Original Paper

Modelling Shape Languages with Type Constraint Systems

Dietrich Bollmann

Department of Architecture, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
E-mail address: dietrich@formgames.org

(Received August 9, 2011; Accepted November 14, 2011)

Shape grammars are computational production systems used in various fields such as painting, sculpture and
architecture for generating geometric shapes from a set of abstract rules. While similar to formal grammars as
used in linguistics and computer science, they differ in using shapes instead of discrete symbols as representation.
This makes them more intuitive and richer in possible interpretations than their symbolic counterparts but also
more difficult to implement as computer programs.

Using an example, this paper shows how a shape language can be modelled with a Type Constraint System
(TCS), a formalism similar to the grammar formalism underlying the Head-Driven Phrase Structure Grammar
(HPSG)*!, widely used in computational linguistics for the modelling of natural languages. The result is a two-
level approach to the generation of shapes: an initial abstract symbolic representation is generated, from which

Forma, 27, 25-36, 2012

the actual shapes are subsequently derived.

While shape grammars and type constraint systems are not directly translatable into each other, the approach

described in this paper can be implemented efficiently,

making it easy to develop new shape languages and

allowing for a wide range of interesting approaches to the generation of shapes.
Key words: Generative Design, Formal Grammars, Shape Grammars, Type Constraint Systems

1. Introduction
The most straightforward way to demonstrate the effec-
tiveness of a problem solving approach is to apply it to a rel-
evant example. In this paper we show, that Type Constraint
Systems (TCS; Carpenter, 1992) are a valuable framework
for the generative description of shape, by applying them to
the shape language generated by the ‘Urform’ shape gram-
mar, formulated by Stiny and Gips in 1971. We demon-
strate, how the same language can be generated, by first
deducing an abstract description of a shape using a TCS,
and then interpreting this description to obtain the actual
two-dimensional shape. The differences between the shape
grammar approach and the type constraint system approach
are discussed, and some new ideas for the generation of
shapes are introduced.

This paper is written in a tutorial style and technical
details, not necessary for the understanding of the general
idea, are omitted whenever possible.

2. George Stiny and James Gips’ Urform Grammar
2.1 The Urform language

Shape grammars were introduced about forty years ago
by George Stiny and James Gips in their seminal pa-
per “Shape Grammars and the Generative Specification of
Painting and Sculpture” (Stiny and Gips, 1971) and have
since been very influential in fields concerned with gener-
ative approaches to design. To illustrate how shape gram-
mars work, Stiny and Gips introduced a simple example,

*1See Pollard and Sag, 1987, 1994.

Copyright (© Society for Science on Form, Japan.

25

called Urform grammar, which generates shapes such as
the following:

(1

Urform I, 11, and 111 (Stiny, 1970. Acrylic
on canvas, each canvas 30 ins. x 57 ins.)"?

The generative specification of the Urform grammar con-
sists of two components: a shape specification or shape
grammar for the generation of the shape geometry, and
a material specification for the selection of materials and
colours in the final representation. The images in (1) show
the first three elements of the language generated by the
system after applying the material specification. The shape
geometry of these images as defined by the shape grammar
alone, i.e. the shapes before the application of the material
specification, looks as follows:

(2) The Language defined by the Urform grammar

The set notation is used to indicate that only the first three
elements out of a countably infinite series of shapes gener-
ated by the grammar are shown.

*2The three images of the paintings Urform I, II, and III are from Stiny and
Gips’ original paper (Stiny and Gips, 1971).

26 D. Bollmann

2.2 The Urform grammar

The Urform shape grammar, responsible for the genera-
tion of the shapes shown in the last paragraph, is defined as
follows:

(3) The Urform Grammar SG; = (Vy,Vy, R, 1)
.
=]
@ — L) (),
R = \i - H;‘i? (r2),
LAt)
;o

e Vr describes the set of basic graphic elements from
which all shapes are assembled. In the case of the
present grammar, all shapes are generated from one
simple element: a line segment.

e V) is a set of graphic elements called markers which
are only used during the generation of the shapes and
are then deleted from the final images. The Urform
grammar makes use of only one marker, represented
by the ginkgo leaf <.

e R isthe set of rules used for generating the shapes. The
shapes on the left and right sides of a rule are made
of elements chosen from the sets V; and V). During
the generation of a shape, the left side of the rule is
matched against the current state of the shape and then
the matched part of the pattern is substituted with the
right side of the rule. Geometric transformations like
scaling, or rotations necessary to match the left side
against the shape, have to be applied to both sides of
the rule in the same way.

The Urform grammar has three rules: Starting from
the initial shape 7, the first two rules generate interme-
diate states by transforming the basic graphic elements
and the position and state of the marker; the last rule
is responsible for deleting the marker from an inter-
mediate shape and thus generating the markerless final
shape.

e [is the initial shape from which all other shapes of the
language have to be generated.

The language defined by a shape grammar is defined as
the set of all shapes without markers which can be generated
by successive application of the rules to the initial shape.

For a more detailed definition of shape grammars refer to
the original paper by Stiny and Gips (1971).

