

BA

Class symbol
Figure of equilateral

convex pentagonal tile
Internal angles

Pertinent our
convex pentagons

DE-regular 4 

DE-regular 8 

DE-regular 5 

Angular relationship when tiles are equilateral 
pentagons (each of      ,      ,      ,     ,  and D 

corresponds to the contents of Tables 3 and 6).

DE-regular 13 o68.24

DE-regular 18 o50=

#1: According to Table 3, this pentagon is equilateral if γ = 60◦ and has the remaining degree of freedom of 1 (A = 60◦ + D, B = 60◦, C = 240◦ − D,
E = 180◦ − D). D = 90◦ is also required for this pentagon to be ET1-R. #2: According to Table 3, this pentagon is equilateral if D = 60◦ and has
the remaining degree of freedom of 1 (A = 180◦ − 2α, B = 2α, C = 240◦ − 2α, E = 60◦ + 2α). α = 45◦ is also required for this pentagon to be

ET1-R. #3: This D corresponds to the layout of pentagons with four equal-length edges. #4: The accurate value is β = cos−1
(√(

3 + √
13

) /
8

)
.

#5: The accurate value is α = sin−1
(√

6
/

4
)

, θ = cos−1
(

3
/ (

4 sin
(

2 sin−1
(√

6
/

4
))))

. #6: The accurate value is omitted because it cannot be an

equation.

explained in Sec. 6.
Table 6 shows the relationship among the internal angles

A, B, C , D, E obtained by separating DE-regular 1, 3, 4,
5, 8, 13, 17, 18 convex pentagons with four equal-length
edges into three triangles (see Fig. 6(d) for positions of α,
β, and θ ). This table also shows the equation of the length �

of edge e with a = b = c = d = 1 and the range of values.

6. Equilateral Convex Pentagonal Tile Obtained
from Convex Pentagons with Four Equal-
length Edges

In this section, we introduce the possible types of con-
vex pentagons when they are equilateral pentagons and are
tileable. These pentagons are among 16 kinds of convex
pentagons with four equal-length edges that can be the equi-
lateral pentagonal tiles discussed in Secs. 3 and 5. However,
we introduce only the cases of equilateral convex pentago-
nal tile obtained from the convex pentagons with four equal-
length edges that we have previously discussed. We do not
discuss details of the equilateral convex pentagonal tile it-
self.

Currently, the theorem shown below is known to concern
the equilateral convex pentagon.

THEOREM 1 (Hirschhorn and Hunt, 1985). An equilateral
convex pentagon tiles the plane if and only if it has two
angles adding to 180◦, or it is the unique equilateral convex

pentagon with angles A, B, C, D, E satisfying 2B + A =
2E +C = 2D + A+C = 360◦ (A ≈ 70.88◦, B ≈ 144.56◦,
C ≈ 89.26◦, D ≈ 99.93◦, E ≈ 135.37◦).

Therefore, the tiles of tilings by congruent equilateral
convex pentagons belong to type 1, type 2, or type 7. The
equilateral convex pentagonal tile obtained from our convex
pentagons with four equal-length edges also follows the
above theorem.

We researched the shapes of 16 kinds of convex pen-
tagons with four equal-length edges (that are mentioned
in Tables 2 and 5) that can be equilateral pentagonal tiles.
Then, these that can be equilateral pentagons are classified
into five kinds in Table 7. We named these five kinds of
equilateral convex pentagonal tiles ET1, ET1-R, ET2, ET2-
R, and ET7, as shown in Table 7 (Sugimoto and Ogawa,
2006a). “E” stands for “equilateral.” “T1,” “T2,” and “T7”
refer to type 1, type 2, and type 7, respectively, in the id-
iomatic expression. “R” refers to the pentagon that has a
right angle. An equilateral convex pentagon has no problem
in the positional relationship between the internal angles
and the edges. Therefore, in some cases, the positions of
the angles A, B, C , D, E of the equilateral convex pentagon
in Table 7 differ from those of angles A, B, C , D, E of the
convex pentagon with four equal-length edges from which
the equilateral convex pentagon was derived. ET1, ET1-
R, ET2, ET2-R, and ET7 in Table 7 have no freedom other
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Fig. 11. Special tilings by equilateral convex pentagons of ET1.

than size. The convex pentagon with four equal-length edge
tiles of C20-T1A and C20-T1C has a freedom of 2 and the
equation of the length � of edge includes only one variable
(see Tables 2 and 3). If their conditions are γ = 60◦ and
D = 60◦, they become equilateral convex pentagonal tiles
with a freedom of 1 remaining. In this report, the remain-
ing variables of C20-T1A and C20-T1C convex pentagons
were selected to D = 90◦ and α = 45◦ and classified into
ET1-R and ET2-R as shown in Table 7, respectively.

