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Escher Degree of Non-periodic L-tilings by 2 Prototiles
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For a given tiling of the euclidean plane E2, we call the degree of freedom of perturbed edges of prototiles
escher degree. In this paper we consider non-periodic L-tilings by 2 prototiles and obtain the escher degree of
them.
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1. Introduction
A non-periodic L-tiling is a limit of the sequence of

patches as shown in Fig. 1. (Often this is called a chair
tiling.) It is well known that this is a tiling of the euclidean
plane E2 and that it has no periodicity of parallel transla-
tion. In [1], Sugihara introduces escherization of a plane
tiling. Let T be a tiling of E2. If we have a finite set S =
{α1, α2, · · · , α�} of connected regions, and each tile of T is
(orientation preserving) congruent to one of α1, α2, · · · , α�,
then we call S the protoset and α1, α2, · · · , α� prototiles. If
we perturb some of edges of prototiles and get another tiling
of the plane, we call the process of perturbation escheriza-
tion of the tiling T . This is a famous technique in artworks
of M. C. Escher.

For example, see Fig. 2. The left figure is a tiling by
one parallelogram. We can perturb the horizontal edges
and slanted edges independently as in the right figure. In
this paper, we determine the escher degree of L-tilings, that
is, the degree of freedom of perturbed edges of prototiles
of L-tilings. If the protoset of an L-tiling consists of one
prototile, then the escher degree is one. This is shown in
Theorem A. If the protoset of an L-tiling consists of two
prototiles, then we show that there are 6 types of non-trivial
tilings. (A non-trivial tiling is a tiling whose escher degree
is more than 1.) This is shown in Theorem B and Theorem
C.

In [2], Goodman-Strauss gives an aperiodic protoset de-
rived from the L-tiling. We have new kinds of protosets
also from the L-tiling in these theorems, but none of them
are aperiodic. This is shown in Appendix B.

From the viewpoint of tiling rules, the escher degree may
give a new method to observing equivalent classes of tilings
with tiling rules and matching rules. About matching rules
and substitution rules, see [3].

This paper is organized as follows. In Section 2 we
prepare some notations and basic lemmas. In Section 3 we
consider an L-tiling by one prototile. In Section 4, 5 we
consider L-tilings by two prototiles. In Appendix, we show
figures of tilings.

Copyright c© Society for Science on Form, Japan.

2. Preliminary
In this section, first we introduce a non-periodic hier-

archical tiling. Let S = {α1, α2, · · · , α�} be a set of
connected regions and λ > 1 a constant. Let α′

i (i =
1, 2, · · · , �) be a λ scale-up copy of αi .

Suppose that each α′
i (i = 1, 2, · · · , �) can be tiled by

prototiles α1, · · · , α�. That is, each α′
i can be divided into

some of copies of α1, · · · , α�. Let α′′
i be a λ scale-up copy

of α′
i . Then in the same way α′′

i can be tiled by α′
1, · · · , α′

�.
Substituting α1, · · · , α� into α′

1, · · · , α′
�, we have a tiling of

α′′
i by S.
The tiling rules of α′

i s by S are called substitution rules.
A tiling of E2 obtained by substitution rules is called a
hierarchical tiling, and if it doesn’t have no periodicity of
parallel translation, it is called non-periodic.

An L-tiling is an example of a non-periodic hierarchical
tiling. Let α = and S = {α}. Let λ = 2 and α′ =

, then it gives a substitution rule. We call this tiling an
L-tiling and this rule L-substitution.

DEFINITION 2.1 (s-SPREAD) We call α′, a patch of once
L-substitution from α, 1-spread. We call α(s), a patch of s
times L-substitution from α, s-spread.

Next, we define a edge and a perturbed edge.

DEFINITION 2.2 (EDGE) Let an edge be a pair of a seg-
ment and a one-side neighborhood. See Fig. 3.

For an edge, we regard a segment as a edge of a prototile,
and one-side neighborhood as inside of a prototile. In the
sequel, we do not distinguish an edge of a prototile from an
edge in this definition. Next, we define a perturbed edge.

DEFINITION 2.3 (PERTURBED EDGE) For an edge, fixing
the both ends of the edge and perturbing it a little, we get a
perturbed edge. See Fig. 4. For two perturbed edges a, b,
a = b if they are congruent.