2.3 The generation of shapes

The easiest way to understand, how the different parts
of a shape grammar interact to generate a shape, is to look
at the generation of some examples. This paragraph there-
fore explains how the first three elements of the Urform lan-

guage are generated.

Urform I The shape generation starts from the initial
shape I, composed of line elements from V7 and the Vy,
marker ~:

4) Step0

initial shape

.

By iteratively matching rules to the current state of the
shape and substituting the left side of the matching rule
with its right side, a succession of shapes can be generated.
When the marker has been eliminated due to the application
of the last rule, a final shape is obtained, which is an element
of the language generated by the shape grammar.

Starting from the initial shape we can immediately apply
r3 and obtain the first element of the shape language defined
by SG:

(5) The simplest shape generated by SG

Step 1 I —

@H_l

(rule 3)

L

Urform II If we apply r; instead of 3 to the initial shape,
we obtain a different succession of shapes. The second
element of this series is similar to the initial shape but with
the marker scaled down and pointing to the bottom:

(6) Step 1

(P = e

(rule 1)

L

The only rule which can be applied to this shape is r, which
has to be scaled first and mirrored in order to match:

(7) Step 2

e J

(rule 2)

L
LT

The same rule can be applied again in step 3,

(8) Step 3

ToE

(rule 2)

@

Modelling Shape Languages with Type Constraint Systems 27

which finally allows us to generate the second shape, de-
fined by SG, by applying r; once again:

(9) The second-simplest shape generated by SG
Step 4
P |

(rule 3)

Urform III Following the same logic and applying r;
instead of r3 once again in step 4, we obtain the third shape
of the Urform language:

(10) The third-simplest shape generated by SG
Step 4

P - e

(rule 1)

Step 5

"B

(rule 2)

Step 17

\iﬂﬂi? '=]

(rule 2)

—
Ut

[
il

Step 18

"B

(rule 2)

Step 19

P I

(rule 3)

=]
=]
T—F

.—.
ntn
=

Urform IV, ... Continuing this way all shapes defined by
the Urform language can be enumerated.

Finally, by applying the material specification (explained
in full in Stiny and Gips (19717?), the final coloured shapes
shown in (1) can be generated.

*3See the original paper by Stiny and Gips (1971) for a detailed explana-
tion of the material specification and its application to the output of the
shape grammar.

3. Modelling the Urform Grammar as Type Con-
straint System
3.1 Type constraint systems
The implementation of Type Constraint Systems (TCS)
as used in this paper is characterised by four components:

e A Type Hierarchy (TH) over a set of Types

e Type Constraints (TCs) formulated as Typed Feature
Structures

e Value Constraints

e Resolution

Value constraints are an extension of TCSs added for the
current research. They allow the calculation of numerical
shape attributes like size and location.

These four components will be discussed further during
the explanation of the implementation of the Urform gram-
mar as a TCS.

A formal definition of TCSs can be found, together with a
more detailed explanation and overview of their theory and
application, in Carpenter (1992).

3.2 From shape grammars to type constraint systems

Continuous shapes versus discrete symbolic representa-
tions In the case of shape grammars, the initial shape, the
patterns used on the left and right side of the rules, the in-
termediate states produced by the successive application of
rules and the final results of the generation process are all
of the same nature: they are continuous geometric shapes,
images or three-dimensional objects. The shape grammar
formalism therefore is based on shape embedding, a pro-
cess similar to geometric pattern matching; because of the
continuous nature of the representations, the shape gram-
mar formalism allows for complex ways of matching.

On the other hand, the approach introduced in this pa-
per (the implementation of shape languages using TCSs)
uses recursive combinatorial structures over a set of dis-
crete symbols as representation. The matching procedure
is based on unification which, because it is a discrete sym-
bolic procedure, is in some respects more restricted than its
continuous counterpart used in shape grammars.” Never-
theless, its abstract symbolic nature allows for arbitrary ge-
ometric interpretations as well as for unrestricted symbolic
processing.

Due to the different nature of representations and match-
ing procedures used, shape grammars and the approach in-
troduced in this section are fundamentally different. How-
ever, seen from a more abstract perspective, both are based
on the idea of using production systems for the generation
of shape. As a result, in many cases there are more similar-
ities than differences between them.

Even if the result might differ in elegance, every grammar
that can be written in one of the two formalisms can also be
written in the other. At least from a theoretical point of
view, the two approaches are equivalent: shape grammars
as well as TCSs are Turing complete and every calculation
that can be done by a computer could also be implemented,
at least in theory, as a shape grammar or as a TCS.

*4For a detailed discussion of the differences between shapes and symbolic
representations and the consequences regarding the expressiveness of the
grammars see Stiny (2006).

28 D. Bollmann

A two-level approach based on an abstract representa-
tion Different representations of shapes make it necessary
to rely on different modelling mechanisms. The use of a dis-
crete abstract representation for the formulation of rules and
the intermediate states used during the generation process
results in a two-level approach to the generation of shape:

1) Level 1: Generation of the symbolic structure repre-
senting the shapes in an abstract way™;

2) Level 2: Translation of the symbolic structure into the
actual geometric shape.

