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Nambu-Goldstone Mode and Spatiotemporal Chaos
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It is well known that the Nambu-Goldstone (NG) mode accompanying spontaneous breaking of a continuous
symmetry plays important roles in subatomic physics and in condensed-matter physics. Very recently new
aspect has been discovered in nonlinear hydrodynamic systems related to NG modes. Here we introduce such a
typical but, up to now, unique example which is observed in electroconvection in liquid crystals. The nonlinear
interaction between the Nambu-Goldstone mode and the convective one induces a new type of spatiotemporal
chaos, the so-called soft-mode turbulence.
Key words: Spontaneous Breaking of Symmetry, Nambu-Goldstone Mode, Spatiotemporal Chaos, Soft-Mode
Turbulence

1. Spontaneous Breaking of Symmetry and Phase
Transition

The Nobel Prize in Physics 2008 was awarded to Pro-
fessor Yoichiro Nambu for the discovery of the mechanism
of spontaneous broken symmetry in subatomic physics
(Nambu and Jona-Lasinio, 1961a, b). The importance of
symmetry breaking is not limited in subatomic physics.
Symmetry breaking occurring in various scales from mi-
croscopic to macroscopic has formed the diversity of the
universe. If phase transitions from lower temperature phase
to higher temperature one occurs, generally the symmetry
of the low temperature phase is broken. Thus symmetry
breaking is closely related to various phase transitions.

Let us consider symmetry breaking and phase transition
by taking a smectic liquid crystal as an example (de Gennes
and Prost, 1993). There are several kinds of liquid crystals
that consist of rodlike molecules whose statistical averaged
orientation is called the director. The smectic liquid crys-
tal is characterized by the layer structure and many types
are classified into depending on molecular orientation and
symmetry within the layer (Fig. 1). In those, the smectic
A phase has the highest symmetry in which the molecules
are perpendicular to the layer (Fig. 1(a)). With decrease
of temperature, the molecules tilt to an arbitrary direction
with a constant angle below a transition point (Fig. 1(c)).
This phase is called the smectic C. The top view of the
molecular orientation (the director) during transition from
the smectic A to C can be described as follows (see also
Fig. 1). The smectic A phase has a continuously rotational
symmetry against z-axis, that is the director projection onto
x–y plane becomes a point (Fig. 1(b)). In smectic C, it has
the tilt director and we define the two-dimensional vector
field C(r)-director characterizing the local direction in the
smectic C layer. Then the continuously rotational symme-
try of C(r) is broken, because the direction of the C(r) is
not a point but aligns to some directions (Fig. 1(d)). As a
result, the symmetry breaking occurs spontaneously. Note

here that there is no restriction to determine the direction of
the C(r) because any direction costs equal energy as long
as with the same tilt angle.

Let us suppose that perturbation for the direction of the
C(r) is given to the ground state. If the wavenumber k
(�=0) of the perturbation is given, distortion in the C(r) is
induced. Since liquid crystals have elasticity, the relax-
ation to uniform C(r) occurs in order to remove the distor-
tion. With making k smaller, the relaxation time τ becomes
longer. The perturbation with k = 0 does not relax, namely
τ → ∞, since the elastic distortion is not induced. Such
a mode with τ → ∞ for k → 0 is called as the Nambu-
Goldstone (NG) mode.

Generally speaking, in what kind of condition does the
NG mode appear? The reason why the perturbation with
k = 0 does not relax is because the direction of the C(r)
can be freely chosen without any additional cost of energy.
Thus this arbitrariness of direction of C(r) in the smectic
C phase results from the continuously rotational symmetry.
That is, NG modes appear when a continuous symmetry is
spontaneously broken in a short-range interaction system.

Spontaneous breaking of a continuous symmetry also oc-
curs in pattern formation in dissipative systems. Let us take,
as an example, the Rayleigh-Bénard convection in fluids
heated from below. The spontaneous breaking of the con-
tinuously translational symmetry occurs in infinitely large
case, when a stripe pattern forms by the periodic arrange-
ment of convective rolls. In this case, the phase of the stripe
pattern behaves as a NG mode. The NG mode influences
slow motion of defects in the pattern selection process.

2. Nambu-Goldstone Mode in a Homeotropic Ne-
matic System

Nematic liquid crystals (NLCs) are characterized by ori-
entational order without layer structures. In NLCs, applying
an electric field beyond a threshold voltage Vc, convection
starts. This is called the electrohydrodynamic instability
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Fig. 1. Smectic liquid crystal. The broken lines show layer structures.
(a), (b) Smectic A phase. (c), (d) Smectic C phase.
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Fig. 2. Planar alignment system of a nematic liquid crystal. (a) Initial
state. (b) Electroconvective state. (c) Convective pattern observed under
a polarizing microscope.

and explained by the Carr-Helfrich effect (de Gennes and
Prost, 1993). The electroconvection in nematic liquid crys-
tals has been supplied rich variety of subjects of nonlinear
dynamics because it has many advantages for experimental
and theoretical researches comparing to conventional fluid
systems, e.g., Rayleigh-Bénard convection systems. Now,
let’s describe briefly how to set our sample. A nematic liq-
uid crystal is sandwiched between two electrodes and the
direction of the molecules (the director) is aligned paral-
lel to the electrodes. By a surface treatment of the elec-
trodes, e.g., polymer coating and rubbing procedure along
the x-direction, the directors can be aligned to one direc-
tion. This surface treatment artificially breaks the contin-
uous rotational symmetry in the electrode plane, such as
the x–y direction, that is, the x and y directions have not
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Fig. 3. (a) Pattern of the soft-mode turbulence. (b) Two-dimensional
spectrum of (a).

