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Formulas for the joint distribution of direction and length of the typial and J-segment in a planar,
homogeneous, anisotropic, random tessellations that are stable under iteration (so-called STIT tessellations) are
derived. They were announced in &l (2009), supplement the results from Mecke (2009) and Metcké
(2007) and complete the picture concerning length distributions of segments in the planar case.
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1. Introduction nar tessellations was investigated, whose cells are also not
Since their introduction by Nagel and WeiR in the senmfiace-to-face. It was shown there that the length distribution
nal paper (Nagel and Weiss, 2005), homogeneous (spatiafiyhe different types of segments are exponential distribu-
stationary, that is stochastically translation invariant) itereens with different parameters. We will see below that this
tion stable tessellations, STIT tessellations for short, hagenot the case for STIT tessellations. Here, more involved
attracted considerable interest in stochastic geometry. distributions appear.
the planar case, these tessellations may be constructed For homogeneous and isotropic random STIT tessella-
any bounded convex polygdd C R? according to the fol- tions, the length distributions of the three possible types of
lowing procedure: Let? be a probability measure on thesegments were determined by a technique related to balance
spaceH of lines through the origin, such that{h}) < 1 equations. It was J. Mecke in Mecke (2009) who developed
for anyh € H. Further, lety be the induced translationthis method further and gave a formula for fhit distribu-
invariant measure on the spageof all lines in the plane tion of direction and length of the typicalsegment of a ho-
andLa > 0 be a fixed real number. To the polygéh mogeneous but anisotropic planar STIT tessellation. In the
a random lifetime is assigned, which is exponentially disecent paper (Tdle, 2009), formulas for the joint distribu-
tributed with parametenn({g € G : gnN P # @}). In tion of direction and length of the typic&l- and J-segment
the special case, wheteis the uniform distribution ori{, of such tessellations were announced and have already been
nw{g € G:gn P # @}) equals Xz times the perimeter used for a refined analysis of direction-dependent moments
length of P. Upon expiry of the random lifetime d&®, aran- and moment relations. It is the aim of this note to give a
dom chordg is chosen according to the normalized measupseoof of them in the spirit of Mecke (2009) and to make
u restricted tofg € G : gN P # @} and is introduced ifP.  further advertisement for the this new tessellation model.
Thus, the polygorP is split into two polygonal sub-cells Therefore, this note can be seen as a supplement to both of
P+ and P~. Now, the construction continues recursivelthe papers Mecke (2009) and&lka (2009).
and independently in both of the new ceit$ and P~ until For background material on random STIT tessellations
the time thresholdL.  is reached, i.e. independent and expeve refer to the seminal paper (Nagel and Weiss, 2005) and
nentially random lifetimes are assigned to these two celidso to the section on planar STIT tessellations ir&l&€h
random chords are chosen, which divide them further. (B009). The notation used here are mostly adapted to that
is important that each chord is chopped-off by the bounfdlem Thale (2009). As a general reference for stochastic
ary of its mother cell. An illustration of the constructiogeometry we cite the book (Stoyahal., 1995). We em-
process is provided by Fig. 1. One of the main featurpbasize that by a homogeneous random tessellation in the
of this class of tessellations is the property that the ceilane we understand in this note a special planar random
of a homogeneous STIT tessellation are not face-to-faclsed set, which is the union of cell boundaries that form
which means for example that a side of a cell can contairparticle process of convex particles that have pairwise no
further nodes in its relative interior. This implies that therommon interior points and cover the whole plane.
is more than one meaningful notion for segments of the tesWe would like to remark that the development and the
sellation. In the planar case, three possible types of liaealysis of random tessellations whose cells are not face-
segments, so calleld, J- andK-segments (for definitionsto-face is of great importance. Applications of such struc-
see below) were introduced in Mackisack and Miles (199&ires in geology were motivated in Greyal. (1976), where
and Miles and Mackisack (2002). Moreover, in Miles anithe geometry of so-called crack networks is discussed. One
Mackisack (2002) a model for homogeneous random ptauld imagine for example a terrain, in which cracks open
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Fig. 1. Statesof the random cell division process for different timeinstantst € (0, 6] and for © concentrated with equal weight only on two orthogonal

directions; the respective new segments are dashed.

