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A Fluid-Erosion-Based Model of Landscape Evolution
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A new landscape evolution model is proposed which is composed of the shallow water equations for the fluid
above the sediment and the mass conservation equation of the sediment. Numerical simulations of the formation
of landscape and river network are carried out based on these equations. It is shown that steady patterns of river
network are formed for the initial inclinations of slopes within 0.00005 and 0.005. The fractal dimensions of the
river network and the exponent of Hack’s law are obtained, which are consistent with values from observation.
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1. Introduction
Complex patterns are commonly found throughout na-

ture, from snow crystals to leaf veins. Such pattern is the
fractal, a complex geometric pattern that can be subdivided
into parts, each of which is a smaller copy of the whole. Ex-
amples of fractals include landscapes, as well as snow crys-
tals and leaf veins. The fractal dimension of a ridge-valley
pattern in the nature is 1.7∼1.9. Such a complex pattern
can be generated in a laboratory by pouring water on sand
(Wittmann et al., 1991). On the topic of fractal patterns,
let us consider a river network, which is characterized by
Hack’s law as Eq. (1).

L ∝ A0.6. (1)

This law gives the empirical relationship between the
longest stream lengthL and the drainage areaA for a given
point on a river. The stream length is defined as the length
which is measured headward from a given point on a stream
to the divide. Because the river is composed of many
streams there are many stream lengths going through the
point, andL is defined as the longest among them. From a
simple dimensional analysis the power index should be 0.5.
However, the power index in Hack’s law is 0.6. This implies
that a river is neither smooth line nor plane but a complex
pattern with a fractal nature. However, the mechanism un-
derlying this law is not clear yet.

In the past, several models of landscape evolution
have been proposed. Howard (1994) used a detachment-
limited model, which combines mass movement and sed-
iment transport, to simulate the steady state of landscape.
Willgooseet al. (1991) used “the channelization equation”
governing the development of channels. This is based on a
biological model of leaf reticulation. Tuckeret al. (2001)
proposed simple numerical algorithms and transport equa-
tions to model the landscape network. The discrete models
of river network, e.g. a random walk model, are also pro-
posed (Smart and Morzzi, 1971; Stark, 1991; Coulthardet
al., 2002; Luoet al., 2004). They can be easily simulated

on a computer because the differential equations need not to
be solved. However, none of the models mentioned above
consider fluid dynamics, that is, it is impossible for these
models to evaluate fluid motion such as flow velocity.

In this study, we consider the simple phenomenon of
water flowing down a slope and develop a simple model
that can produce a complex pattern.

2. A New Model of Landscape Evolution
Here, we propose a landscape evolution model that fo-

cuses on the erosion by fluid motion. Figure 1 shows the
concept of the model. The velocity of the fluid flowing
above the sediment is denoted byu = (u, v), the depth of
the fluid byh, and the altitude of the bottom sediment byz.
Here,x andy are the lateral and streamwise coordinates in
the horizontal plane, andt denotes the time. By assuming
that the depth of the fluid layer is small enough compared
with the characteristic spatial variation in the flow velocity,
the flow obeys the shallow water equations, which are given
as follows (Izumi and Parker, 2000):
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(τx , τy) = ρC f |u|(u, v) (5)

whereg, ρ, andC f denote the gravitational acceleration,
the density of water, and the friction coefficient, respec-
tively. (τx , τy) are the boundary shear stress. The friction
coefficientC f is a function of flow depth and the rough-
ness, but in this model it is assumed to be a constant for
simplicity. In general it is knownC f takes the order of 0.01
(Richards, 1982).
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Fig. 1. Definitions of variables in the fluid erosion.

Table 1. Parameters used in the simulation.

Parameter Value

c f 0.01

D f 0.005

k 1.2

α 0.8

β 0.7

h0 0.0001

�x 0.1

�y 0.1

�t 0.1

Nx 256

Ny 512

For the sake of simplicity, we do not consider the mixed
flow dynamics of water and sediment. Evolution of the
elevation z is expressed by

∂z

∂t
= −qs + D f ∇2z (6)

qs = k Qα Sβ (7)

where qs is the rate of eroded sediment; D f is the diffusion
coefficient; and k, α, and β are constants. Q and S denote
the discharge, i.e. the local flow rate of the fluid phase, and
the local slope gradient, respectively, such that

Q = h |u|/h0 (8)

S =
√

(∂z/∂x)2 + (∂z/∂y)2. (9)

The first term on the right-hand side of Eq. (6) is associated
with channel erosion, and the second term is associated
with diffusion. Eq. (7) is based on a detachment-limited
model (Howard, 1994). In a detachment-limited model qs

is propotional to Aα Sβ , where A denotes the drainage area.
However, because it is hard to calculate the drainage area
A in every numerical step, in our model the discharge Q
is used instead of A. Note that the relation between the
drainage area and the discharge is Q ∝ A (Leopold et al.,
1964). The exponents α, β, and the coefficient k are 0.8,
0.7, and 1.2, respectively, based on Howard (1994).