Due to the different representations and organisation of
shape grammars and TCSs, it is difficult to specify a generic
method for the translation from one into another. However,
in many cases it is not difficult to formalise a shape lan-
guage with a TCS when combined with an adequate visual
interpretation of the generated symbolic structures.

The following example, demonstrating how the Urform
grammar can be implemented as a TCS, will give a better
idea of the differences and similarities of both approaches
and how they can be translated into each other.

3.2.1 Describing the Urform images as sequence of

types

The vocabulary of the Urform language The images
of the Urform language (1) show that all forms can be
assembled from one basic element, an L-shape:

(11) L-shape

The graphic elements are named with symbols called types
in the context of TCSs. Using the type right to represent this
shape and the type /left for its mirror image, all primitive
graphic elements needed to assemble the urform images
have been defined.

Shape composition Only two methods are necessary to
combine the elements of the Urform vocabulary into com-
plex Urform images:

1) Shapes of the same size are aligned one after the other
similar to dominos. The sequence
right, left, right, right, left, right, right, right,
for example, looks as follows:

*5The abstract symbolic structure brings to mind the deep structure intro-
duced by Chomsky for the representation of the underlying structure of
sentences in natural language (Chomsky, 1957). There have been different
motivations for introducing the deep structure in his model of grammar
which mostly have no equivalent in the approach introduced in this paper.
The most important similarity between both structures is a purely technical
one: in both cases the use of an abstract representation makes it easier to
apply the formalism to the modelled domain.

*6Similar to the dots stamped on dominos, small grey arrows are used to
indicate the location and direction in which the shapes are arranged.

(12)

2) The direction is inverted while the shapes are scaled
to one third of their previous size. This operation is
represented by the type turn. The sequence

right, turn, right,
for example, looks as shown in the following image:

13)

Both methods of shape combination can be used together,
as the following random sequence over the types right, left
and turn shows:

(14)

By adding the types start and stop to mark the beginning
and end of the sequence, all Urform images can be de-
scribed as sequences over the set of types {start, left, right,
turn, stop}.

Organising the types as a type hierarchy A set of types
can be understood as a terminology for the description of a
certain domain. Similar to the concepts of natural language,
types can be ordered depending on the generality of their
meaning via an is-a relation: the primitive shapes /eft and
right, for example, can be grouped together under a more
general type called primitive. On the other hand, the types
start, turn and stop, which are used to limit levels of aligned
primitive forms of the same size, can be made subtypes
of a type called /imit. Finally, primitive and limit can be
grouped under the type foken, thus subsuming all types used
for sequences representing Urform images. Graphically
this hierarchy of types can be represented in the following
diagram:

(15) The token type hierarchy
token

primitive limit

left right start turn stop

Modelling Shape Languages with Type Constraint Systems 29

Often a textual representation in the form of a list of types
with their immediate subtypes, as shown in the following
figure, is more convenient:

(16) token — primitive | limit
primitive — left | right
limit — start | turn | stop

3.2.2 Unification of types Types can be consistent or
inconsistent. The types left and right, for example, as given
in the token hierarchy (15), can never be valid for the same
graphic element and therefore are inconsistent; however,
the types primitive and left are both valid for the L-shape
labelled as left and therefore are consistent relative to the
token hierarchy.

In the current paper, type hierarchies are defined as
trees”’. Two types therefore can be consistent only if they
are identical or if one of them is a subtype of the other.

In an extensional semantic, the meaning of a type is de-
fined by the set of entities described by it: its extension.
Therefore, an entity which is part of the extension of a cer-
tain type is also part of the extensions of all its supertypes.
Thus the extension of the conjunction of two consistent
types is the same as the extension of the more specific of
the two. In the case above, for example, stating that some
entity is described by the type left, as well as by the type
primitive, provides no more information than simply stat-
ing that it is described by the more specific type left alone.

The partial function that selects the more specific of two
consistent types is called unification.

3.2.3 Typed feature structures and the representa-
tion of sequences of types We have already seen how
Urform images can be described as sequences of types of
the foken hierarchy. These sequences can be represented as
directed, rooted and annotated graphs: see (17).

(17) Representing an Urform image

by a sequence of types
start right left stop
L (—>
O NEXT O NEXT O NEXT O

The vertex labelled with the type start is the root of the
graph. NEXT is used to label edges connecting the elements
of the token sequence.

Graphs like (17) can also be notated in matrix form:

(18) Representing an Urform image

by a sequence of types (matrix notation)

start
right

|:left]
EXT
NEXT stop

Both notations can be used to represent the same kind of
structures, referred to as typed feature structures (TFS) from

NEXT

*TA more powerful way to define type hierarchies allowing for multiple
inheritance is to define them as lattices. See Chapter 2 “Types and Inheri-
tance” in Carpenter (1992).

this point on. As the matrix notation is generally easier to
read, it will be used from here onwards.

Typed feature structures as representations of partial in-
formation Similar to the way types can be seen as atomic
representations of information, TFS can be seen as com-
plex representations of information. The information can
be partial as in the following example:

(19) start

NEXT |:r1ghl :|

NEXT token

The value token at the path™® NEXT|NEXT can be instanti-
ated by any token sequence. Therefore structure (19) can be
seen as a partial description of a token sequence that con-
sists of at least three elements and starts with the types start
and right.