because of biochemical and mechanical processes. How-
ever, the appearing cracks have to stop at already existing
ones, thus, the crack formation develops independently in
the different regions of the terrain. Whereas modelling with
line or Voronoi tessellations (which are the two standard
models in stochastic geometry) is obvioudly inadequate,
STIT tessellations have the potential to serve as new ide-
alized mathematical model for such phenomena.

2. Background Material

The law of a homogeneous random STIT tessellation @
in the plane is uniquely determined by the edge length in-
tensity L o > O of thetessellation, i.e. the mean edge length
per unit area, and by its directional measure « or directional
distribution ©#, see Nagel and Weiss (2005). Denote by
[H, $] the measurable space of lines in R? containing the
origin and let for B € 9B (the Borel o-field in R?), «(B) be
the edge length intensity of those edges of ® with direction
in B, whereby thedirection r (s) of aline segment s weun-
derstand the parallel liner (g) € H through the origin of the
line g containing the segment s. The mapping B — «(B)
defines the directional measure « of ® on [H, $], which
may be written as k = L a9 for a probability measure ¢
on the same space, the directional distribution of the tes-
sellation. The probability measure ¢+ can be interpreted as
distribution of the direction of the segment through the typ-
ical point of ®, when the tessellation is regarded under the
Palm distribution of ® with respect to the length measure
induced by the tessellation, see Stoyan et al. (1995) for de-
tails.

It is assumed from now on that L o > 0 and that © is not
concentrated on a single line in [H, $], a condition which
ensures the existence of a homogeneous random STIT tes-

sellation in the plane with edge length intensity L o and di-
rection distribution (measure) ¢ («), see Nagel and Weiss
(2005).

For fixed directional measure « define the rose of inter-
sections of « by

s.(h) ::/ |sinth, h)|x(dh), heH
H

and furthermore the constant ¢, by

= f / | sinch, Bl (dhye dh),
HJH

where by sin(h, h") we understand the sinus of the intersec-
tion angle between the two linesh and h'.

Recall from Nagel and Weiss (2005), that theintersection
of ® with an arbitrary line g in the plane induces a homoge-
neous random Poisson point process on that line with inten-
sity s.(r(g9)), wherer (g) € H isthedirection of g, i.e the
line parallel to g containing the origin O. Recall further that
the cells of arandom STIT tessellation are not face-to-face,
which means that the intersection of two neighbouring cells
that meet in acommon line segment is not necessarily aside
of both of the cells. This causes that there appear different
types of line segments for the tessellation @, see Fig. 3.

By a K-segment we mean a linear segment of the tes-
sellation which is bounded by nodes but with no further
node in its relative interior, whereas by an | -segment we
mean the maximal union of collinear and connected K-
segments that cannot be enlarged by another K -segment. A
J-segment issimply a side of acell, see Fig. 3. The tech-
nique of Palm distribution, for which we refer to Stoyan et
al. (1995), can now be used to define the typical K-, |-
and J-segment of ® and whenever the term “typical” ap-
pears, it refers to such a definition. We can also define the
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Fig. 2. Realizations of planar stationary STIT tessellations with different directional distributions (kindly provided by Joachim Ohser).

directional distribution or the distribution of the direction of
thetypical K, |- or J-segment to be the distribution of the
line in H paralel to the line through the typical K-, |- or
J-segment, respectively.

