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Rectilinear Distance in Rotated Regular Point Patterns
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This paper examines the relationship between road directions and the rectilinear distance in regular point
patterns. We derive the distributions of the rectilinear distances to the nearest and the second nearest points
in rotated regular point patterns. These distributions demonstrate that road directions significantly affect the
rectilinear distances. As an application of the nearest and the second nearest distances, we consider a facility
location problem in which customers are serviced by either the nearest or the second nearest facility.
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1. Introduction
Distance plays an important role in spatial analysis. In

a point pattern analysis, the distance between neighbour-
ing points is used for describing patterns for the distribu-
tion of various geographical objects (Cressie, 1993). In a
spatial interaction model, the amount of flow or interaction
between any two points decreases with distance (Taaffe et
al., 1996). In a facility location problem, the sum of dis-
tances from customers to their nearest facility is minimized
(Drezner and Hamacher, 2002).

In these spatial models, the most frequently used dis-
tance is the Euclidean distance. Although the Euclidean
distance is a good approximation for the actual travel dis-
tance, the rectilinear distance is more suitable for cities with
a grid road network (Vaughan, 1987). In fact, the rectilin-
ear distance has been used in various facility location mod-
els (Francis et al., 1992; Macias and Perez, 1995; Aras et
al., 2008). The rectilinear distance R between two points
(x1, y1), (x2, y2) is defined as

R = |x1 − x2| + |y1 − y2|. (1)

A significant characteristic of the rectilinear distance is that
the distance depends on the direction of the coordinate axes.
If grid roads exist everywhere and road directions are paral-
lel to the coordinate axes, the rectilinear distance coincides
with the road network distance. For the analysis using the
rectilinear distance as an approximation of the network dis-
tance, the effect of road directions should be considered.

The purpose of this paper is to examine the relationship
between road directions and the rectilinear distance. We
focus on the rectilinear distance in rotated regular point pat-
terns, as shown in Fig. 1. These regular patterns are ob-
tained by rotating the square lattice at angle θ (0 ≤ θ ≤
π/4). When θ = π/4, the pattern is called the diamond
lattice. These patterns are identical for the Euclidean dis-
tance, but not for the rectilinear distance. Examining the
relationship between the rotation angle θ and the rectilinear
distance leads to a deeper understanding of the rectilinear
distance in regular point patterns. Regular patterns are im-

portant as a typical dispersed pattern. Larson and Odoni
(1981) showed that the optimal facility location with rec-
tilinear distances is the diamond lattice (θ = π/4). The
theoretical results of regular patterns will give a useful tool
for the analysis of actual patterns. We assume that these
regular patterns continue infinitely. This assumption allows
us to examine the distance without taking into account the
boundary effect. We also assume that grid roads run every-
where in north-south and east-west directions, as shown in
Fig. 1.

Not only the distance to the nearest point but also the
distance to the kth nearest point has been used in spatial
analysis. The distance from an arbitrary location to the
kth nearest point is called the kth nearest distance. An
application of the kth nearest distance is found in a facility
location problem with closing of facilities. Classical facility
location models usually assume that customers always use
their nearest facility. Facilities might, however, be closed or
disrupted due to accidents or disasters. Customers then have
to use more distant facilities. Thus, when locating facilities,
the distance to the kth nearest facility should also be taken
into account.

The probability density functions of the kth nearest dis-
tance have been obtained for several patterns. The near-
est distance was derived in Clark and Evans (1954) for the
random pattern, Persson (1964) for the square lattice, and
Holgate (1965) for the triangular lattice. The kth nearest
distance was derived in Dacey (1968) for the random pat-
tern, Koshizuka (1985) for k = 1, 2, 3 for the square lattice,
and Miyagawa (2009) for k = 1, 2, . . . , 7 for the square,
triangular, and hexagonal lattices. The nearest rectilinear
distance was derived in Larson and Odoni (1981) for the
random pattern. The kth nearest rectilinear distance was de-
rived in Miyagawa (2008) for k = 1, 2, . . . , 8 for the square
and diamond lattices.

In this paper, we derive the distributions of the near-
est and the second nearest rectilinear distances for the ro-
tated regular patterns. The present paper extends Miyagawa
(2008) by introducing the rotation angle θ . We also consider
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Fig. 1. Rotated regular point patterns.
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Fig. 2. Region where the white point is the nearest.

a facility location problem in which customers are serviced
by the nearest or the second nearest facility.

A number of facility location models that explicitly in-
clude the possibility of closing have been proposed. Weaver
and Church (1985) addressed the vector assignment p-
median problem, where a certain percentage of customers
could be serviced by the kth nearest facility. Pirkul (1989)
studied a similar problem in which customers are served by
two facilities designated as primary and secondary facili-
ties. Drezner (1987) generalized the p-median and p-center
problems by considering the possibility that some of the
facilities become inactive. Berman et al. (2007) extended
Drezner’s work and demonstrated that the probability of fa-
cility failure has a strong effect on the optimal facility lo-
cation. Snyder and Daskin (2005) presented two reliability
models based on the p-median problem and the uncapaci-
tated fixed-charge location problem. Church et al. (2004)
developed a interdiction model to identify the set of facili-
ties that, if interdicted, causes the greatest loss. Church and
Scaparra (2007) extended the model to generate the range of
possible failures and impacts. A survey of facility location
problems under uncertainty is provided in Snyder (2006).