equal property each other. This system is called the pla-
nar alignment. The direction of the convective rolls due to
the electrohydrodynamic instability here is perpendicular to
the initial alignment of the directors (Fig. 2). Therefore, the
wavevector q of the stripe pattern becomes uniformly par-
allel to the x-direction. In electroconvection of nematic liq-
uid crystals, generally convective flow leads an anisotropic
torque on the C because of the viscous anisotropy. In the
planar system, since the rotation of the C by the viscous
torque is suppressed by the initial breaking of the rotational
symmetry due to the rubbing, the C(r) and the convective
stripe pattern can be stable at primary state above Vc.

If the directors are aligned perpendicular to the elec-
trodes, what happens now? This state traditionally called
the homeotropic alignment (HA) in the liquid crystal fields.
HA becomes unstable for an electric field beyond a thresh-
old voltage VF, the Fréedericksz transition point (de Gennes
and Prost, 1993), at which the directors tilt against the elec-
trode. In some sense, this aspect has a good analogy to the
transition from smectic A to C phase though their intrinsic
physics is different. Then the continuous rotational sym-
metry in the the x–y plane is spontaneously broken, since
the tilt direction is arbitrary as previously described. Con-
sequently, the fluctuation of the azimuthal angle φ of the C
can be regarded as a NG mode similar to that in the smec-
tic C phase (note, we are talking about only one layer of
smectic C as an anology). Further increasing the control
parameter, electroconvection occurs at a secondary thresh-
old voltage Vc. Now note also that this state is dissipa-
tive while Fréedericksz state is not. In this system, two
NG modes which originate respectively from the rotational
and the translational symmetries coexist. In other words, a
short-wavelength mode of electroconvection coexists with
the NG mode of φ. In the homeotropic system, the rotation
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of the C behaves as a NG mode and the C can rotate by the
viscous torque. The q also has to rotate to follow the C so
that the electroconvection can be maintained. This means
that the nonlinear interaction between the short-wavelength
mode and the NG one make the convective pattern unsta-
ble. As a result, the convective pattern become disordered
as shown in Fig. 3(a). However, the regular convection is
locally kept and azumuzal angle becomes random in time,
namely |q(r)| = const. Such motions are shown as a ring
in the two-dimensional spectrum (Fig. 3(b)), and indicate
spatiotemporal chaos related to the direction of q. This
type of spatiotemporal chaos was named as soft-mode tur-
bulence (SMT), since the softening of the fluctuation can
be observed approaching to the bifurcation point (Kai et al.,
1996; Hidaka et al., 2006). Both patterns shown in Figs. 2
and 3 are obtained using the same liquid crystal and same
field conditions. Nevertheless, the convective pattern and its
dynamics in the homeotropic system is drastically different
from those in the planar system. This means that symme-
try plays quite important roles in emergence in dissipative
structures as well as in phase transition in condensed mat-
ters and subatomic systems. In well known route of pattern
developments, an ordered state appears at a primary thresh-
old, complex and chaotic states appears after successive bi-
furcations. The homeotropic electroconvection is not the
case and therefore quite nontrivial. This is clearly related to
the NG mode via the symmetry problem of the system.

3. Soft-Mode Turbulence in Other Systems
Angular momentum of C is a conserved quantity in the

Fréedericksz state. On the other hand, the Navier-Stokes
equation is invariant under the Galilean transformation.
Therefore, in a layer of normal fluid, long-wavelength fluid
flow in the horizontal plane has long relaxation time due to
the momentum conservation. The role of this flow called
as mean flow effect was investigated in the occurrence of
secondary instability in convective systems. If the hori-
zontal size of the system is infinite and the friction at the
top and bottom boundaries is negligible, the fluid veloc-

ity parallel to the horizontal plane behaves as a NG mode.
Though actually it seems very difficult to realize such an
experimental system, the research using numerical simu-
lation for the Rayleigh-Bénard convection in a large sys-
tem with free boundary conditions was done (Xi et al.,
1997). The results are very similar to ones of the SMT,
such as observed patterns and bifurcation to spatiotempo-
ral chaos. Furthermore, the so-called Nikolaevskii equa-
tion which was originally derived against the propagation
of longitudinal seismic waves in viscoelastic media have
been intensively investigated (Tribelsky and Tsuboi, 1996).
The equation which includes nonlinear coupling between a
short-wavelength mode and a NG mode exhibits spatiotem-
poral chaos similar to the SMT. Most important result for
all these is that spatiotemporal chaos appears via a single
supercritical bifurcation. This is only related to the symme-
try problem. Thus, it can be concluded that SMT is quite
universal and independent of specific properties of individ-
ual systems except symmetry. So far, however, actually ob-
served unique system is only homeotropical electrohydro-
dynamics of liquid crystals. We therefore wish to discovery
of further examples for more advanced development of sci-
ence.
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