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Supplementary Results for Length Distributions in Planar STIT Tessellations
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Formulas for the joint distribution of direction and length of the typicalK - and J -segment in a planar,
homogeneous, anisotropic, random tessellations that are stable under iteration (so-called STIT tessellations) are
derived. They were announced in Thäle (2009), supplement the results from Mecke (2009) and Meckeet al.
(2007) and complete the picture concerning length distributions of segments in the planar case.
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1. Introduction
Since their introduction by Nagel and Weiß in the semi-

nal paper (Nagel and Weiss, 2005), homogeneous (spatially
stationary, that is stochastically translation invariant) itera-
tion stable tessellations, STIT tessellations for short, have
attracted considerable interest in stochastic geometry. In
the planar case, these tessellations may be constructed in
any bounded convex polygonP ⊂ R2 according to the fol-
lowing procedure: Letϑ be a probability measure on the
spaceH of lines through the origin, such thatϑ({h}) < 1
for any h ∈ H. Further, letµ be the induced translation
invariant measure on the spaceG of all lines in the plane
and L A > 0 be a fixed real number. To the polygonP,
a random lifetime is assigned, which is exponentially dis-
tributed with parameterµ({g ∈ G : g ∩ P �= ∅}). In
the special case, whereϑ is the uniform distribution onH,
µ({g ∈ G : g ∩ P �= ∅}) equals 1/π times the perimeter
length ofP. Upon expiry of the random lifetime ofP, a ran-
dom chordg is chosen according to the normalized measure
µ restricted to{g ∈ G : g ∩ P �= ∅} and is introduced inP.
Thus, the polygonP is split into two polygonal sub-cells
P+ and P−. Now, the construction continues recursively
and independently in both of the new cellsP+ andP− until
the time thresholdL A is reached, i.e. independent and expo-
nentially random lifetimes are assigned to these two cells,
random chords are chosen, which divide them further. It
is important that each chord is chopped-off by the bound-
ary of its mother cell. An illustration of the construction
process is provided by Fig. 1. One of the main features
of this class of tessellations is the property that the cells
of a homogeneous STIT tessellation are not face-to-face,
which means for example that a side of a cell can contain
further nodes in its relative interior. This implies that there
is more than one meaningful notion for segments of the tes-
sellation. In the planar case, three possible types of line
segments, so calledI -, J - andK -segments (for definitions
see below) were introduced in Mackisack and Miles (1996)
and Miles and Mackisack (2002). Moreover, in Miles and
Mackisack (2002) a model for homogeneous random pla-

nar tessellations was investigated, whose cells are also not
face-to-face. It was shown there that the length distribution
of the different types of segments are exponential distribu-
tions with different parameters. We will see below that this
is not the case for STIT tessellations. Here, more involved
distributions appear.

For homogeneous and isotropic random STIT tessella-
tions, the length distributions of the three possible types of
segments were determined by a technique related to balance
equations. It was J. Mecke in Mecke (2009) who developed
this method further and gave a formula for thejoint distribu-
tion of direction and length of the typicalI -segment of a ho-
mogeneous but anisotropic planar STIT tessellation. In the
recent paper (Tḧale, 2009), formulas for the joint distribu-
tion of direction and length of the typicalK - andJ -segment
of such tessellations were announced and have already been
used for a refined analysis of direction-dependent moments
and moment relations. It is the aim of this note to give a
proof of them in the spirit of Mecke (2009) and to make
further advertisement for the this new tessellation model.
Therefore, this note can be seen as a supplement to both of
the papers Mecke (2009) and Thäle (2009).

For background material on random STIT tessellations
we refer to the seminal paper (Nagel and Weiss, 2005) and
also to the section on planar STIT tessellations in Thäle
(2009). The notation used here are mostly adapted to that
from Thäle (2009). As a general reference for stochastic
geometry we cite the book (Stoyanet al., 1995). We em-
phasize that by a homogeneous random tessellation in the
plane we understand in this note a special planar random
closed set, which is the union of cell boundaries that form
a particle process of convex particles that have pairwise no
common interior points and cover the whole plane.

