
Letter Forma, 27, 19–23, 2012

Three-Dimensional Specific Patterns Based on the Keller-Segel Model
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Aggregation patterns in the volume-filling Keller-Segel model are studied numerically. Three-dimensional
specific patterns, such as P-surface, perforated lamellar, are appeared. These patterns never exist in lower
dimensions. The relative stability analysis of these patterns is also performed numerically on the basis of the
derived free energy and of the robustness against perturbation.
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1. Introduction
A large number of insects and animals rely on their acute

senses of smell for conveying information between mem-
bers of the species. These chemotaxic behavior (e.g. the
movement following the gradient of chemicals) were math-
ematically modeled by Keller and Segel (1970), which is
now called the Keller-Segel (KS) model. For four decades,
KS models have been studied numerically and analytically
(Murray, 1993; Horstmann, 2003). One question concerns
the form of the blow-up and the problem of continuation
after blow-up (Nagai, 1995). Another aspect relates to the
variety of functional forms for the chemotactic sensitivity
(Hillen and Painter, 2001; Horstmann, 2003). However, al-
most all of the previous investigations are restricted to one
or two dimensions, where only stripes and spots are con-
cerned.

In this letter, we study aggregation patterns in a three-
dimensional (3D) KS model. Hillen and Painter (2009)
demonstrated transient spherical patterns, and they car-
ried out numerical stability analysis in three dimensions.
However, apart from simple extensions of two-dimensional
cases such as spherical, cylinders, and lamellar patterns,
there should be essential new patterns in three dimensions.

2. Volume-Filling KS Model
The model which we shall explore is the following

the volume-filling Keller-Segel model (Hillen and Painter,
2001)

∂u

∂t
= ∇ · [Du∇u − βu (1 − u) ∇c] , (1)

∂c

∂t
= Dc∇2c + λu − k2c, (2)

Copyright c© Society for Science on Form, Japan.

where β, k, Du , and Dc are all positive. u(�r , t) and c(�r , t)
describe the densities of bacteria and the secreted chemi-
cal, respectively. The density(population)-sensing term in
which the chemotactic response is switched off at high cell
densities by parabolic function. This system is now called
the volume-filling KS model (Hillen and Painter, 2001).
The global existence of its asymptotic solutions was shown
by Hillen and Painter (2001). The volume-filling idea was
applied to biological phenomena. Dolak and Hillen (2003)
constructed a mathematical model for the pattern formation
of Dictyostelium discoideum and Salmonellar typhimurium.

Equations (1) and (2) have only one time-independent
uniform solution given by (�u, �c) = (u0, λ0u0/k2). The
linear stability analysis of this solution can be readily car-
ried out. We introduce the small deviation from the solu-
tion (δu, δc) ∼ exp(γ t + i �q · �r). Substituting (u, c) =
(ū + δu, c̄ + δc) into Eqs. (1) and (2), we obtain the eigen-
value γ as a function of the wavenumer q. It is found that
the uniform solution becomes unstable, i.e. γ is positive,
when {Duk2 − λβū(1 − ū)}/Du Dc > 0 is satisfied.

We have carried out numerical simulations for coupled
set of Eqs. (1) and (2) in three dimensions. The space is
divided into N 3 cubic cells that the length of an edge is
δx . In this situation, the size of space is given by L =
δx · N . The periodic boundary conditions are imposed at
boundaries of cubes. The forward Euler integration method
augmented by upwind scheme to calculate the chemotactic
components is used with time step δt = 0.0005.

Numerical calculation of chemotaxis systems requires
close attention when the validity of numerical simulations
is considered (Hillen and Painter, 2001). Simulations have
been checked with a variety of time discretizations, and ver-
ified that the obtained patterns shown below are almost in-
dependent of the time step. If the system size is large, it
takes too much time to obtain asymptotic patterns. There-
fore, we selected N = 32. Moreover, the forward Euler
integration method with the center difference finite scheme
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Fig. 1. (a) Five stationary solutions for Du = 1.0, Dc = 50.0, β = 10.0, k2 = 50.0, and λ = 40.0. The explanations of SP, CY, PL, P and LM are
provided in the text. (b) Schematically showing the obtained patterns SP, CY, PL, P and LM.

Fig. 2. Time evolution of P-surface for u0 = 0.45 and L = δx N with δx = 0.70 and N = 32. The other parameters are same as in Fig. 1. In order to
make the initial randomness visible, the domain in (a) represents the isosurface of u = 0.45060, whereas those in (b)–(d) represent the isosurfaces of
u = 0.45.

to discretize the spatial derivatives was also applied.
We start with the uniform solution (u, c) = (u0, λu0/k2)

in an unstable condition with a small superimposed random
perturbation. As the global existence of solution in Eqs. (1)
and (2) was shown analytically (Hillen and Painter, 2001),
the distributions continuously evolve without blow up of
distributions, leading to the gradual aggregation of cell den-
sity of u.