Most of the previous studies concerning facility location
problems with closing of facilities used discrete network
models, in which demand occurs only at nodes of a net-
work. Since discrete models can easily describe realistic
situations, the focus is on developing algorithms and ob-
taining numerical solutions. This paper, in contrast, uses

θ
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r

Fig. 3. Region where the white point is the second nearest.

a continuous model, in which demand occurs anywhere
on a plane. Continuous models often yield simple closed
form solutions, which provide fundamental relationships
between variables.

The rest of this paper is organized as follows. The next
section derives the distributions of the nearest and the sec-
ond nearest rectilinear distances for the rotated regular pat-
terns. Section 3 presents an application to a facility location
problem. The final section summarizes our main results.

2. Nearest and Second Nearest Distance Distribu-
tions

Let R1, R2 be the rectilinear distances from an arbitrary
location in a study region to the nearest and the second near-
est points. Let f1(r), f2(r) be the probability density func-
tions of R1, R2. We call f1(r), f2(r) the nearest distance
distribution and the second nearest distance distribution, re-
spectively. In this section, we derive f1(r), f2(r) for the
rotated regular patterns.

Let F1(r) be the cumulative distribution function of the
nearest distance R1. F1(r) is the probability that R1 ≤ r ,
which is given by

F1(r) = S1(r)

S
(2)

where S and S1(r) are the area of the study region and the
area of the region such that R1 ≤ r in the study region,
respectively. Differentiating Eq. (2) with respect to r yields
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Fig. 4. Nearest and second nearest distance distributions.
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Fig. 5. Average nearest and second nearest distances.

the nearest distance distribution f1(r) as

f1(r) = 1

S

dS1(r)

dr
. (3)

The study region can be confined to the region where a
point is the nearest, as shown in Fig. 2. This is because we
assume that regular patterns continue infinitely. This region
corresponds to a Voronoi polygon with rectilinear distances
(see Okabe et al., 2000).

Let a be the distance between two adjacent points. The
area of the region in Fig. 2 is S = a2. S1(r) is the area
of the rectilinear circle, which is a square rotated at angle

π/4, centred at the white point with radius r in the region,
as shown in Fig. 2. Then we have

S1(r) =




2r2 (
0 < r ≤ a

2
(sin θ + cos θ)

)
a2 − 2(a cos θ − r)2(a

2
(sin θ + cos θ) < r ≤ a cos θ

)
.

(4)

Substituting Eq. (4) and S = a2 into Eq. (3) gives the
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Fig. 6. Weighted sum of the average distances (ω = 0.5) (a) and optimal rotation angle (b).
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Fig. 7. Weighted sum of the maximum distances (ω = 0.5) (a) and optimal rotation angle (b).

nearest distance distribution f1(r) as

f1(r) =




4ρr(
0 < r ≤ 1

2
√

ρ
(sin θ + cos θ)

)

−4ρr + 4
√

ρ cos θ(
1

2
√

ρ
(sin θ + cos θ) < r ≤ cos θ√

ρ

)
(5)

where ρ (= 1/a2) is the density of points. If θ = 0 (θ =
π/4), Eq. (5) reduces to the nearest distance distribution of
the square (diamond) lattice obtained in Miyagawa (2008).
The average nearest distance E(R1) is given by

E(R1) =
∫ ∞

0
r f1(r) dr

= 1

6
√

ρ
(2 sin3 θ + 3 cos θ). (6)

The second nearest distance distribution f2(r) is simi-
larly obtained by calculating the area of the rectilinear circle
in the region where a point is the second nearest, as shown

in Fig. 3. Then we have

f2(r) =




8ρr − 4
√

ρ cos θ(
1

2
√

ρ
(sin θ + cos θ) < r ≤ cos θ√

ρ

)

−4ρr + 4
√

ρ(sin θ + cos θ)(
cos θ√

ρ
< r ≤ 1√

ρ
(sin θ + cos θ)

)
(7)

which under θ = 0 (θ = π/4) reduces to the second
nearest distance distribution of the square (diamond) lattice
obtained in Miyagawa (2008). The average second nearest
distance E(R2) is given by

E(R2) = 1

6
√

ρ
{(2 sin θ − cos θ)(sin 2θ + 1) + 6 cos θ}.

(8)

The nearest and the second nearest distance distributions
f1(r), f2(r) and the average distances E(R1), E(R2) are
shown in Figs. 4 and 5, where the density of points is ρ = 1.
Note that E(R1) has a minimum at θ = π/4 (diamond
lattice), whereas E(R2) has a minimum at θ = 0 (square
lattice).
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3. Application to a Facility Location Problem
In this section, we provide an application of the nearest

and the second nearest distances to a facility location prob-
lem. Suppose that customers are uniformly distributed on
a plane. If all customers are serviced by their nearest fa-
cility, the optimal facility location is the diamond lattice
(θ = π/4), as shown in Larson and Odoni (1981). This
is because the average distance to the nearest facility E(R1)

of the diamond lattice is the smallest (see Fig. 5(a)). If some
facilities are closed and customers are serviced by their sec-
ond nearest facility, however, it is uncertain whether or not
the diamond lattice is still optimal. Recall that the average
distance to the second nearest facility E(R2) of the diamond
lattice is the greatest among the rotated regular patterns (see
Fig. 5(b)).