It is apparent that the equilateral convex pentagonal tile
(and the C20-T1A and C20-T1C equilateral convex pen-

tagonal tiles having the degree of freedom of 1) in Table
7 can enable most of the tiling that can be performed by the
convex pentagon with four equal-length edges from which
these tiles were derived. For example, ET1 can perform
most tilings that are allowed by C12-T1C and C11-T1A
tiles. However, ET1 derived from C12-T1C and C11-T1A
tiles cannot perform the tiling that is enabled by C11-T1A
tile satisfying A = 90◦ of number 5 in Table 4, because of
the internal angle problem. Detailed explanations about the
possible tilings already mentioned in this study when the
equilateral convex pentagonal tile in Table 7 is used will be



108 T. Sugimoto and T. Ogawa
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Fig. 12. Convex pentagonal tiles of type 4, type 5, and type 6.

omitted.
Now, we introduce special tilings using the equilateral

convex pentagonal tiles. Those are tilings in which only
one 6-valent node using ET1 exists in each tiling pattern as
shown in Fig. 11 (Schattschneider, 1978, 1981; Hirschhorn
and Hunt, 1985). If the vertex sign of ET1 in Table 1 is used,
these tilings use one kind of 6-valent node DDDDDD,
two kinds of 4-valent nodes B B DE , AAB B, and two kinds
of 3-valent nodes C DE , AAC . They have no periodicity,
however, shows tilings with six-rotational symmetry. The
tilings in Fig. 11 are special cases in which a 6-valent node
appears only in a center even if each tiling is continued
beyond the illustration. That is, the 6-valent node can be
ignored if a tiling is maximum and finite. Therefore, the
tilings in Fig. 11 can be considered to satisfy the relation-
ship of V3 : V4 ≈ 2 : 1 (Sugimoto and Ogawa, 2006b).

7. Conclusions
This report explains 14 kinds (i.e., 13 kinds of tile in

Table 2 and C20-T1AA=B tile in Table 5) of convex pen-
tagonal tiles with four equal-length edges that are obtained
from setting the (edge-to-edge) tiling in accordance with
the simplest node condition by convex pentagons with four
equal-length edges. This report also lists the tiling that uses
these pentagons and is enabled by 3- and 4-valent nodes
(Sugimoto and Ogawa, 2004, 2006a). We have confirmed
that these tiles belong to at least one of the convex pentago-
nal tiles called type 1, type 2, type 4, type 7, type 8, and type
9 in the idiomatic expression. That is, the new convex pen-
tagonal tile which is not fitted to the idiomatic expression
did not exist.

In this report, we have pursued the subject of four equal-
length edges. The only assumption used in this premise is
that the edges e (edge DE) necessarily have contact with
one another. In some cases of the node restriction, the con-
dition of a = b = c = d is not required in tiling, practically
speaking, when the conditions of edges are alleviated and
tiles other than those with four equal-length edges are al-