The following sequence similarly describes a four-token
sequence of which only the last two—Ieft and stop—are
known:

(20) token

token

NEXT | o [left }

NEXT stop

Consistent and inconsistent typed feature structures
As types, TFS can be consistent or inconsistent. The struc-
tures (19) and (20), for example, describe one sequence
starting with the types start and right, and another of four
types ending with left and stop. Since a sequence exists
which is described by them both (start, right, left, stop), the
two structures are consistent.

On the other hand, a structure with type left as the second
element and one with type right as the second element
contradict each other and therefore are inconsistent:

21) token token
|:NEXT left :| |:NEXT right }

3.2.4 Unification of typed feature structures Sim-
ilar to consistent types, consistent typed feature structures
can be unified. The structures (19) and (20), for example,
describing a sequence starting with start and right and a se-
quence of four types ending on /eft and stop can be unified
to form a structure describing the sequence (start, right, left,
stop):

(22) Unification of typed feature structures

start
right
NEXT
NEXT token

start
_ right
| NEXT [lefr }
NEXT
NEXT stop

*8 Paths are used when talking about substructures in a typed feature struc-
ture: The value of the empty path € is the structure itself; the value of path
A is the same as the value of the feature A; the value of path A|B is the
value of feature B in the structure which is the value of A and so on.

token

token
NEXT |:left i|
NEXT
NEXT stop

30 D. Bollmann

The symbol LI in figure (22) represents the unification func-
tion.

3.2.5 The fractal nature of the Urform language If
we analyse the first three images of the Urform language
into the corresponding token sequences, we get the follow-
ing result:

(23) a.
right, left.
b.
right, left, turn,
left, right, right, left, right, right, left,
right, left, left, right, left, left, right.
c.

Using [for left, r for right and
t for turn:

rlt

lrrlrrl rllrllr t

rllrlly lrerlerl Ievlerl vllrlly Irelrvl Irelerl vlivily
lrrlrrl vllvily vilelly erlevl vlivlly vllellr rrlrrl.

How is this regular sequence of left and right curves en-
forced by the shape grammar? The initial sequence of a
right and left shape underlying the first and simplest shape
of the Urform language, is determined by the initial shape /
as given in the definition of the Urform shape grammar SG

in (3):

(24)
I

First the marker is turned and downscaled by applying the
first shape rule (71) to the initial form. This is represented in
the token sequence by the type furn and starts a new ‘level’
of smaller overlaid L-shapes.

(25) Step 1

(P — e

(rule 1)

N e

I

After step 1, the second rule (r;) can be applied twice.
These applications correspond to the matching of the al-
ready existing sequence (right, left), representing the last
level of shapes, in reverse order. First the form we labelled
as left is matched, resulting in the original form being over-
layed with downscaled shapes in the order left, right, right,
left, right, right, left:

(26) Step 2 }

B

(rule 2)

Then the form labelled as right is matched, resulting in the
shape labelled as right being overlayed by a sequence of
shapes in the order right, left, left, right, left, left, right:

@0 Step 3 ﬁ?}

MG
(rule 2)

All elements of the Urform language are generated by re-
cursively repeating this process of traversing the shapes of
the last level in inverse order and overlaying them with a
sequence of downscaled shapes. The result are the fractal
shapes of the Urform language.

We can summarise the mechanism constraining the se-
quence of primitive shapes using the following two rules:

(28) a. left —> left, right, right, left, right, right, left.
b. right — right, left, left, right, left, left, right.

The application of these rules to the sequence already exist-
ing in inverse order is shown in the following diagram:

(29) Order of the basic left and right shapes:

r]@lrrlrrl rllrllr @rllrllr Irrlrrl ...

These rules will be referred to as token substitution rules.

3.2.6 Generating the Urform sequence with a type
constraint system After the mechanism responsible for
generating the Urform images as a sequence of L-shapes
has been described, the mechanism needs to be formalised
as a constraint system.

Representing the initial sequence Starting with the start
token, representing the primitive shapes by their corre-
sponding types and adding the type limit as a marker for
the end of the first level, the sequence of primitive shapes
contained in the initial shape I of the original shape gram-
mar SG (3) can be represented by the following graph:

(30) Sequence of primitive shapes

contained in the initial shape

start right left limit

O O™ Oe™O

NEXT NEXT NEXT

As we need to be able to traverse the sequence backwards as
well as forwards, we extend the graph with edges pointing
backwards and add the label, LAST:

Modelling Shape Languages with Type Constraint Systems 31

(3D

Sequence of primitive shapes
contained in the initial shape

Wiritten in matrix notation, the same structure looks like
this:

(32) [start
right
left
limit
NEXT [1]| NEXT NEXT |:LAST]
LAST
LAST [0]

A tag—the small number in the rectangle—is used when
two different features share the same value. The path
NEXT|LAST, for example, points back to the original struc-
ture via the tag [0].