We would like to remark that the development and the
analysis of random tessellations whose cells are not face-
to-face is of great importance. Applications of such struc-
tures in geology were motivated in Grayet al. (1976), where
the geometry of so-called crack networks is discussed. One
could imagine for example a terrain, in which cracks open
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Fig. 1. States of the random cell division process for different time instants t ∈ (0, 6] and for ϑ concentrated with equal weight only on two orthogonal
directions; the respective new segments are dashed.

because of biochemical and mechanical processes. How-
ever, the appearing cracks have to stop at already existing
ones, thus, the crack formation develops independently in
the different regions of the terrain. Whereas modelling with
line or Voronoi tessellations (which are the two standard
models in stochastic geometry) is obviously inadequate,
STIT tessellations have the potential to serve as new ide-
alized mathematical model for such phenomena.

2. Background Material
The law of a homogeneous random STIT tessellation �

in the plane is uniquely determined by the edge length in-
tensity L A > 0 of the tessellation, i.e. the mean edge length
per unit area, and by its directional measure κ or directional
distribution ϑ , see Nagel and Weiss (2005). Denote by
[H, H] the measurable space of lines in R2 containing the
origin and let for B ∈ B (the Borel σ -field in R2), κ(B) be
the edge length intensity of those edges of � with direction
in B, where by the direction r(s) of a line segment s we un-
derstand the parallel line r(g) ∈ H through the origin of the
line g containing the segment s. The mapping B �→ κ(B)

defines the directional measure κ of � on [H, H], which
may be written as κ = L Aϑ for a probability measure ϑ

on the same space, the directional distribution of the tes-
sellation. The probability measure ϑ can be interpreted as
distribution of the direction of the segment through the typ-
ical point of �, when the tessellation is regarded under the
Palm distribution of � with respect to the length measure
induced by the tessellation, see Stoyan et al. (1995) for de-
tails.

It is assumed from now on that L A > 0 and that ϑ is not
concentrated on a single line in [H, H], a condition which
ensures the existence of a homogeneous random STIT tes-

sellation in the plane with edge length intensity L A and di-
rection distribution (measure) ϑ (κ), see Nagel and Weiss
(2005).

For fixed directional measure κ define the rose of inter-
sections of κ by

sκ(h) :=
∫
H

| sin(h, h′)|κ(dh′), h ∈ H

and furthermore the constant ζκ by

ζκ :=
∫
H

∫
H

| sin(h, h′)|κ(dh)κ(dh′),

where by sin(h, h′) we understand the sinus of the intersec-
tion angle between the two lines h and h′.

Recall from Nagel and Weiss (2005), that the intersection
of � with an arbitrary line g in the plane induces a homoge-
neous random Poisson point process on that line with inten-
sity sκ(r(g)), where r(g) ∈ H is the direction of g, i.e the
line parallel to g containing the origin O. Recall further that
the cells of a random STIT tessellation are not face-to-face,
which means that the intersection of two neighbouring cells
that meet in a common line segment is not necessarily a side
of both of the cells. This causes that there appear different
types of line segments for the tessellation �, see Fig. 3.

By a K -segment we mean a linear segment of the tes-
sellation which is bounded by nodes but with no further
node in its relative interior, whereas by an I -segment we
mean the maximal union of collinear and connected K -
segments that cannot be enlarged by another K -segment. A
J -segment is simply a side of a cell, see Fig. 3. The tech-
nique of Palm distribution, for which we refer to Stoyan et
al. (1995), can now be used to define the typical K -, I -
and J -segment of � and whenever the term “ typical” ap-
pears, it refers to such a definition. We can also define the
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Fig. 2. Realizations of planar stationary STIT tessellations with different directional distributions (kindly provided by Joachim Ohser).

directional distribution or the distribution of the direction of
the typical K , I - or J -segment to be the distribution of the
line in H parallel to the line through the typical K -, I - or
J -segment, respectively.

With these notions and notation we can now recall the
main result from Mecke (2009):

The directional distribution of the typical I -segment has the
density 1

ζκ
sκ(·) with respect to κ and the joint distribution of

direction and length of the typical I -segment has the density

(h, x) �→ 2

ζκsκ(h)

∫ sκ (h)

0
t2e−t x dt, h ∈ H, x > 0

with respect to the product measure κ⊗�+, where �+ stands
for the Lebesgue measure on the positive real half-axis.

