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A Coding-Theoretical Approach to Analyzing Sequential Patterns
of the Sixty-Four Hexagrams in the I Ching
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The sequential patterns of the sixty-four hexagrams in the I Ching (the Book of Changes) are analyzed
by calculating a divergence between adjacent hexagrams. Geometrically, the divergence is equivalent to the
Hamming distance between nodes on a six-dimensional hypercube. Detailed comparisons are made between
results for the received ordering of the hexagrams and those for other orderings currently available. Emphasis is
on the finding that the received order possesses a sophisticated mathematical structure, suggesting at the same
time that it would hold great significance as an integral whole of a human archetype.
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1. Introduction
In China the teachings of Confucius (551–479 B.C.) have

been expounded on the basis of the four books and the five
canons termed the Nine Chinese Classics as listed in Ap-
pendix A. Among them the I Ching (the Book of Changes)
is regarded as an implied canon in Confucianism. Although
this canonical text originated from a divination teaching,
an exceptionally long period ranging over three thousand
years has established it as a representative classic imply-
ing an archetype of the Chinese philosophy (Honda, 1997).
In the I Ching there are sixty-four hexagrams called gua’s
(Fig. 1), which can be obtained through the eight combi-
nations among eight hexagrams (i.e., 82 = 64) being com-
posed with the three symbols of yin (divided line) and yang
(undivided line). In actual divination, instead of the con-
ventional method using bamboo sticks, the method using
coins is useful (Kawamura, 1994), where one will toss three
identical coins praying what he/she wants to divine; six tri-
als are needed to determine the specific gua. Subsequently,
fortune-telling will be made on the instructions of sentences
attached to each gua although they are in general full of con-
notations. Aside from divination, in recent years, stochastic
behavior due to the yin-yang dualism of the I Ching has
found application to unexpected fields such as depth psy-
chology (Progoff, 1973; Bolen, 1979) and musical compo-
sition. Indeed, John Cage (1912–1992) started work on the
composition of Music of Changes by preparing charts of
square numbers for tempi, dynamics, sounds or rests, du-
rations and overlapping. Chance, which he consulted by
means of tossing coins (the shortened version of the yarrow
stalk oracle), decides which of the given materials are to be
combined. The result was written down in a comparative
manner according to a pattern of previously devised bars so
that the sequence was now definitely determined and the in-
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dividual sound event in every parameter occurred with the
greatest possible precision (Henck, 1988). As is shown in
Fig. 2, each hexagram possesses the name written with a
single or two Chinese characters, which, in addition to a
certain role in the highly symbolic system, can be inter-
preted as a tag for discriminating a gua from others. In
addition to the unequal division (64 = 30 + 34) of hexa-
grams between the Upper and the Lower Canon, the method
of giving a title to hexagrams appears somewhat paradox-
ical; for instance, the tag ’After Completion’ for the 63rd
gua is placed prior to ’Before Completion’ for the last gua.
However, it is this whimsicality that makes the study on the
I Ching fascinating. Among 64! permutations of the hex-
agrams, the one shown in Fig. 2 (Type I) is known as the
most received ordering, wherein we can find the following
rule for composing the sequence: 1) The sequence must be
juxtaposed in pairs as (1, 2), (3, 4), . . . , (63, 64), i.e., there
arise thirty-two pairs in the entire sequence. 2) Within each
individual pairs the subsequent gua is generated by revers-
ing upside down the preceding one. For instance, the sixth
gua (111010) becomes the reverse of the fifth one (010111).
3) If twin gua’s in a pair hold symmetries across the center
axis, then the subsequent gua must be obtained by invert-
ing the polarity (yin = 0 and yang = 1) of the preceding
one. In the sequence we find that four pairs, (1, 2), (27, 28),
(29, 30), and (61, 62), meet this condition. The sequence
of the hexagrams seen in Fig. 2 is not the only but a result
that has been generated according to this algorithm with the
initial condition, 111111, being given; it appears that this
initial code holds a deep meaning in Chinese metaphysics.
However, the present algorithm includes ambiguities since
no rule is imposed on the condition across the interfaces
between adjacent pairs. Here we note that there exist thirty-
one interfaces. Although implications of the present order-
ing are described in a commentary text in the I Ching, the
interpretation is far from clear and seems highly strained.
To date, great effort has been expended to elucidate a math-
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Fig. 1. The sixty-four hexagrams of the I Ching. Divided and undivided lines signify, respectively, yin and yang, which will in what follows be encoded
by 0 and 1. The present permutation, termed Type I order in the present paper, obeys the description of Notes on the Hexagrammatic Order in the
Ten Wings of the I Ching. The hexagrams that are based upon the yin-yang dualism have found unexpected applications. In order to construct a
theory of synchronicity, Carl Gustav Jung (1875–1961) performed a divination according to the I Ching with shuffling divining sticks for himself
(Progoff, 1973; Bolen, 1979). In an experimental attempt to explore the validity of his chance music, John Cage (1912–1992) made compositional
decisions with the help of the I Ching (Henck, 1988). More recently, it has been mentioned that the underlying concept of the I Ching offers a curious
resemblance to the encoding scheme of the DNA and protein sequences (Stent, 1969; Yan, 1991; Schonberger, 1992).