The initial sequence has to be extended into the se-
quences corresponding to the Urform language images. In
order to formalise the rules necessary to generate the se-
quences using right, left, turn, characteristic of Urform im-
ages, two more features are added: TRACING and LOCA-
TION.

(33)

urform
start
ITINERARY [NEXT| .+ |NEXT [O][NEXT]... |NEXT mﬂ
TRACING [0]
LOCATION

1) TRACING — The sequence corresponding to the pre-
vious level of primitive shapes is traversed in inverse
order to generate the sequence of primitive shapes at
the new level. The feature TRACING points to the to-
ken of the previous level, which has to be read next to
generate the corresponding token sequences at the new
level.

2) LOCATION — This feature indicates the end of the
sequence generated up to this point. The shape can
be extended by instantiating the value of this feature
with a sequence of left, right, turn and stop tokens.

Putting these structures together, the initial shape is rep-
resented by the following typed feature structure which we
call query as it can be understood as a query to the constraint
system, producing the structures of the Urform images as
answers:

(34) Query structure:
[urform]
[start 7
right
left
ITINERARY [0] limit
NEXT NEXT NEXT [LAST }
LAST [1]
L LAST [i
TRACING
| LOCATION _

Encoding the token substitution rules as type con-
straints Every substructure in a typed feature structure
has a type. The query structure (34), for example, has the
type urform, the substructure at path ITINERARY has the
type start and so on. Using this type, certain constraints
concerning the features and values of the corresponding
structure can be formulated. Together with the type hier-
archy (TH), which allows the specification of different sub-
types for a given type, these constrains can be used to im-
plement complex algorithms.

Let us suppose the following TH for the root type urform
of the query given in (34):

(35) The urform type hierarchy

urform

urform-stop urform-left urform-right urform-turn

For every subtype a constraint is given, which, for the time
being, only constrains the value of the feature TRACING:

(36) Constraints for subtypes of type urform
[urform—stop i| [urform—left :| [urform—right i| |:urform—turn i|

TRACING [imit | | TRACING left | | TRACING right | | TRACING limit
Comparing these constraints with the query (34), we see
that only two of them, the constraints for the subtypes
urform-stop and urform-turn can be unified with the query.
The reason is as follows: the query has the value start as
value of the feature TRACING; the TCs for the subtypes
urform-stop and urform-turn have the type limit as the value
for the feature TRACING; the type limit is the supertype of
the type start and therefore /imit and start can be unified.
All other constraints have incompatible values for feature
TRACING and therefore are not consistent with the query
structure.

Generating the first solution When extending the con-
straint for urform-stop in the following way

(37) Constraint for urform-stop

urform-stop
TRACING limit
LOCATION stop

its unification with the query results in the following struc-
ture:

32 D. Bollmann

(38) The first solution
[Curform-stop 7]
[start T
right
left
ITINERARY [0] stop
NEXT NEXT NEXT [LAST }
LAST
L LAST [0 i
TRACING
 LOCATION J

This structure differs from the original query structure in
only two points:

1) The root type has been replaced by the type urform-
stop, which results from the unification of the root
types of the query urform and the urform-stop con-
straint.

2) The type at path LOCATION, which is the same as the
one at path ITINERARY|NEXT|NEXT|NEXT, has been
replaced with the type stop, which results from the
unification of /imit and stop, the first being the original
value of the query structure at path LOCATION, the
second the value of the same path of the urform-stop
constraint.

The sequence encoded in this structure is (start, right, left,
stop), which corresponds to the first image of the Urform
language:

(39) Urforml

Having demonstrated how the token sequence correspond-
ing to the first solution can be generated, the paper will now
explain in more detail the process responsible for generat-
ing solutions (resolution).
3.3 Resolution

The TH and TCs of a constraint system can be under-
stood as a kind of knowledge base: Questions to this knowl-
edge base can be posed in the form of queries, which are
answered by applying the knowledge stored in the knowl-
edge base. The mechanism responsible for this procedure
is called resolution.

The resolution algorithm of the constraint system used
for this paper is simple: The type subsumption relations and
the TCs are applied to the query structure until

1) all types in the query structure are minimal in the
sense, that they have no subtypes;

2) all TCs matching types in the solution structure have
been applied.

In the TCS discussed here, the type subsumption relations
and TCs are applied in a depth-first order and backtracking
is used whenever the unification of a TC fails. The order
in which subtypes of a type are tried, and features inside a

structure are resolved, follows their definition order unless
otherwise stated.

The following section, which explains the generation of
the second solution, demonstrates the resolution process in
more detail.

Generating the second solution Besides urform-stop,
the second subtype of urform with a type constraint match-
ing the query structure (34) is urform-turn. The complete
TC for urform-turn is:

(40) Constraint for urform-turn

urform-turn

TRACING [limit
turn
LOCATION [1]| NEXT [mken }
LAST
LAST
urform

NEXT TRACING

LOCATION

Unifying it with the query results in the following structure:
(41) [urform-turn
[start
right
left
twrn

NEXT [2]| NEXT (]| NEXT [

LAST
LasT [1
LAST

ITINERARY token }

NExT [1] LAST

TRACING
LOCATION

urform
NEXT TRACING

LOCATION

The root type urform-turn is a minimal type and therefore
already resolved. The resolution procedure continues with
its feature values. In the case of structures with the root
type urform or one of its subtypes, the resolution order for
its features has been given explicitly:

(42) Resolution order of urform structures

urform
resolution-order (NEXT)

Resolution-order is a meta-attribute which can be used to
specify the resolution order of the features: the listed fea-
tures are resolved first; features not listed are resolved later,
using the order in which they have been defined.