In order to perturb edges of prototiles, there exists restric-
tion on a way of perturbing, because each prototile must
be connected. In our context, we only concern degree of
freedom of perturbed prototiles, so we consider only a per-
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Fig. 1. Non-periodic L-tiling.

Fig. 2. Perturbation of edges of parallelogram.

Fig. 3. An edge.

Fig. 4. Examples of perturbed edges.

ab

= ab

Fig. 5. An example of a product of perturbed edges.

turbed edge which is a little perturbed to avoid the restric-
tion.

Next, we define a product of perturbed edges.

DEFINITION 2.4 (PRODUCT OF EDGES) Let
a1, a2, · · · , ak be perturbed edges. If they are placed
on a straight line from right to left and form a row, then
we call it a product of a1, a2, · · · , ak and we denote this
product by a1a2 · · · ak. See Fig. 5.

For a perturbed edge a, we define two operations a, and
a−1. For a perturbed edge a, a is a symmetry (right-side-
left) image of a. In the same way, a−1 is an upside-down
image of a. See Fig. 6.

It is easy to show the following lemma.

LEMMA 2.5 (1) (a) = a, (a−1)−1 = a
(2) ab = ab, (ab)−1 = b−1a−1

(3) (a−1) = (a)−1

In a tiling, if a tile with a perturbed edge a and another
tile with a perturbed edge b are neighbors at a and b, we

a a

a-1 a-1

Fig. 6. Definition of a, and a−1.
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Fig. 7. Edges of the parallelogram α.
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Fig. 8. Matching of the tiling (P1).

have a = b−1. We denote this relation by
a

b
. We often say

that a matches b.
The following lemma is trivial.

LEMMA 2.6 (1)
a

b
if and only if

b

a
(2) If

a

b
and

a

c
then b = c

(3)
ab

cd
if and only if

a

d
and

b

c

Let T be a tiling with respect to a protoset S. Suppose
that all prototiles are polygons. Here we assume that there
is no vertex of a tile lying on an edge of another tile.

DEFINITION 2.7 (ESCHERIZATION, ESCHER DEGREE)
(1) Let T and S be as above. If we perturb edges of
prototiles such that the perturbed prototiles give another
tiling, we call this process escherization.

(2) If the set of escherization of T is parametrized by
some perturbed edges, the escher degree is the number of
the parameters.

Example. Let α be a parallelogram and (P1) a tiling
of E2 as in Fig. 2. Let a, b, c, d be edges of α as in Fig. 7.

From the matching of the tiling, we have
a

c
and

b

d
. That

is, if we perturb a, then the edge c changes such that c =
a−1, and we can perturb b independently of a. Then the
edge d changes such that d = b−1. See Fig. 8.

We call relations obtained from the tiling property edge-
matchings.
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Fig. 9. Prototile α.

a
b

c
d

e
f g h
a

b
c

d

e
f g h

a

b
cde

f

g
h

a

b
c

d e
f

g
h

Fig. 10. Matching in 1-spread of α′.

Hence all escherization of the tiling (P1) is parametrized
by edges a and b. So the escher degree is 2.

3. Escher Degree of L-tiling by One Prototile
In this section we show that the escher degree of L-tiling

by one prototile is one. We assume that an L-figure prototile
α has 8 perturbed edges a, b, c, · · · , h as in Fig. 9.

THEOREM 3.1 (THEOREM A) (1) In a non-periodic L-

tiling by one prototile α, we have
a = c = e = g

b = d = f = h
.

(2) The escher degree of this tiling is one. See Fig. 18.

REMARK 3.2
a = c = e = g

b = d = f = h
means a = c = e = g,

b = d = f = h, and
a

b

Proof: (1) Considering 1-spread, we directly have
b

c
,

a

d
,

h

c
,

b

e
,

f

a
,

h

c
,

g

b
,

h

a
(see Fig. 10). This follows that

a = c = e = g

b = d = f = h
.

(2) The proof of (1) implies the following lemma.

LEMMA 3.3 There exists a 1-spread of α if and only if α

satisfies
a = c = e = g

b = d = f = h
.

Let α′ be a 1-spread and a′, b′, · · · , h′ its edges (see Fig.
11).

Then we have a′ = ha, b′ = bc, c′ = e′ = g′ = de, d ′ =
f ′ = h′ = f g (see Fig. 10). If

a = c = e = g

b = d = f = h
then we

easily show that
a′ = c′ = e′ = g′

b′ = d ′ = f ′ = h′ . (For example, h = d

and a = e implies a′ = ha = de = c′,
h

c
and

a

b
implies

ha

bc
and

a′

b′ .) This follows that a 1-spread of α′ exists, that

is, a 2-spread of α exists.

c′

d′

e′

f ′ g′

h ′

a′

b′

Fig. 11. Perturbed edges of α′.
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Fig. 12. Two prototiles α and β.