ready included (see Tables 2 and 4). In our results of this
report, tilings of type 4, type 5, and type 6 (see Fig. 12) did
not come out. Here, we should discuss the relationship be-
tween the convex pentagonal tiles of Table 2 and those of
type 4, type 5, and type 6. At first, the tiling of type 4 is de-
viated from the simplest node condition because it requires
two kinds of 4-valent nodes. Note that, as to the tiling of
type 4, the node ratio of V3 : V4 ≈ 2 : 1 is established be-
cause four same kind of 3-valent nodes exist as compared to
two kinds of 4-valent nodes in tiling (Sugimoto and Ogawa,
2006b). However, as mentioned above, we have derived
a convex pentagonal tile called C22-T2&4 that belongs to
both type 2 and type 4. This C22-T2&4 tile is a special case
in which type 4 convex pentagonal tiles satisfy the condi-
tions of D = E and a = b = c = d. Then, type 5, which
uses the 6-valent node in tiling, is never included because of
the simplest node condition. However, the convex pentago-
nal tile of type 5 is already included in the C20-T2 tile if the
convex pentagonal tile of type 5 is assumed as the convex
pentagon with four equal-length edges tile (in the case of
A = 60◦, C = 120◦). The convex pentagonal tile of type 6
with the tile conditions A + B + D = 360◦, A = 2C , and
a = b = e, c = d cannot be a pentagon with four equal-
length edges or an equilateral pentagon. Therefore, it can-
not be directly connected to our convex pentagon with four
equal-length edges as are type 4 and type 5. However, the
tiling of type 6 satisfies the simplest node condition because
one kind of 4-valent node (2C + B + D = 360◦) and two
kinds of 3-valent nodes (2E + A = A + B + D = 360◦)
are used. (It falls under C11 in the classification signs in
Table 1.) Further, if the internal angles of type 6 convex
pentagonal tile are A = B = D = E = 120◦ and C = 60◦,
the tile belongs to both type 6 and type 5 and enable both
tilings (i.e., there is a relationship between type 5 and type
6 convex pentagonal tiles) (Sugimoto and Ogawa, 2000).
On the other hand, the convex pentagon with four equal-
length edges tile that satisfies the conditions of A = 90◦,
B = C = 135◦, D = 67.5◦, E = 112.5◦, a = b = c = d
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and was mentioned in Sec. 4 belongs to both type 1 and
type 7 (i.e., there is a relationship between type 1 and type
7 convex pentagonal tiles). As mentioned in Secs. 3 and 5,
the convex pentagonal tile of type 8 (i.e., C12-T8 tile) with
five equal-length edges belongs also to type 2 (i.e., there is
a relationship between type 8 and type 2 convex pentagonal
tiles). On the contrary, the convex pentagonal tile of type
9 has no relationship with other types. It has seemed that
the convex pentagonal tiles of type 7, type 8, and type 9
are different from the convex pentagonal tile belonging to
type 1 or type 2. However, we consider that type 9 is really
the only convex pentagonal tile that is incompatible with all
other types.

We have found the connection between all convex pen-
tagonal tiles allowing the known EE tiling and the convex
pentagonal tiles in this study just through the above discus-
sions even if the freedom of the structure has not been fully
explained. We assert that previous researchers’ results of
convex pentagonal tiles can be summarized by keeping on
the focus on the specific edge e. However, we do not think
that this list is perfect because a case of negation is not ex-
hausted logically.

We advanced our own research by classifying the tiling
patterns systematically and discussing them with an aim
at an exhaustive study of the convex pentagonal tile. To
that end, it is important to have a grasping of the proper-
ties of tiling and classifications of tiling patterns. We con-
sider that the conditions of a convex pentagonal tile can-
not be expressed without the classification of tiling patterns.
Therefore, in this study, we discussed and introduced all the
tilings using our convex pentagons with four equal-length
edges tiles that can allow multipatterned tiling.
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Appendix A. Correction as the Result of Report I
Although the combinations for DE-regular patterns were

enumerated in Table 3 of Report I, we find the mistake and
show the correction below. We considered the symbolic
symmetry in the simultaneous D ↔ E and A ↔ C re-
flections within the range allowed by the symbols. As a
result, 23 regular patterns were shown in Table 3 of Report
I. However, the statement was a mistake. In Report I, we
judged that the case “B BC A, DD A, E EC” is equivalent
to DE-regular 19 (B BC A, DDC , E E A). But, the case
“B BC A, DD A, E EC” is independent of “B BC A, DDC ,
E E A.” Therefore, it is necessary to add the case “B BC A,
DD A, E EC” to Table 3 of Report I.

Here, the case “B BC A, DD A, E EC” is investigated.
The conditions of convex pentagon that satisfies the node
restriction “B BC A, DD A, E EC” are expressed as follows.

2D + A = 2E + C = 360◦, a = b = c = d. (A.1)

Pentagons with four equal-length edges can be divided into
two isosceles triangles E AB and BC D, and other triangle
B DE (see Fig. 6(d)). The base angles of the two isosceles
triangles E AB and BC D are denoted α and β. The interior
angles of the pentagon that satisfies (A.1) can be expressed
as follows. 



A = 180◦ − 2α,

B = α + β,

C = 180◦ − 2β,

D = 90◦ + α,

E = 90◦ + β.

Therefore, because of � E B D = 0◦, the convex pentagon
that satisfies (A.1) cannot exist in geometry.

Thus, our result (the number of concentration methods
that allow the EE tiling in accordance with node restriction)
in Report I is unchanging. Moreover, the case “B BC A,
DD A, E EC” (the convex pentagon that satisfies (A.1)) is
the outside for consideration also in this paper.

References
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