Looking at the value of feature NEXT, it can be seen
to have the same type urform and features TRACING and
LOCATION as the original query. The feature TRACING,
however, now points to the last token of the first level, and
the LOCATION feature points to the new end of the token
sequence, extended by the type turn. This time only the type
constraint for urform-left matches, which in its complete
form looks as follows (the features NEXT and LAST have
been abbreviated in most cases as N and L respectively):

Modelling Shape Languages with Type Constraint Systems 33

(43)

rurform-left T
left
TRACING |:LAST @:I
Fleft .
[right

Constraint for urform-left

[right
[left T
right
right
left

N[e|~ |~ [E N[

L [7]
L [6]

LOCATION

N [5]

token
N :|

N L [8]

L[5
LL 4]

L 2]

urform
NEXT | TRACING

LOCATION

The TC can be seen to correspond to the first of the two
token substitution rules listed in (28a). Unifying it with the
value of feature NEXT of the query results in the following
structure (the feature NEXT has been abbreviated as N in
most cases and the LAST features have been omitted):

(7 R— -

[start |

rright 1

left
wrn
left

right

ITINERARY \’

right

Bl NE left
N N right
N N right
NNl Tren
N
L L N mken 4
TRACING
LOCATION

urform-left

TRACING
LOCATION

NEXT o
L |:LOCA'I'ION :| J
The token sequence encoded in this structure corresponds
to (start, right, left, turn, left, right, right, left, right, right,
left, token).

Again the resolution continues with the value of the in-
ner NEXT feature. This time the only matching constraint
is the one for type urform-right, which is exactly the same
as the one for urform-left but with all instances of the to-
ken left and right exchanged. Unifying this new inner ur-
form structure at path NEXT|NEXT with the constraint for
urform-right results in the translation of the token right at
ITINERARY|NEXT into a sequence of new tokens as speci-
fied in the second token substitution rule (28b).

As before the resulting structure contains a new inner
feature NEXT with an urform structure as the value which
has to be resolved first. The feature TRACING contained
in this new query-like structure points to the start token at
path ITINERARY again. Again the two constraints urform-
stop and urform-turn match. Exactly in the same way as the
Urform I image was generated, the first of these constraints
delimits the sequence with the token stop, and by doing so
generates the token sequence corresponding to the second
Urform image:

45) UrformlIl

Generating the other solutions When the second match-
ing constraint for urform-turn is used instead of the urform-
stop constraint in the last paragraph, the instantiation of an-
other level of even smaller overlayed L-shapes is the result.
Following the same logic as in the case of the Urform Il im-
age, the token sequence corresponding to the third Urform
image is generated:

46) UrformIIl

Continuing the same way, the token sequences for all im-
ages of the Urform language are enumerated.

4. Generating the Urform images from the token se-
quence

Calculating the position of the L-shapes In order to in-
stantiate the L-shapes corresponding to the elements of the
token sequences three pieces of information are necessary
for every single L-shape instance: its location, direction and
size. Adapting the ginkgo leaf marker < used in the origi-
nal shape grammar to represent these factors, their role dur-
ing the generation of the actual shapes can be visualised by
the following diagrams:

@7) a. Urforml

c O
&
b. Urform Il

[

Q

The far left image of (47a) shows the initial state of the
marker. The next image shows a right shape positioned at
its place and the marker advanced to the next position. The
image to its right shows a /eft shape instantiated correspond-
ing to the new marker state and the marker advanced to the
next position again. This final marker position is ignored as
in the fourth image, which corresponds to the first Urform
image.

34 D. Bollmann

The sequence of images in (47b) shows the continuation
of the process when the marker is scaled down and turned to
the opposite direction to initiate the next level of overlayed
L-shapes resulting in the second Urform image.

Modelling the marker with type constraints In the
TCS, the marker is modelled by a marker structure con-
taining the features LOCATION, DIRECTION, ROTATE and
SCALE.

48) marker

LOCATION location
DIRECTION direction
ROTATE rotate

SCALE scale

The calculation of the marker states corresponding to the
elements of the token sequence is enforced by a number of
constraints.

The initial state of the marker is added to the start token
of the query structure:

(49) Turform
start
marker-start
ITINERARY LOCATION (100,190) ™
MARKER | DIRECTION north
ROTATE 0
SCALE 1

The feature ROTATE encodes the same information as the
feature DIRECTION represented in the form of the corre-
sponding rotation angle.

Every structure with the root type foken or one of its
subtypes contains a feature MARKER with its corresponding
marker structure as the value:

(50) The token constraint
token
[0] |:marker]
MARKER
TOKEN [0]

The feature TOKEN in the marker structure refers back to
the token structure and allows access to all features which
are accessible from both the token structure and the marker
structure.