With these notions and notation we can now recall the
main result from Mecke (2009):

Thedirectional distribution of thetypical | -segment hasthe
density {isK (+) with respect to k and the joint distribution of
direction and length of thetypical | -segment hasthe density

2
&eSe(h)

with respect to the product measurex ® £, where ¢, stands
for the Lebesgue measure on the positive real half-axis.

se(h)
(h, X) > / t’e™dt, heH, x>0
0

For completeness and for later reference, let us recall the
concept of iteration of tessellations. Let & be a homo-
geneous random planar tessellation with cells Cy, k € N,
and let (®y)ken afamily of independent and identically dis-
tributed random tessellation, which is aso independent of
@ and for which each ®, has the same distribution as ®.
We define the iteration of & with the the sequence (®k)ken
to be the random tessellation

@ U [J(@cnCy.
keN

The resulting tessellation will be denoted by ® © ®. The
idea behind the definition is to associate to each cell Cy of
the frame tessellation ® acomponent tessellation &y and to
subdivide each cell Cy by its component tessellation @y, i.e.
to make local superpositions of the tessellations ® and @y
inside the cells Cy. In this sense, a homogeneous random
tessellation @ is called iteration stable, if 2(® © ®) has
the same distribution as ®, where 2(® © ®) stands for
the random tessellation ® © @ dilated by a factor 2. In

other words, @ isiteration stable if its distribution does not
change under rescaled iteration. It was shown in Nagel
and Weiss (2005) that for finite areas, the class of STIT
tessellations as constructed in the Introduction is exactly the
same as the class of iteration stable random tessellations.
The stochastic stability of STIT tessellations under rescaled
iteration will bethe crucial tool to derive abalance equation
for a certain distribution function related to the length and
directiona distribution of the typical K -segment below.

3. TheResult for the Typical K-Segment

We establish in this section asimilar formulafor thejoint
density of direction and length of the typical K-segment
as that one for the typical |-segment and we will use to
this end the technique developed in Mecke (2009). We fix
from now on a homogeneous random STIT tessellation in
the plane with edge length intensity L o > 0 and directional
measure «. From x we can derive a trandation invariant
measure on the space [G, ®] of al lines in the plane by
putting 1 := x ® £, where we have used the parametriza-
tion of alineg € G by itsdirectionr (g) € H—the factor
x—and its distance from the origin—the factor ¢, . We de-
fine now a new length measurel, in the plane by

l.(8):i=puf{ge G:gns+#@}=s(hl(s)

for any line segment s ¢ R?, whereh € Hisparalleltog
G,s C g, and| denotesthe usual Euclidean length. We will
cal 1,.(s) the k-length of the segment s. Observe, that the
intersection property of STIT tessellations mentioned above
can now be formulated as follows: The intersection of a
homogeneous random STIT tessellation having directional
measure « with a line g € G is a homogeneous random
point process on g with «-intensity 1, i.e. the mean number
of points per unit «-length equals 1.

Let @ be the previoudy fixed random STIT tessellation
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Fig. 3. Different types of segmentsin planar STIT tessellations.

and consider the Palm distribution
1
Q0) = / / Lio.17(D1e (6 — 2dzPy (dg)

of &, where C is aclosed subset of R2 and Py denotes the
distribution of the tessellation ® (cf. Stoyan et al., 1995).
Note that Q is the Pam distribution of & with respect to
the length measure induced by ®. Under the distribution
Q we have O € @ (O denotes again the origin), which
isto say O belongs with probability one to the tessellation
under Q. In this case, O can be interpreted as the typical
point of the tessellation. In this sense, the distribution Q
may be interpreted as the conditional distribution of the tes-
sellation under the condition that the origin is a point of its
edge-network. Let now K be the aimost surely uniquely
determined K -Segment of & under Q with O € K (or a-
ternatively the K -segment through the typical point of @).
The typical remaining K-Segment K, is defined as the
intersection of K with the closed upper half-plane (or alter-
natively as the intersection with the half-space bounded by
the line parallel through the x-axis that contains the typical
point). The «-length of K, will be denoted by I, (K;). For
B € $ and x € (0, co) we denote by

Gk (B,x) = Q(r(Ky) € B; 1(Kr) = x)

the probability that the direction of the typical remaining
K-segment K, isin B and its «-length exceeds x (when ®
isregarded under the Palm distribution Q). Let fors,t > 0
us think of the rescaled STIT tessellation %cb as a frame
tessellation, whose cells are subdivided during an iteration
process by tessellations having the same distribution as % .
The result is—because of the stochastic iteration stability
property of the tessellation ®—ahomogeneous random tes-
sellation with the same law as & ®.