Let us find the rotation angle that minimizes weighted
sum of the average distances. The problem is formulated as
follows:

min. W (θ) = E(R1) + ωE(R2)

= 1

6
√

ρ
{2 sin3 θ + 3(1 + 2ω) cos θ

+ω(2 sin θ − cos θ)(sin 2θ + 1)}
(9)

where ω (0 ≤ ω ≤ 1) is a weight. If ω = 0, the distance
to the second nearest facility is of no importance. This cor-
responds to the case where all customers use their nearest
facility. As ω increases, the second nearest facility becomes
more important. If ω = 1, the second nearest facility is as
important as the nearest facility.

The first and second derivatives of W (θ) are

dW (θ)

dθ
= 1

4
√

ρ
[(sin 2θ + cos 2θ − 1)

·{(1 + 3ω) sin θ − (1 − ω) cos θ}],
(10)

d2W (θ)

dθ2
= 1

4
√

ρ
{(1 + ω)(3 sin 3θ − sin θ)

+6ω cos 3θ − 2(1 + 2ω) cos θ},
(11)

respectively. From

dW (θ)

dθ
= 0 ⇔ θ = 0,

π

4
, arccos

3ω + 1√
10ω2 + 4ω + 2

(12)

and

d2W (0)

dθ2
< 0,

d2W
(π

4

)
dθ2

< 0,

d2W

(
arccos

3ω + 1√
10ω2 + 4ω + 2

)

dθ2
> 0, (13)

we have the optimal rotation angle θ∗ as

θ∗ = arccos
3ω + 1√

10ω2 + 4ω + 2
. (14)

Figure 6(a) shows the weighted sum of the average dis-
tances W (θ) for ω = 0.5. It can be seen that W (θ) has
a minimum at θ∗ = arccos(2.5/

√
6.5) ≈ 0.197. Fig-

ure 6(b) depicts the optimal rotation angle θ∗ as a func-
tion of weight ω. The optimal angle decreases continuously
from θ∗ = π/4 to θ∗ = 0. That is, any rotated pattern as
well as the square and diamond lattices has the possibility
of being the best depending on the weight.

Next, let us find the rotation angle that minimizes
weighted sum of the maximum distances. This is an op-
timization from an equity point of view. The farthest points
from the nearest and the second nearest facilities are shown
as arrows in Figs. 2 and 3. Let U (R1), U (R2) be the maxi-
mum distances to the nearest and the second nearest facili-
ties, respectively. From Eqs. (5) and (7), we have

U (R1) = cos θ√
ρ

(15)

U (R2) = sin θ + cos θ√
ρ

. (16)

The problem is formulated as follows:

min. Wmax(θ)= U (R1) + ωU (R2)

= 1√
ρ

{ω sin θ + (1 + ω) cos θ}. (17)

Wmax(θ) is concave for 0 ≤ θ ≤ π/4, because

d2Wmax(θ)

dθ2
= − 1√

ρ
{ω sin θ + (1 + ω) cos θ} < 0. (18)

Then the optimal rotation angle θ∗∗ is obtained as

θ∗∗ =




π

4

(
0 ≤ ω ≤ 1√

2

)

0

(
1√
2

< ω ≤ 1

)
.

(19)

Figure 7(a) shows the weighted sum of the maximum dis-
tances Wmax(θ) for ω = 0.5. It can be seen that Wmax(θ) has
a minimum at θ∗∗ = π/4. Figure 7(b) depicts the optimal
rotation angle θ∗∗ as a function of weight ω. The best facil-
ity pattern is either the diamond lattice or the square lattice.
This result makes a clear contrast with the average distance
case.

4. Conclusion
This paper has examined the relationship between road

directions and the rectilinear distance in regular point pat-
terns. We have derived the distributions of the rectilinear
distances to the nearest and the second nearest points in
rotated regular point patterns. These distributions demon-
strate that road directions significantly affect the rectilinear
distances. Road directions should therefore be incorporated
into spatial analysis based on rectilinear distances.

As an application of the nearest and the second nearest
distances, we have considered a facility location problem
in which customers are serviced by the nearest or the sec-
ond nearest facility. The objectives of the problem are to
minimize the weighted sum of the average distances and
the weighted sum of the maximum distances. In the former
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case, any rotated pattern as well as the square and diamond
lattices has the possibility of being the best. In the latter
case, in contrast, either the diamond lattice or the square
lattice is the best. These findings will give an insight into
the further studies on facility location problems with clos-
ing of facilities.

The assumption that customers are serviced by the near-
est or the second nearest facility might be invalid in disas-
trous situations where many facilities are disrupted simul-
taneously. The higher order distances will also be required
for future research.
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