Fig. 2. Visualization of distributions of the water depth for the ini-
tial gradient S0 = 0.0001. The darker areas indicate deeper region.
(1) t = 100, (2) t = 1100, (3) t = 1800, and (4) t = 2300.

3. Numerical Calculation
We apply the CIP (cubic interpolated pseudoparticle)

method Ogata and Yabe, 2004) to the advection term in the
shallow water equations (2)–(4). We apply the ADI (alter-
nating direction implicit) method and the cyclic reduction
algorithm to the diffusion term in Eq. (6), the central dif-
ference in space, and the forward difference in time. The
grid sizes in the x and y directions are �x and �y, and the
number of grid points is given by Nx × Ny .
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Fig. 3. Time variation of the fractal dimension for S0 = 0.0001. The
average value of the fractal dimension for t ≥ 1100 is 1.87.

Fig. 4. Fractal dimension as a function of the initial slope.

As an initial condition, we add a minute disturbance

z̃(x, y) =
Nx∑

i=1

Ny∑

j=1

ai j sin
2π i x

Lx
cos

2π j y

L y
(10)

to the inclined plane z(x, y) = z(0, 0) + S0 y, where S0 is
the initial slope and ai j is a uniform random factor with a
maximum value of 0.0001. Note that z̃ has some smooth-
ness because of omitting high wave number modes. A sheet
flow with the depth h0 and zero velocity are set on the sur-
face initially.

We use the periodic boundary conditions of u, v, h, and
z(x, y) − S0 y in the x and y directions with periods Lx =
Nx�x and L y = Ny�y. The values of the parameters are
listed in Table 1.

4. Simulation Results
Figure 2 shows the simulation result for the initial value

of the slope 0.0001. A complex pattern appears gradually
as time passes; finally, a steady pattern is obtained. We con-
vert the data of elevation z, shown in Fig. 2(4), into a binary
image in order to calculate the fractal dimesion D using the
box couting method. The fractal dimension D of this pat-
tern becomes constant for large time, and the time-averaged
value of D is about 1.87 for t ≥ 1100 (Fig. 3). Moreover,
the dimension remains almost constant at 1.90 when the ini-
tial slope is changed (Fig. 4). This corresponds to the phe-
nomenon in which similar branching patterns appear in var-
ious geographical features. However, when the initial slope
is smaller than 0.00005, the pattern is not clearly formed

Fig. 5. Relationship between drainage area A and stream length L . This
result shows the Hack’s law.

because erosion does not occur and the fractal dimension is
not computable. In contrast, when the initial slope is steeper
than 0.005 the pattern consists of straight streams; a com-
plex pattern is not formed because of the large gravitational
force and thus the fractal dimension is one.

Next, we consider the relationship between the longest
stream length L and the drainage area A. The longest
stream length is easily determined from the binary image.
The drainage area for the longest stream is calculated as
follows. First, a marker is placed on every grid point and the
heights of eight neighbors are compared. Next, the markers
are moved to the lowest point among the eight neighbors,
and this procedure is repeated. In most cases, the marker
reaches the outlet, while in a few cases, it stops before
it reaches the outlet. In any case, one counts the marker
in the drainage area if it is in the drainage basin of the
stream considered. Finally, the drainage area A is obtained
as the number of markers in the area related to the stream
considered. As shown in Fig. 5, this result is consistent
with Hack’s law (1). The discrepancy between Hack’s law
and the simulation results for log L ≥ 1.6 arises due to the
periodic boundary condition in the y direction. Since the
size of region in the y drection L y is 51.2, i.e. log L y = 1.7,
this discrepancy is reasonable when L is large. Note that
Fig. 5 is plotted for various initial slopes from 0.00005 to
0.003.

5. Conclusion
In this study, we propose a simple model for determin-

ing landscape evolution; this model employs shallow wa-
ter equations and the mass conservation of sediment. In
the simulation, this model generates steady pattern of river
network. Numerical simulation shows that the fractal di-
mension of the river pattern is 1.90, which is independent
of the initial slope and is close to the value of 1.7∼1.9 in
the geographical features. This result is in good agreement
with Hack’s law, and hence, the proposed model is appro-
priate for pattern generation. Therefore, it is clarified that
the mechansm responsible for the complex pattern is mass
movement by fluid motion. The present model is simple,
but rather impractical. However, more realistic effects such
as non-periodic conditions and precipitation can be easily
incorporated into the model. In future, we intend to explore
the precise mechanism of fractal patterns and Hack’s law.
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