We will regard now the typical remaining K-segment
during the iteration & ® 1®, where by ® we denote the
operation of iteration of tessellations. Note that in contrast
to the case of the typical remaining | -segment considered
in Mecke (2009), the typical remaining K -segment can be-
come shorter during the iteration process.

With probability > the typical point of the tessellation

. . . . 1 . .
with the same distribution as ;7 ® (again with respect to the

Palm distribution of S—_lH @ induced by the length measure of
this tessellation) lies on the frame £ and with probability
s On a tessellation nested inside the cells of the frame
tessellation. Thus, the distribution we are seeking for is
a mixture with weights s_j-t and st? of the distribution of
the typical remaining K-segment of the frame tessellation
and the distribution of the truncated typical remaining K-
segment of the nested tessellations, respectively.

Consider now the line g € G through K, and the two
cellsadjacent to K, . Inside thesetwo cellswe iterate tessel -
lations and each of them induces a homogeneous Poisson
point process on g with k-intensity 1. The superposition of
these two processes is again a homogeneous Poisson point
processon g . It has«-intensity 2, i.e. the k-length between
two pointson g; isexponentially distributed with parameter
2. Now, the typical remaining K -segment of s—_1H¢> iseither
the segment from O to the next point of this Poisson point
process or the typical truncated remaining K -segment of a
tessellation with the same distribution as %d), which was
nested inside the cells of the frame tessellation, see Fig. 4.
Taking into account the STIT property and the scaling fac-
tors s and t we arrive at the following crucia functional
equation for Gk, namely

Gk (B, (s+t)x)

s t
= —— Gk(B,sx)e 4+ — G (B, tx)e . (1
P K ( ) + o K ( ) D

For its solution we introduce the two functions
u(y) = yGk (B, y),
v(y) = u(y)e’

and the abbreviationsa := sx and b := tx. A simple
calculation shows that (1) is equivalent to

u@+b) = u@e ?® + u(b)e?
or—by multiplying with the factor e°—to
v(@a+b) = v@e™®+ v(b).

Interchanging the role of a and b we obtain v(b)e™@ +
v(@) = v(a+b) = v(@)e ® + v(b), whence
v(a) v(b)
ea—-1 eb-1
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Fig. 4. The segment K, under the operation of iteration.

and we see that the expression v(a)/(e™@ — 1) does not
depend on a (the same of course for b) and must therefore
be a constant, which can depend on B. From the definition
of Gk it follows immediately (let x tend to Q) that this
constant must be equal to ¥ (B), the probability that the
direction of K, isin B. From this fact we deduce that the
unique solution of the functional equation (1) is given by

l1-e*
X

Gk (B, x) =v(B) e,

where ¢ is the directional distribution of ®. Here, unique-
nessis rather easy to show by contradiction and can aso be
deduced from Mecke et al. (2007, lemma 6). Thus, we ob-
tain asapartia result: The direction and the «-length of the
typical remaining K -segment of the STIT tessellation ¢ are
independent. Moreover, the tail function of the «-length of
K; isgiven by

l1-e*
X > e

The distribution of the direction of K, coincides with .
Replacing the «-length by the usual Euclidean length, we
obtain

n 1_e—3c(h)x
Gk (B, x =/ _—
KB = | hx

with Gk (B, x) = Q(r (K;) € B; I(K;) > x), B € $ and
X > 0. From the last formula it is not hard to see that the
joint distribution of direction and Euclidean length of the
typical remaining K -segment has the density

e 3™ (dh)

2
(h, X) — s.(h) / te S (Wixqy 2)
1

with respect to the product measure ¥ ® ¢... Inthe calcula-
tion we have used that fact that