The marker state depends on the direction of the previous
marker and the type of the current token as shown in the
following table:

X X

*9 (x,y) is an abbreviation for the structure [vector
Y y

(51) Calculation of the marker features

LAST TOKEN NEW ROTATE TRANSLATE SCALE
DIRECTION DIRECTION

left west —-90 (=90, =90) 1
north right east 90 (90,-90)

turn south 180 (0, 0) 1/3

left north 0 (90,-90) 1
east right south 180 (90, 90)

turn west —-90 (0, 0) 1/3

left east 90 (90, 90) 1
south right west —-90 (=90, 90)

turn north 0 (0, 0) 1/3

left south 180 (=90, 90) 1
west right north 0 (=90, —90)

turn east 90 (0, 0) 1/3

If, for example, the last marker pointed to the north and the
current token has type left, the next marker points to the
west, which corresponds to a —90° rotation of the L-shape.
The next marker location results from the translation of the
previous marker location by the vector (—90, —90) multi-
plied by the current scale factor 1 and the next marker size
corresponds to the size of the previous marker multiplied
by the same scale factor 1. This calculation of the marker
feature values can be formalised by the following TC:

(52) Marker constraint

[“marker-north-left

left
DIRECTION north
TOKEN
LAST | MARKER | LOCATION ([0], [1])
SCALE
DIRECTION west

TRANSLATION ([3] —90,[4] —90)

LOCATION ()4 2] * B]), (M4 2] = [4))
ROTATE —-90
| SCALE

The type of the current token, as well as the fea-
ture values of the marker belonging to the previous to-
ken, are accessed via the TOKEN feature. The path
TOKEN|LAST|MARKER|DIRECTION, for example, refers
back to the direction value of the previous marker.

The new values are calculated with the aid of value con-
straints, arithmetic expressions which allow the calculation
of numerical feature values depending on the values of other
features. The x value of the marker LOCATION, for exam-
ple, is calculated by adding the x-value of the location of
the previous marker to the product of the scale factor and
the x translation value of the current marker.

The calculation of the marker features differs depending
on the current token and the direction of the previous marker
as shown in Table (51). Each row of Table (51) therefore has
to be translated into a constraint similar to the one shown
in (52). The application of the matching constraint is then
enforced by subtyping the marker type into the subtypes
corresponding to the single constraints:

Modelling Shape Languages with Type Constraint Systems 35

(53) Marker subtypes

| marker-stop

marker-north-left | marker-north-right | marker-north-turn
marker-east-left | marker-east-right | marker-east-turn

marker-south-left | marker-south-right | marker-south-turn

marker — marker-start
|
|
|
| marker-west-left | marker-west-right | marker-west-turn

The value of the current token at path TO-
KEN and the direction of the previous marker at
TOKEN|LAST|MARKER|DIRECTION differ for every
constraint. Therefore only the constraint with matching
values can be applied, while the unification with all other
constraints fails. For every possible combination of token
and marker direction, precisely one matching constraint
exists. The implicit disjunction encoded in the marker
subtype list, together with the backtracking built into the
resolution procedure, always enforce the application of the
right constraint.
4.1 Generation of the code for the final images

After the token sequence and the values for the location,
scale and rotation of the corresponding L-shapes have been
calculated, this information has to be brought into a format
which can be interpreted by the computer to generate the
actual images. In the present approach, the Scalable Vector
Graphics (SVG)*!? format was selected for this purpose.

The L-shapes represented by the token left and right are
represented as polygons, which are translated, rotated and
scaled corresponding to the values given in their marker
structures. The polygon itself is described by its colour,
opacity and the list of its vertices:

(54) L-shape (TFS)

translate
X 100
Y 190
rotate
ANGLE 0
scale
X 1
CHILD Y/
CHILD polygon
FILL grey
FILL-OPACITY 0.5
PDINTS((—60, —150), (90, =150}, ..., (—60,0))

CHILD

These structures can be translated directly into the corre-
sponding XML format used for scalable vector graphics:

(55) L-shape (SVG)

<g transform="translate(100,190)">
<g transform="rotate(0)">
<g transform="scale(1l,1)">
<polygon
fill="grey"
fill-opacity="0.5"
points="-60,-150 90,-150 ...
</g>
</g>
</g>

-60,0"/>

The SVG structures for the right token are generated by the
following constraint:

“10See the Scalable Vector Graphics (SVG) Full 1.2 Specification, W3C
Working Draft 13 April 2005 at http://www.w3.0org/TR/SVG12/.

(56) Constraint for type right
[right 7
LocaTioN ([0] [1])
LASTMARKER[SCALE B }
ROTATE
[translate 7
X
v [
[rotate 7
angle 3]
scale
SVG X
CHILD v
CHILD polygon
FILL grey
CHILD | FILL-OPACITY 0.5
(=60, —150), {90, —150),
i i L poznts(L (260,0) > 1]

An equivalent constraint is defined for the /eft token. These
two constraints differ only in the calculation of the SCALE|X
value, which is multiplied by —1 in the case of the con-
straint for left, resulting in the mirror image of the one de-
scribed by the constraint for right:

(57) [right
scale
X
GRAPHICS | CHILD | CHILD
Y
i CHILD ...
VS.
[left]
scale
X (—=1x%[2)
GRAPHICS | CHILD | CHILD
Y
i CHILD ...