For completeness and for later reference, let us recall the
concept of iteration of tessellations. Let � be a homo-
geneous random planar tessellation with cells Ck , k ∈ N,
and let (�k)k∈N a family of independent and identically dis-
tributed random tessellation, which is also independent of
� and for which each �k has the same distribution as �.
We define the iteration of � with the the sequence (�k)k∈N

to be the random tessellation

� ∪
⋃
k∈N

(�k ∩ Ck).

The resulting tessellation will be denoted by � � �. The
idea behind the definition is to associate to each cell Ck of
the frame tessellation � a component tessellation �k and to
subdivide each cell Ck by its component tessellation �k , i.e.
to make local superpositions of the tessellations � and �k

inside the cells Ck . In this sense, a homogeneous random
tessellation � is called iteration stable, if 2(� � �) has
the same distribution as �, where 2(� � �) stands for
the random tessellation � � � dilated by a factor 2. In

other words, � is iteration stable if its distribution does not
change under rescaled iteration. It was shown in Nagel
and Weiss (2005) that for finite areas, the class of STIT
tessellations as constructed in the Introduction is exactly the
same as the class of iteration stable random tessellations.
The stochastic stability of STIT tessellations under rescaled
iteration will be the crucial tool to derive a balance equation
for a certain distribution function related to the length and
directional distribution of the typical K -segment below.

3. The Result for the Typical K -Segment
We establish in this section a similar formula for the joint

density of direction and length of the typical K -segment
as that one for the typical I -segment and we will use to
this end the technique developed in Mecke (2009). We fix
from now on a homogeneous random STIT tessellation in
the plane with edge length intensity L A > 0 and directional
measure κ . From κ we can derive a translation invariant
measure on the space [G, G] of all lines in the plane by
putting µ := κ ⊗ �+, where we have used the parametriza-
tion of a line g ∈ G by its direction r(g) ∈ H—the factor
κ—and its distance from the origin—the factor �+. We de-
fine now a new length measure lκ in the plane by

lκ(s) := µ{g ∈ G : g ∩ s �= ∅} = sκ(h)l(s)

for any line segment s ⊂ R2, where h ∈ H is parallel to g ∈
G, s ⊂ g, and l denotes the usual Euclidean length. We will
call lκ(s) the κ-length of the segment s. Observe, that the
intersection property of STIT tessellations mentioned above
can now be formulated as follows: The intersection of a
homogeneous random STIT tessellation having directional
measure κ with a line g ∈ G is a homogeneous random
point process on g with κ-intensity 1, i.e. the mean number
of points per unit κ-length equals 1.

Let � be the previously fixed random STIT tessellation
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Fig. 3. Different types of segments in planar STIT tessellations.

and consider the Palm distribution

Q(C) := 1

L A

∫∫
1[0,1]2(z)1C(φ − z)dz P�(dφ)

of �, where C is a closed subset of R2 and P� denotes the
distribution of the tessellation � (cf. Stoyan et al., 1995).
Note that Q is the Palm distribution of � with respect to
the length measure induced by �. Under the distribution
Q we have O ∈ � (O denotes again the origin), which
is to say O belongs with probability one to the tessellation
under Q. In this case, O can be interpreted as the typical
point of the tessellation. In this sense, the distribution Q

may be interpreted as the conditional distribution of the tes-
sellation under the condition that the origin is a point of its
edge-network. Let now K be the almost surely uniquely
determined K -Segment of � under Q with O ∈ K (or al-
ternatively the K -segment through the typical point of �).
The typical remaining K -Segment Kr is defined as the
intersection of K with the closed upper half-plane (or alter-
natively as the intersection with the half-space bounded by
the line parallel through the x-axis that contains the typical
point). The κ-length of Kr will be denoted by lκ(Kr ). For
B ∈ H and x ∈ (0, ∞) we denote by

G K (B, x) = Q(r(Kr ) ∈ B; lκ(Kr ) ≥ x)

the probability that the direction of the typical remaining
K -segment Kr is in B and its κ-length exceeds x (when �

is regarded under the Palm distribution Q). Let for s, t > 0
us think of the rescaled STIT tessellation 1

s � as a frame
tessellation, whose cells are subdivided during an iteration
process by tessellations having the same distribution as 1

t �.
The result is—because of the stochastic iteration stability
property of the tessellation �—a homogeneous random tes-
sellation with the same law as 1

s+t �.
We will regard now the typical remaining K -segment

during the iteration 1
s � � 1

t �, where by � we denote the
operation of iteration of tessellations. Note that in contrast
to the case of the typical remaining I -segment considered
in Mecke (2009), the typical remaining K -segment can be-
come shorter during the iteration process.