2
1
/ te Udt = F(l +u—(1+2ue e
1

for some real parameter u.
Denote now by Dk be the joint distribution of direction
and length of the typical K-segment and by D} the same

distribution for the typica remaining K-segment K,. It
follows from the general theory of Palm distributions that
for any measurable function f : H x (0, oo) — [0, co) we
have

/ f (h, x)dDj (h, x)

o
T 2La

X

J[ foydncn. @
see Stoyan et al. (1995) for the technical framework and
Mecke (2009) for the related | -segment result, as well as
thereferences given therein. Notein particular that the pref-
actor of the right-hand side of (3) equals the mean length of
the typical K-segment of ®, which is known from Nagel
and Weiss (2006) (for comparison note that in Nagel and
Weiss (2006) the constant ¢ = L ;%¢, was used instead of
our ¢,). Plugging the density (2) into (3) and changing the
order of integration, we get

3¢
2L

oo 2
:// f(h,x)sk(h)/ te SMXdtdx (dh)
0 1
and since
2 2
[s,((h)/ te“h)txdt} =s§(h)/ t2e S MtXgt
1 1

weinfer that Dx has density

// f (h, y)dyd D (h, x)
0

d
dx

2L A
3¢
with respect to 9 ® £, . Taking now into account k = L A%,

we arrive at the analogue to the main result from Mecke
(2009):

(X, h) —

2
s?(h) / t2e~ S (Mtxgt
1

The joint distribution of direction and Euclidean length of
the typical K-segment is a probability measure on H x
(0, o0) with density

2 2
(x, h) = —s?(h) / t2es(Wixgt
3§K 1
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with respect to the product measure ¥ ® ... Moreover, the
directional distribution of the typical K-segment coincides
with that of the typical | -segment.

In the particular isotropic case, where k is L o times the
uniform distribution on [H, 9], direction and length of the
typical K-segment are independent and we get back the
formulafrom Mecke et al. (2007), namely

4L [? 2
X > —/ ule =LA dy
3 1

7.[2

~ 3L3x3

4 8
- (1+ —Lax + —zLixz) e‘fLAX> e b,
b/ b/

2 2 5,
(1+ ;LAx—i—PLAx

In the case, where « is concentrated with equal weight to
the two coordinate directions, we obtain for the density

X 8+ 4Lax + LAx?

H —_—
3L3x3 (
—(8+8Lax + 4K,§x2)e’§LA) g 3la

for the typical K-segment in one of the two possible direc-
tions.

4. TheResult for the Typical J-Segment

In the case of the typical J-segment of the tessellation,
the situation is much simpler. First, from lemma4 in Nagel
and Weiss (2006) we infer that the directiona distribution
of the typical J-segment coincides with that of the typical
K -segment and hence with that of the typical |-segment.
Moreover, from the fact that STIT tessellations have Pois-
son typical cells, see Nagel and Weiss (2005), we con-
clude in connection with example 1.5 in Baumstark and
Last (2009) that

The joint distribution of direction and Euclidean length of
the typical J-segment is a probability measure on H x
(0, 00) with density

st(h)

efs( (h)X

(h, X) ~

K

with respect to the product measure x ® £, which is to
say that the length distribution of the typical J-segment

having a given direction h is an exponential distribution
with parameter s, (h).

Again, in the isotropic case we get back the known for-
mula from Mecke et al. (2007) and for the case, where «
is concentrated with equal weight on the two coordinate di-
rections, we have the density

1 X
X > —LaeztA
[d 2 A

for both possible directions.

5. Discussion

For the planar case, the picture concerning the length
distribution of the different types of line segments appearing
in STIT tessellations is now complete. We have in the
isotropic case the special formulasfrom Mecke et al. (2007)
and in the general anisotropic case that from Mecke (2009)
and ours obtained above. These distributions yield a very
precise description of the geometry of segments in planar
STIT tessellations in the general anisotropic regime.
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