ematical meaning of the somewhat whimsical permutation,
which, to the author’s knowledge, remains unknown (Rutt,
1996; Honda, 1997). In this paper the sequential patterns of
the sixty-four hexagrams in the I Ching are analyzed by cal-
culating a divergence between adjacent hexagrams (Hayata,
2005). Geometrically, the divergence is equivalent to the
Hamming distance between two nodes on a six-dimensional
hypercube. In order to explore mathematical implications
of the sequential pattern, comparison is made between re-
sults for the received ordering of the hexagrams and those
for other arrangements. Simultaneously, an attempt is made
to map a series of Hamming data onto the two-dimensional
space, and eventually to create a prototype of the I Ching
mandalas.

2. Permutation Patterns of the Sixty-Four Hexagrams
In addition to the received order (Figs. 1 and 2) of the

sixty-four hexagrams, there are several methods of order-
ing, which can be seen in Figs. 3–5. The one shown in Fig.

3 (Type II) is described in Miscellaneous Notes [10], which,
along with Notes on the Hexagrammatic Order [8], consti-
tute the Ten Wings being known as ten commentary texts
of the I Ching (Honda, 1997), where the numerals in the
square brackets indicate the order in the Ten Wings. Here
the Chinese character corresponding to Wing implies aid-
ing; although these texts are believed to be edited by Con-
fucius, the truth has not been disclosed. In the Ten Wings, in
addition to the above two texts, there are eight texts avail-
able. It has been recognized that the ordering of Fig. 3,
which can be found in Miscellaneous Notes, was devised
for recital purposes by changing the order of the original
sequence (Fig. 2), which can be seen in the main text of
the I Ching, so that one can learn the canon more easily ac-
cording to a peculiar rhyming. Note that in Chinese verses
the end rhyming becomes an important factor so as to en-
hance the quality of texts. Indeed such efforts of rhyming
would be responsible for making sentences in the last notes
a certain miscellany of the explanations of gua’s. In com-
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(a)

Fig. 2. The received (Type I) ordering. The yin and yang are denoted, respectively, by 0 and 1. Each hexagram possesses the name that is represented
with a single or a double Chinese character, which was translated into English by Baynes (Wilhelm, 1968). (a) The Upper Canon of the I Ching. (b)
The Lower Canon of the I Ching.

parison between Figs. 2 and 3 one finds that the replacement
is made in pairs. In contrast to those shown in Figs. 1–3, the
pairing of hexagrams is broken in the arrangement of Fig. 4
(Type III), which can be seen in the Mawangdui manuscript
of 168 B.C., the period of the Han dynasty. This manuscript
written on a silk sheet was discovered in 1972–1974 by ex-
cavating the Mawangdui Tomb in Hunan, China. The hexa-
grams are arranged by octets in each of which all eight have
the same upper trigram. The sequence of these upper tri-
grams takes all the males before all the females, giving the
order: father, third son, second son, first son; mother, third
daughter, second daughter, first daughter (Rutt, 1996). The
three arrangements of hexagrams mentioned above would
reflect more or less ancient Chinese philosophy, the pro-
found essence of which seems to be difficult for moderns to
understand. For those who have learned the binary logic for
use in computer sciences as well as in information theory,
the most natural ordering will be the one shown in Fig. 5
(Type IV), which coincides with the six-digit binary count-
ing system that was once studied by Gottfried Wilhelm von
Leibniz (1646–1716). Indeed, they say that he was inter-
ested in the ancient Chinese thought through communica-

tion with the Jesuit missionaries in Peking (Rutt, 1996). In
more recent years, similarities have been pointed out be-
tween the I Ching and the genetic code (Stent, 1969; Yan,
1991; Schonberger, 1992).