In the same way, if we have an (s − 1)-spread
α(s−1) of α with edges a(s−1), b(s−1), · · · , h(s−1),
and there exists an s-spread, then it satisfies that
a(s−1) = c(s−1) = e(s−1) = g(s−1)

b(s−1) = d(s−1) = f (s−1) = h(s−1)
. If we set

a(s) = h(s−1)a(s−1),

b(s) = b(s−1)c(s−1),

c(s) = e(s) = g(s) = d(s−1)e(s−1),

d(s) = f (s) = h(s) = f (s−1)g(s−1)

inductively, then they satisfy
a(s) = c(s) = e(s) = g(s)

b(s) = d(s) = f (s) = h(s)
. and

it follows that an 1-spread of α(s) exists, that is, we have an
(s + 1)-spread of α.

If α satisfies
a = c = e = g

b = d = f = h
then an s-spread α(s) exists

for any s. Hence the escherization is parametrized by a and
the escher degree is one. This completes the proof.

4. L-tiling by Two Prototiles (1)
In this section, we consider the cases where two prototiles

α, β (Fig. 12) make one 1-spread α′.

From Theorem A, if α′ satisfies
a′ = c′ = e′ = g′

b′ = d ′ = f ′ = h′ then

α′ has s-spread for s = 1, 2, 3, · · · . We observe 5 patterns
of α′ in Fig. 13. We call them no.8, no.4, no.2, no.3, and
no.5 respectively. (The numbering order is not ascending
nor descending. These numberings are determined by the
order of α and β.)

And we have the following theorem.

THEOREM 4.1 (THEOREM B) (1) For no.2, no.3, no.4, the
escher degree is 1.

(2) For no.5, we have
a = e = m

b = f = n
,

c = g = i = k = o

d = h = j = l = p
and the escher degree is 2 (see Fig. 19).

(3) For no.8, we have
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no.8: βααα no.4: αβαα no.2: ααβα no.3: ααββ no.5: αβαβ

Fig. 13. Five patterns of 1-spread.

a

l = n = p
,

k = m = o

b
,

c = g

d = h
,

e = i

f = j
and the escher

degree is 4 (see Fig. 20).

Proof: If α′ satisfies
a′ = c′ = e′ = g′

b′ = d ′ = f ′ = h′ , then α′ has

n-spread for any n. So, it is sufficient to solve the edge-

matching in α′ and
a′ = c′ = e′ = g′

b′ = d ′ = f ′ = h′ .

For example, for no.5, edge-matching is given as

in Fig. 14 and we have
j

c
,

i

d
,

p

c
,

b

e
,

f

a
,

h

k
,

g

j
,

h

i
.

a′ = c′ = e′ = g′

b′ = d ′ = f ′ = h′ implies
pa = lm = de = lm

bk = no = f g = no
.

We solve the system of equation and we have
a = e = m

b = f = n
,

c = g = i = k = o

d = h = j = l = p
. Inversely if

a = e = m

b = f = n
,

c = g = i = k = o

d = h = j = l = p
then

a′ = c′ = e′ = g′

b′ = d ′ = f ′ = h′
is satisfied. For other tilings, we can solve the system of
relations in a similar way.

REMARK 4.2 If we have
a = c = e = g = i = k = m = o

b = d = f = h = j = l = n = p
, it follows that α = β.

So we can return the case of one prototile α and the escher
degree is 1. This means that there are no solution of two
distinct prototiles. In the two prototiles case, if the escher
degree is more than 1, we call the tiling non-trivial. There
are two types (no.5 and no.8) of non-trivial tilings by two
prototiles and one 1-spread.

5. L-tiling by Two Prototiles (2)
In this section, we consider two prototiles α, β (Fig. 12)

and make two 1-spreads α′, β ′. There are 16 possibilities
for α′ and so as for β ′.

We determine numbering for α′ and β ′ as in Fig. 15, and
we represent a tiling by a pair of two numbers for α′ and β ′.
For example, (5, 10) means that α′ and β ′ given in Fig. 16.