The code for the Urform image is generated by collecting
the values of the SVG features, translating them into the ap-
propriate XML format and adding a header with informa-

tion about the image size:
(58) <?xml version="1.0" encoding="UTF-8"?>
<svg height="200"
width="380"
xmlns="http://www.w3.0rg/2000/svg">
list of L-shapes
</svg>

The following images show the first three instances gener-
ated by the resulting system:

(59) Urform I, I, and II1

36 D. Bollmann

The different grey shadings are caused by the overlapping
of the opaque L-shapes.

Rendering of the final colour images To obtain coloured
images identical to the original Urform images the different
grey shadings have to be translated into the colours given in
the material specification of the original Urform grammar
described by Stiny and Gips (1971).

The following figure shows the first three of the series of
final images:

(60) Urform I, I, and IlI, regenerated

Summary

Using Stiny and Gips’ Urform grammar as an example,
this paper has shown how shape languages can be modelled
as TCSs. When seen from an abstract point of view, shape
grammars and TCSs look like two instances of the same
idea—the generation of shapes with formal grammars—and
therefore seem to have more similarities than differences.
However, when examining the formalisation of the same
shape language in both systems in more detail, it can be
seen that the different nature of the representations and res-
olution procedures on which the formalisms are based also
makes it necessary to rely on different mechanisms to en-
code the shape languages. In the case of the original Ur-
form shape grammar, the continuous graphic representa-
tions and pattern matching procedures allow for intuitive
graphic rules resulting in an easy to understand and sim-
ple grammar; the discrete symbolic structures and unifica-
tion algorithm used by TCSs, however, make it necessary
to introduce an intermediate symbolic layer and result in a
more abstract and indirect formalisation, which is less intu-
itive than the original shape grammar. The abstractionism
of the TCS approach, however, also has advantages: its dis-
crete nature makes it easy to integrate symbolic calculations
into it and allows complex graphic interpretations, which
are more difficult to realise when using shape grammars.

Depending on the shape language encoded, one or other
of the formalisms might be more appropriate: while in the
case of the described Urform language the shape grammar
approach is more straightforward, for other more abstract
image generation procedures, constraint systems might be
easier to use.

Finally, seen from a theoretical perspective, both systems
are equally powerful: shape grammars as well as TCSs are
Turing complete and any possible algorithm can be imple-
mented in either system.

Future prospects

Looking at the remodelling of the Urform language as a
TCS and the similarities and differences of the resulting for-
malisation compared with the original shape grammar, two
directions of further research present themselves. The first
would be to concentrate on the similarities of the two for-
malisms and the reimplementation of other shape grammars
as TCSs, in order to learn more about the consequences re-
sulting from the selection of each approach concerning the
generation of shapes. The second direction for further re-
search could be to focus on the differences between the two
approaches, experimenting with grammars and making use
of the existence and symbolic character of the intermedi-
ate representation in order to describe languages of shape,
which are more difficult to realise when experimenting with
shape grammars. The integration of transformations and
distortions, which transform simple shapes such as cubes
or spheres into complex forms, as used, for example, by
architects like Peter Eisenman and Frank O. Gehry, seems
an interesting perspective for further experimentation. This
might result in interesting, new approaches to the gener-
ation of shape, directly applicable to disciplines such as
product design or architecture.

Acknowledgments. The ideas presented in this paper have been
published thanks to the support and encouragement of Professor
Akira Fujii, Kenichiro Hashimoto, Yukie Ogoma and Dr. Alvaro
Bonfiglio, Wanwen Huang, Stefan A. Gerstmeier, Brandon Yeup
Hur, Rainer Sandrock and Jonquil Melrose-Woodman to all of
whom [am very grateful.

I would also like to express my gratitude to Makiko Tanaka,
who invited me to work in her beautiful old house in Kamakura
during the hot summer months of 2011.

References

Carpenter, B. (1992) The Logic of Typed Feature Structures with Appli-
cations to Unification-based Grammars, Logic Programming and Con-
straint Resolution, Volume 32 of Cambridge Tracts in Theoretical Com-
puter Science, Cambridge University Press, New York.

Chomsky, N. (1957) Syntactic Structures, Mouton & Co., La Haye.

Pollard, C. and Sag, I. A. (1987) Information-based Syntax and Seman-
tics, Vol. 1, Number 13 in Lecture Notes. CSLI Publications, Stanford
University, University of Chicago Press, Chicago.

Pollard, C. and Sag, I. A. (1994) Head-Driven Phrase Structure Grammar,
University of Chicago Press, Chicago.

Stiny, G. (2006) Shape: Talking about Seeing and Doing, MIT Press,
Cambridge, Massachusetts.

Stiny, G. and Gips, J. (1971) “Shape Grammars and the Generative Speci-
fication of Painting and Sculpture”, [FIP Congress (2), 1460—1465.