With probability s
s+t the typical point of the tessellation

with the same distribution as 1
s+t � (again with respect to the

Palm distribution of 1
s+t � induced by the length measure of

this tessellation) lies on the frame 1
s � and with probability

t
s+t on a tessellation nested inside the cells of the frame
tessellation. Thus, the distribution we are seeking for is
a mixture with weights s

s+t and t
s+t of the distribution of

the typical remaining K -segment of the frame tessellation
and the distribution of the truncated typical remaining K -
segment of the nested tessellations, respectively.

Consider now the line gr ∈ G through Kr and the two
cells adjacent to Kr . Inside these two cells we iterate tessel-
lations and each of them induces a homogeneous Poisson
point process on gr with κ-intensity 1. The superposition of
these two processes is again a homogeneous Poisson point
process on gr . It has κ-intensity 2, i.e. the κ-length between
two points on gr is exponentially distributed with parameter
2. Now, the typical remaining K -segment of 1

s+t � is either
the segment from O to the next point of this Poisson point
process or the typical truncated remaining K -segment of a
tessellation with the same distribution as 1

t �, which was
nested inside the cells of the frame tessellation, see Fig. 4.
Taking into account the STIT property and the scaling fac-
tors s and t we arrive at the following crucial functional
equation for G K , namely

G K (B, (s + t)x)

= s

s + t
G K (B, sx)e−2t x + t

s + t
G K (B, t x)e−sx . (1)

For its solution we introduce the two functions

u(y) := yG K (B, y),

v(y) := u(y)ey

and the abbreviations a := sx and b := t x . A simple
calculation shows that (1) is equivalent to

u(a + b) = u(a)e−2b + u(b)e−a

or—by multiplying with the factor ea+b—to

v(a + b) = v(a)e−b + v(b).

Interchanging the rôle of a and b we obtain v(b)e−a +
v(a) = v(a + b) = v(a)e−b + v(b), whence

v(a)

e−a − 1
= v(b)

e−b − 1



Supplementary Results for Length Distributions in Planar STIT Tessellations 5

Fig. 4. The segment Kr under the operation of iteration.

and we see that the expression v(a)/(e−a − 1) does not
depend on a (the same of course for b) and must therefore
be a constant, which can depend on B. From the definition
of G K it follows immediately (let x tend to 0) that this
constant must be equal to ϑ(B), the probability that the
direction of Kr is in B. From this fact we deduce that the
unique solution of the functional equation (1) is given by

G K (B, x) = ϑ(B)
1 − e−x

x
e−x ,

where ϑ is the directional distribution of �. Here, unique-
ness is rather easy to show by contradiction and can also be
deduced from Mecke et al. (2007, lemma 6). Thus, we ob-
tain as a partial result: The direction and the κ-length of the
typical remaining K -segment of the STIT tessellation � are
independent. Moreover, the tail function of the κ-length of
Kr is given by

x �→ 1 − e−x

x
e−x .

The distribution of the direction of Kr coincides with ϑ .
Replacing the κ-length by the usual Euclidean length, we

obtain

Ĝ K (B, x) =
∫

B

1 − e−sκ (h)x

sκ(h)x
e−sκ (h)xϑ(dh)

with Ĝ K (B, x) = Q(r(Kr ) ∈ B; l(Kr ) > x), B ∈ H and
x > 0. From the last formula it is not hard to see that the
joint distribution of direction and Euclidean length of the
typical remaining K -segment has the density

(h, x) �→ sκ(h)

∫ 2

1
te−sκ (h)t x dt (2)

with respect to the product measure ϑ ⊗ �+. In the calcula-
tion we have used that fact that

∫ 2

1
te−ut dt = 1

u2
(1 + u − (1 + 2u)e−u)e−u

for some real parameter u.
Denote now by DK be the joint distribution of direction

and length of the typical K -segment and by Dr
K the same

distribution for the typical remaining K -segment Kr . It
follows from the general theory of Palm distributions that
for any measurable function f : H × (0, ∞) → [0, ∞) we
have ∫

f (h, x)d Dr
K (h, x)