We remove the case α′ = β ′ and two trivial cases
(0, 15) and (15, 0), there remains 238 combinations. If
we exchange the role of α and β, we know that (i, j) and
(15 − j, 15 − i) are equivalent. From the following lemma,
we conclude that the number of remaining combinations is
119.

LEMMA 5.1 (i, 15 − i) and (15 − i, i) are equivalent.

Proof: If we denote α
(s)
(i, j) (resp. β

(s)
(i, j)) by the s-

spread of α (resp. β) of tiling (i, j), it is easily show
that α

(2k−1)

(i,15−i) = β
(2k−1)

(15−i,i), β
(2k−1)

(i,15−i) = α
(2k−1)

(15−i,i), α
(2k)

(i,15−i) =

a
b

c
d

e
f g h
a
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e
f g h

i

j
klm
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o
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j
k
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n

o
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Fig. 14. α′ for no.5 tiling.

α
(2k)

(15−i,i), β
(2k)

(i,15−i) = β
(2k)

(15−i,i), for any k = 1, 2, · · · . This
completes the proof.

Here we have the third theorem.

THEOREM 5.2 (THEOREM C) (1) If the escher de-
gree of (i, j) tiling is more than 1, then (i, j) =
(5, 10), (10, 5), (0, 2), (13, 15), (0, 8), (7, 15), (0, 10),
(5, 15).

(2) For the tiling (5, 10) (equivalently (10, 5)),
a = c = g = m

f = j = l = p
,

e = i = k = o

b = d = h = n
and the escher de-

gree is 2 (see Fig. 21).
(3) For the tiling (0, 2) (equivalently (13, 15)),

a = c = e = g = i = k

b = d = f = h = j = p
and the escher degree is 5

(see Fig. 22).
(4) For the tiling (0, 8) (equivalently (7, 15)),

a = c = e = g = k = m = o

b = d = f = h = l = n = p
and the escher degree

is 3 (see Fig. 23).
(5) For the tiling (0, 10) (equivalently (5, 15)),

a = c = e = g = k = o

b = d = f = h = l = p
,

m

j
,

i

n
and the escher degree is 3

(see Fig. 24).

For each (i, j), we solve a system of equations of edge-
matchings of s-spread (s = 1, 2, · · · ).

In some cases, only i (resp. only j) determines the result.
For example, the following lemma holds.

LEMMA 5.3 The escher degree of (1, j) is 1 for any j .

Proof: Assume that α′ is no.1 (see Fig. 17). From

the edge-matching of α′, we get
c = e = k = i

b = h
,

a

d = f
,

g

j
. Edges of α′ is given by a′ = pa, b′ = bc, c′ =

e′ = de, d ′ = f ′ = f g, g′ = lm, h′ = no and
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Fig. 15. Numbering for α′ and β ′.

we have
c′ = e′

b′ = h′ ,
a′

d ′ = f ′ , in the edge-matching of α′′,

and we get additional conditions
d

c
, b = n, c = o,

p

g

and hence
a = c = e = k = i = o

b = d = f = h = n
,

g

j = p
. In the edge-

matching in α′′′, we obtain another condition
d ′

c′ , hence

d

g
,

e

f
, and we have

a = c = e = g = k = i = o

b = d = f = h = j = n = p
. In the

edge-matching in α′′′′, we have
d ′

g′ , hence
f

m
and

g

l
, and we

have
a = c = e = g = i = k = m = o

b = d = f = h = j = l = n = p
. This implies that

within at most 4-spread all edges a, b, · · · , p are related
and α = β. This completes the proof.

And in a similar way, we can show that the
escher degree of any tiling other than (i, j) =
(5, 10), (10, 5), (0, 2), (13, 15), (0, 8), (7, 15), (0, 10),
(5, 15) is 1.

(2) In (i, j) = (5, 10) case, the edge-matching of α′ is
j

c
,

i

d
,

p

c
,

b

e
,

f

a
,

h

k
,

g

j
,

h

i
(see the left of Fig. 16).

The edge-matching of β ′ is
b

k
,

a

l
,

h

k
,

j

m
,

n

i
,

p

c
,

o

b
,

p

a
(see the right of Fig. 16). The edge-matchings of α′, β ′

are equivalent to
a = c = g = m

f = j = l = p
,

e = i = k = o

b = d = h = n
. Let

a′, b′, · · · , o′, p′ be edges of α′, β ′ as in Fig. 11, we have

a′ = pa, b′ = bk, c′ = lm, d ′ = no,

e′ = de, f ′ = f g, g′ = lm, h′ = no

i ′ = hi, j ′ = jc, k ′ = de, l ′ = f g,

m ′ = lm, n′ = no, o′ = de, p′ = f g

Since the formula (c) holds for α′, β ′, we have

a′ = c′ = g′ = m ′

f ′ = j ′ = l ′ = p′ ,
e′ = i ′ = k ′ = o′

b′ = d ′ = h′ = n′ .