3. Analytical Method
3.1 Giving an outline of coding theory

Modern information theory consists of Shannon theory
and coding theory. The latter is based on the linear al-
gebra, and therefore, possesses the theoretical system dis-
tinctly different from the former that has been developed on
the basis of the probability theory as well as statistics. Here
we consider a binary sequence of length k, x1x2 . . . xk , to
be transmitted through a communication channel. Subse-
quently, in order to detect a single error in the sequence, we
add a bit, c, to it as

www = x1x2 . . . xkc, (1)

where the original code x1x2 . . . xk is termed the informa-
tion symbol or the information bit, and the additional bit is
termed the check symbol (Imai, 1984). For the convenience
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(b)

Fig. 2. (continued).

of the algebra, Eq. (1) will frequently be rewritten in the
form of the (k + 1)-dimensional vector

www = (x1, x2, . . . , xk, c). (2)

The main concern in the conventional coding theory lies
in finding a specific system of the entire symbols capable
of detecting errors. The concept of distances between two
vectors and their geometrical representations in a (k + 1)-
dimensional hypercube could be a powerful tool for design-
ing a particular coding system.
3.2 Hamming distance

As a distance between the two n-dimensional binary vec-
tors uuu = (u1, u2, . . . , un) and vvv = (v1, v2, . . . , vn) we de-
fine

dH (uuu,vvv) =
n∑

i=1

δ(ui , vi ) (3)

with

δ(ui , vi ) =
{

0 for ui = vi ,

1 for ui �= vi .
(4)

Here one finds that dH (uuu,vvv) coincides with the number
of unequal pairs in all possible combinations (ui , vi ) for
i = 1, 2, . . . , n. The distance defined with Eq. (3) is
termed Hamming distance (Imai, 1984), which is useful
for an analytical tool in coding theory. For instance, for
uuu = (0, 0, 1, 0, 1, 0) and vvv = (1, 0, 0, 0, 1, 1), one obtains
dH (uuu,vvv) = 3. The Hamming distance meets the so-called
three axioms of distance. Specifically

(i) dH (vvv1,vvv2) ≥ 0 (the equality holds for vvv1 = vvv2)
(ii) dH (vvv1,vvv2) = dH (vvv2,vvv1)

(iii) dH (vvv1,vvv2) + dH (vvv2,vvv3) ≥ dH (vvv1,vvv3) (the triangular
inequality)

where vvv1, vvv2, and vvv3 represent arbitrary n-dimensional bi-
nary vectors. Geometrically the distance dH (uuu,vvv) is equal
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Fig. 3. The ordering described in Miscellaneous Notes in the Ten Wings of the I Ching, which is termed Type II order in the present paper. The meanings
of 0 and 1 are the same as in Fig. 2.

Fig. 4. The Mawangdui order (Type III). The meanings of 0 and 1 are as in Fig. 2.

Fig. 5. The Fuxi order based on the binary counting system (Type IV). The meanings of 0 and 1 are as in Fig. 2.
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(a) (b)

(c) (d)

Fig. 6. Variation of Hamming distance, dH , along the hexagrammatic sequence, x . (a) Received (Type I) order. (b) Miscellaneous (Type II) order. (c)
Mawangdui (Type III) order. (d) Fuxi (Type IV) order. In (a) and (b) the hollow circles indicate the distances at the boundaries between adjacent
pairs of hexagrams.

to the entire path length between the two position vec-
tors uuu = (u1, u2, . . . , un) and vvv = (v1, v2, . . . , vn), pro-
vided that the path is restricted solely on the sides of the
n-dimensional unit hypercube. In this paper we define the
divergence as the Hamming distance between two nodes on
the hypercube.
3.3 The city-block (the Manhattan) distance

The concept of the Hamming distance defined for the
binary counting system can be extended to the arbitrary n-
dimensional Cartesian coordinate as

D1(uuu,vvv) =
n∑

i=1

|ui − vi |, (5)

where ui and vi (i = 1, 2, . . . , n) are arbitrary real num-
bers, and the suffix 1 indicates the Minkowski’s parame-
ter. In analogy with typical two-dimensional urban systems
the distance defined with Eq. (5) is identified frequently
with the city-block or, more specifically, the Manhattan
distance between the two points in the n-dimensional Eu-
clidean space (Takeuchi, 1989; Jurafsky and Martin, 2009).
With the path being restricted along the sides of the n-
dimensional hyper rectangular solid, the geometrical inter-
pretation of the present distance is basically identical to the
one given for the Hamming system.

4. Results and Discussion
4.1 Comparison between Hamming patterns

The sequential patterns of the Hamming distances be-
tween adjacent hexagrams are plotted in Fig. 6 (Hayata,
2005). In comparison among the four patterns for Type I–
IV, one can see a variation of its own, which depends sensi-
tively upon the permutation of hexagrams. Among the pat-

Table 1. Comparison among frequency distributions of Hamming dis-
tances in Fig. 6.