The asymptotic stationary solutions obtained numerically
are summarized in Fig. 1, where a lot of random initial
conditions and δx were given for a given value of u0. It
should be noted that this set of simulations is very system-
atic and detailed. For example, we performed simulations
for u0 = 0.30 starting from 5 different random initial con-
ditions and for 200 = 5 × 40 values of L = δx N . This
implies that there are independent runs for only one value
of u0.

It is found that three or four different patterns are ob-
tained for in Fig. 1(a). The abbreviations LM, CY, and SP
mean lamellar, cylinder, and sphere, respectively. The re-
maining P and PL are explained below.

The formation of P for u0 = 0.45 is displayed in Fig.
2. Figures 3(a) and (b) shows the obtained patterns trans-
lated the mass of center of the patter to the center of cubic,
and viewed in different two directions. Figure 3(c) shows
the stationary profiles of u and c measured along the red
arrow shown in Figs. 3(a) and (b). It should be noted that

the distributions have sharp interfaces separating between
two domains. This pattern is composed of surfaces made
of six cylinders as shown in Figs. 2(d) and 3. This pattern
is called Schwarz’ primitive surface (P-surface), which was
first described by Hermann A. Schwarz (1890). The interest
in this surface in those days was due to the experimental ob-
servation that bi-layers of lipids or surfactants in water so-
lutions form at suitable thermodynamic conditions ordered
bi-continuous structures (Luzzati and Spegt, 1867). In the
case of u0 = 0.55, the distributions are upside down. The
P-surface is known as one of the minimal surfaces with the
average curvature equal to zero everywhere. This pattern is
a new one found in the full 3D computation in nonequilib-
rium systems.

The asymptotic pattern PL for u0 = 0.35 is shown in
Fig. 4. This pattern is composed of surfaces intersected
with four cylinders. When PL connected periodically, the
patterns are composed by the lamellar with holes. There-
fore, we called PL as perforated lamellae. The inside of
perforated lamellae has high density, whereas the remain-
ing space has low density. In the case of u0 = 0.65, the
distributions are upside down.

3. Stability Analysis of Obtained Patterns
As mentioned above, some patterns can be obtained for

same u0. One of the basic problems is to determine the
most stable structure. However, this is highly nontrivial be-
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Fig. 3. (a), (b) Isosurface of P surface obtained by Eqs. (1) and (2) for u0 = 0.45 from different view directions. (c) Spatial variations of concentrations
u (solid line) and c (dotted line) along the red arrow in (a) and (b).

Fig. 4. Time evolution of perforated lamellae for u0 = 0.35, and L = δx N with δx = 0.63 and N = 0.32. The other parameters are same as in Fig.
1. In order to make the initial randomness visible, the domains in (a) represent the isosurface of u = 0.35075, whereas those in (b)–(d) represent the
isosurface of u = 0.35.

cause Eqs. (1) and (2) are nonvariational with no Lyapunov
functional. Here, we employ two methods to examine the
stability as follows.

One of the methods is to derive approximately a Lya-
punov functional for Eqs. (1) and (2) (Chavanis, 2003). In
the limit Dc → +∞, one may set ∂c/∂t = 0 in Eq. (2), so
that Eq. (1) can be viewed as a nonlinear mean-field Fokker-
Planck equation associated with a Langevin dynamics of the
form

d�r
dt

= (1 − u)∇c +
√

2Du �R(t), (3)

where �R(t) is white noise. Equation (3) describes a point
organism �r performing a random walk biased in the direc-
tion of a drift velocity proportional to the local density of u
and to the local gradient of c. In this situation, the physical
temperature T = β Du defined by the Einstein relation is
fixed instead of the energy since Du ∝ T (Chavanis, 2003).

Here, we can consider the Helmholz free energy as a
Lyapunov functional,

F = −1

2

∫
ucd�r + T

∫
{u ln u + (1 − u) ln(1 − u)} d�r ,

(4)

where the first term represents the self-interaction and the
second term expresses the entropy. Chavanis (2003) used

the entropy of Felmi-Dirac type, because the density always
remains bounded by parabolic terms in Eq. (1) as shown
in Fig. 3(c). In Chavanis (2003), it was shown Ḟ ≤ 0,
which is similar to the proper version of the H-theorem of
the canonical ensemble.

We evaluate the Helmholz free energy of SP, CY, PL, P,
LM and uniform distributions by substituting the asymp-
totic values of u and c directly into Eq. (4). These asymp-
totic values were prepared as follows.