For example, p = l and a = m implies a′ = pa = lm =
c′, and so on. These are edge-matching of 2-spread α′′, β ′′.

Inductively, we observe as follows. Suppose that we have
α(s), β(s). Let a(s), b(s), · · · , o(s), p(s) be edges of α(s), β(s).
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e
f g h
a

b
c

d

e
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j
klm
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o
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j
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l m
n

o
pα =
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l

m
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p

i

jk
l

m
n o
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β =

Fig. 16. Tiling (5, 10).
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pα = β = ?

(1,j ) case

Fig. 17. (1, j) tiling.

The relation between a(s−1)s and a(s)s are given by

a(s) = p(s−1)a(s−1), b(s) = b(s−1)k(s−1),

c(s) = l(s−1)m(s−1), d(s) = n(s−1)o(s−1),

e(s) = d(s−1)e(s−1), f (s) = f (s−1)g(s−1),

g(s) = l(s−1)m(s−1), h(s) = n(s−1)o(s−1)

i (s) = h(s−1)i (s−1), j (s) = j (s−1)c(s−1),

k(s) = d(s−1)e(s−1), l(s) = f (s−1)g(s−1),

m(s) = l(s−1)m(s−1), n(s) = n(s−1)o(s−1),

o(s) = d(s−1)e(s−1), p(s) = f (s−1)g(s−1),

for any s = 0, 1, 2, · · · . Using simple calculations, we have
the following lemma.

LEMMA 5.4

If
a(s−1) = c(s−1) = g(s−1) = m(s−1)

f (s−1) = j (s−1) = l(s−1) = p(s−1)
,
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Fig. A.1. Tiling of one prototile.

Fig. A.2. Tiling of two prototiles, no.5.

Fig. A.3. Tiling of two prototiles, no.8.

e(s−1) = i (s−1) = k(s−1) = o(s−1)

b(s−1) = d(s−1) = h(s−1) = n(s−1)
, then

a(s) = c(s) = g(s) = m(s)

f (s) = j (s) = l(s) = p(s)
,

e(s) = i (s) = k(s) = o(s)

b(s) = d(s) = h(s) = n(s)
.

Proof: For example, p(s−1) = l(s−1) and a(s−1) =
m(s−1) implies a(s) = p(s−1)a(s−1) = l(s−1)m(s−1) = c(s).
Other relations are shown in a similar way. From this
lemma, (s + 1)-spreads α(s+1), β(s+1) exist for any s.

(3), (4), and (5) are shown in a similar way as (2).

REMARK 5.5 In Appendix, we show figures of these tilings.
In (0, 2), (0, 8) tilings, β(s) contains only one tile β. This
means that these tilings are equivalent to a tiling of α as
tilings.
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Fig. A.4. Tiling of two prototiles (5,10).

Fig. A.5. Tiling of two prototiles (0,2).

Fig. A.6. Tiling of two prototiles (0,8).

Fig. A.7. Tiling of two prototiles (0,10).

Appendix A.
From Figs. A.1 to A.7 are pictures of tilings appearing in

Theorems A, B, and C.

Appendix B.
For a protoset S, if any tiling by S has no periodicity
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Fig. B.1. Periodic tiling of one prototile. Fig. B.2. Periodic tiling of two prototiles no.8.

Fig. B.3. Periodic tiling of two prototiles no.5.

Fig. B.4. Periodic tiling of two prototiles (5,10).

of parallel translation then we call S an aperiodic protoset.
Any tilings we obtain in this paper are not aperiodic proto-
sets. From Figs. B.1 to B.4 are figures of periodic tilings.

References
[1] Sugihara, K. (2011) Escher Magic, University of Tokyo Press (in

Japanese).

[2] Goodman-Strauss, C. (1999) A small aperiodic set of tiles, Eur. J.
Combinatorics, 20, 375–384.

[3] Goodman-Strauss, C. (1998) Matching rules and substitution tilings,
Ann. Math., 147, 181–223.