= 3ζκ

2L A

∫∫ x

0
f (h, y)dyd DK (h, x), (3)

see Stoyan et al. (1995) for the technical framework and
Mecke (2009) for the related I -segment result, as well as
the references given therein. Note in particular that the pref-
actor of the right-hand side of (3) equals the mean length of
the typical K -segment of �, which is known from Nagel
and Weiss (2006) (for comparison note that in Nagel and
Weiss (2006) the constant ζ = L−2

A ζκ was used instead of
our ζκ ). Plugging the density (2) into (3) and changing the
order of integration, we get

3ζκ

2L A

∫∫ x

0
f (h, y)dyd DK (h, x)

=
∫∫ ∞

0
f (h, x)sκ(h)

∫ 2

1
te−sκ (h)t x dtdxϑ(dh)

and since

− d

dx

[
sκ(h)

∫ 2

1
te−sκ (h)t x dt

]
= s2

κ (h)

∫ 2

1
t2e−sκ (h)t x dt

we infer that DK has density

(x, h) �→ 2L A

3ζκ

s2
κ (h)

∫ 2

1
t2e−sκ (h)t x dt

with respect to ϑ ⊗ �+. Taking now into account κ = L Aϑ ,
we arrive at the analogue to the main result from Mecke
(2009):

The joint distribution of direction and Euclidean length of
the typical K -segment is a probability measure on H ×
(0, ∞) with density

(x, h) �→ 2

3ζκ

s2
κ (h)

∫ 2

1
t2e−sκ (h)t x dt
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with respect to the product measure κ ⊗ �+. Moreover, the
directional distribution of the typical K -segment coincides
with that of the typical I -segment.

In the particular isotropic case, where κ is L A times the
uniform distribution on [H, H], direction and length of the
typical K -segment are independent and we get back the
formula from Mecke et al. (2007), namely

x �→ 4L A

3π

∫ 2

1
u2e− 2

π
L Aux du

= π2

3L2
Ax3

(
1 + 2

π
L Ax + 2

π2
L2

Ax2

−
(

1 + 4

π
L Ax + 8

π2
L2

Ax2

)
e− 2

π
L A x

)
e− 2

π
L A x .

In the case, where κ is concentrated with equal weight to
the two coordinate directions, we obtain for the density

x �→ 2

3L2
Ax3

(
8 + 4L Ax + L2

Ax2

−(8 + 8L Ax + 4K 2
Ax2)e− x

2 L A

)
e− x

2 L A

for the typical K -segment in one of the two possible direc-
tions.

4. The Result for the Typical J -Segment
In the case of the typical J -segment of the tessellation,

the situation is much simpler. First, from lemma 4 in Nagel
and Weiss (2006) we infer that the directional distribution
of the typical J -segment coincides with that of the typical
K -segment and hence with that of the typical I -segment.
Moreover, from the fact that STIT tessellations have Pois-
son typical cells, see Nagel and Weiss (2005), we con-
clude in connection with example 1.5 in Baumstark and
Last (2009) that

The joint distribution of direction and Euclidean length of
the typical J -segment is a probability measure on H ×
(0, ∞) with density

(h, x) �→ s2
κ (h)

ζκ

e−sκ (h)x

with respect to the product measure κ ⊗ �+, which is to
say that the length distribution of the typical J -segment

having a given direction h is an exponential distribution
with parameter sκ(h).

Again, in the isotropic case we get back the known for-
mula from Mecke et al. (2007) and for the case, where κ

is concentrated with equal weight on the two coordinate di-
rections, we have the density

x �→ 1

2
L Ae− x

2 L A

for both possible directions.

5. Discussion
For the planar case, the picture concerning the length

distribution of the different types of line segments appearing
in STIT tessellations is now complete. We have in the
isotropic case the special formulas from Mecke et al. (2007)
and in the general anisotropic case that from Mecke (2009)
and ours obtained above. These distributions yield a very
precise description of the geometry of segments in planar
STIT tessellations in the general anisotropic regime.
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Thäle, C. (2009) Moments of the length of line segments in homogeneous
planar STIT tessellations, Image Anal. Stereol., 28, 69–76.