For each parameter u0 and λ, the distribution of u is es-
timated as u(�r) = 1/(1 + eB�r+A) corresponding to Ḟ = 0
(Chavanis, 2003). For example, in the case of the SP, nu-
merical calculations are started from the distributions such
as

u(�r) = 1

1 + exp
[

B
√

(x − x0)
2 + (y − y0)

2 + (z − z0)
2
] ,

(5)

where (x0, y0, z0) is its center. B is the slope of the interface
between cell and non-cell areas. The distribution of c(�r)

can be expressed numerically by the solution of Helmholz
equation using Bessel functions. Carrying out the numerical
simulation, in which these distributions are employed as
initial conditions, for a sufficient long time such that the
distributions would no longer change, we can obtain the
equilibrium distributions. Introducing the each pattern (SP,
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Fig. 5. Phase diagram in the u0 − λ plane for Du = 1.0, Dc = 50.0,
β = 10.0 and k2 = 50.0. The most stable regions for LM, CY, and
SP patterns obtained by the stability analysis based on the derived free
energy are indicated by �, •, and ◦, respectively. × represents the
region where uniform patters are the most stable. The dotted curve
represents the condition for the linear stability analysis. The arrow
indicates the parameter area where the stability analysis is performed
on the basis of the robustness against perturbation.

Table 1. Maximum perturbation strength beyond which the original
structure does not survive at u0 = 0.30.

Patterns Strength

Cylinder (CY) 1.15

Lamellar (LM) 1.05

Sphere (SP) 1.03

Perforated Lamellar (PL) 0.85

CY, PL, P, LM, and uniform patterns) into Eq. (4), we
compare the values of the free energy for each pattern.
We obtain the smallest value of the free energy among SP,
CY, PL, P, LM patterns or uniform distributions. Then,
we determine the patterns with smallest values as the most
stable ones.

On repeating the numerical simulations for different val-
ues of δx we found that F is a monotonic decreasing func-
tion with respect to the system size δx for each pattern.
Therefore, we compared the values of the free energy for
each pattern for the system size L = 22.4. Then, we ob-
tained the smallest value of the Lyapunov functional among
SP, CY, LM, and PL patterns or uniform distributions. By
repeating the numerical simulations for each value of u0 and
λ we obtained the result shown in Fig. 5 for Du = 1.0,
Dc = 50.0, β = 10.0, k2 = 50.0. We found that the ob-
tained patterns shown in Fig. 1 are similar to the patterns
with the smallest values of the free energy shown in Fig. 5,
and PL and P patterns are ones with the smallest values of
the free energy in no area.

The other is to explore numerically the volume of the
basin of each stable pattern. To this end, we have carried
out the following simulations. We provide the patterns of
SP, CY, PL, P, and LM for a given value of u0 as initial con-

ditions and start numerical simulations for Eqs. (1) and (2)
with a certain amplitude of random force and continue nu-
merical simulations up to 4 × 105 time steps. Then, we turn
off the random forces and continue numerical simulations
up to the same steps as the above and see whether the initial
structure appears or not. In this way, we can obtain numer-
ically the upper limit of the noise amplitude below which
the initial structure recovers. Table 1 shows the result for
u0 = 0.30 that CY has the widest basin of attractor in the
functional space. If the amplitude of noise is larger than
1.15, CY is broken and one of the other structures LM, SP
or PL appears asymptotically.

Similarly, we have carried out numerical simulation
among 0.15 ≤ u0 ≤ 0.50 for Du = 1.0, Dc = 50.0 and
system size L = 22.4 in Eqs. (1) and (2), which are same
conditions indicated by the arrow in Fig. 5. We obtained the
identical information about the stability, that is, SP has the
widest basin of attractor at u0 = 0.15, CY has widest basin
of attractor at u0 = 0.20 ∼ 0.35 and LM has the widest has
the widest basin of attractor at u0 = 0.40 ∼ 0.50, which are
identical with Fig. 5.

4. Discussion
We have examined 3D aggregation patterns in the

volume-filling KS model. Apart from lamellar, cylinder,
and sphere patterns which are simple generalization of two-
dimensional patterns, we have obtained new patterns called
P-surfaces and perforated lamellar patterns. These patterns
are characteristic in three dimensions.

When considering the 3D self-organized patterns in the
related systems, for example 3D phase separation and pat-
tern formation by Cahn-Hillard equation, many researchers
studied the numerical algorism, physical index and so on
(Badalassi et al., 2003). They found that a surface domain
with some curvatures would be the solutions in addition to
lamellar, cylinder and sphere. In this paper, we have clearly
shown that the ones of such surface are P surfaces and per-
forated lamellar in the 3D Kellar-Segel models.

Finally, Haessler et al. (2011) have already addressed the
3D characteristic problem relating to chemotactic move-
ment generated ligand gradients, which provides a general
example of quantitative chemotaxis defined chemokine gra-
dients in three dimensions. The 3D aggregation patterns in
this paper will serve for considering experimental set up for
the 3D chemotactic behaviors and their 3D analysis.
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