Distance Frequency

Type I Type II Type III Type IV

1 2 6 22 32

2 20 21 10 16

3 13 10 28 8

4 19 14 2 4

5 0 3 1 2

6 9 9 0 1

Sum 63 63 63 63

Table 2. Comparison among characteristic values of Hamming data in
Table 1, where SD, CV, and µ3, respectively, stand for the standard de-
viation, the coefficient of variation, and the third-order moment around
the mean.

Type I Type II Type III Type IV

ÂdH 211 > 203 > 139 > 120

Mean 3.35 > 3.22 > 2.21 > 1.90
Mode 2 2 3 1
Range 5 5 4 5
SD 1.38 1.54 1.01 1.19
CV 0.41 0.48 0.46 0.63
m 3 1.54 1.78 0.14 2.41
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Fig. 7. Variation of Hamming distances on the boundary between pairs
of hexagrams. The solid (dashed) lines represent the result for Type I
(Type II) order.

Table 3. Comparison between frequency distributions of Hamming data
in Fig. 7.

Distance Frequency

Type I Type II

1 2 6

2 8 9

3 13 10

4 7 2

5 0 3

6 1 1

Sum 31 31

Table 4. Comparison between characteristic values of Hamming data in
Table 3.

Type I Type II∑
dH 91 83

Mean 2.94 2.68

Mode 3 3

Range 5 5

SD 1.01 1.30

CV 0.35 0.49

µ3 0.52 1.55

terns the one for Type II (Fig. 6(b)) exhibits the most com-
plicated behavior, in sharp contrast to the perfect regularity
for Type IV (Fig. 6(d)); the other two (Figs. 6(a) and (c))
are found to be intermediate between these extremes. First,
we find that the pattern for Type III (Fig. 6(c)) bears some
resemblance to the one for Type IV (Fig. 6(d)). However,
because of the imperfect periodicity in the former, which
is evident for instance from the three exceptional data (the
maximum values) at x = 25, 41, and 49 in Fig. 6(c), one
could conclude that such a resemblance would be inciden-
tal and is of no mathematical significance. In particular,
sudden jump at x = 25, which might remind us of a mu-
tant, arises from the distance between 010110 and 001001.
Through comparison among the four patterns, the one for
the received ordering (Type I) would show the most signifi-
cant variation, where there is a certain golden mean between

regularity and complexity. In order to confirm this conjec-
ture, the frequency distributions as well as the characteristic
values of the Hamming distances are listed, respectively, in
Tables 1 and 2. It is interesting to note that the total distance
(i.e., the mean) is found to be largest in Type I order and that
in this ordering the relation, dH ≥ 2, is maintained for the
entire region except two points at x = 53 and x = 61,
from which one could infer that on these sites composers of
the present arrangement had thrown up their hands in de-
spair. According to coding theory, this relation ensures that
a single error in a binary code is detectable (Imai, 1984).
The results for Type I arrangement include other features
to be noted. From Table 2 we find that, in contrast to the
largest mean, the normalized spreading of distances, which
can be measured with a coefficient of variation (CV), be-
comes smallest for Type I, where CV is defined by the stan-
dard deviation (SD) divided by the mean. At the same time,
we can see from Table 1 that curiously enough there is no
frequency for dH = 5, as if composers of Type I order
avoided this value with the greatest circumspection. To dis-
cuss the property unique to the received order in more de-
tail, the distances at the boundaries between adjacent pairs
of hexagrams are shown in Fig. 7 by extracting from Figs.
6(a) and (b) the points marked with hollow circles. The fre-
quency distributions as well as the characteristic values of
the data are given, respectively, in Tables 3 and 4; for Type
I order, in addition to the third-order moment, µ3 = 0.52,
in Table 4, as the magnitude of the fourth-order moment
around the mean, we evaluate µ4 = 4.24. With these re-
sults we can evaluate the skewness α3 = µ3/SD3 = 0.50
as well as the kurtosis α4 = µ4/SD4 = 4.07, from which
one would identify the present distribution as a quasisub-
Gaussian profile. Note that for α3 = 0 one identifies the
profile as the super-Gaussian, purely Gaussian, and sub-
Gaussian, respectively, for 0 < α4 < 3, α4 = 3, and
α4 > 3. In Fig. 7 we would like to arrest attention to the fact
that the path of Type I order (solid line) is confined strongly
within 2 ≤ dH ≤ 4. Indeed, throughout the entire path
there are only three points that miss the target. In particular,
for x ≤ 37, all the points hit the target, and consequently,
are focused into the narrow region. Such a feature cannot
be seen in the path of Type II ordering (dashed line). Here
we shall make a binomial test (α = 0.01) with p being the
probability of finding a point in the target (i.e., 2 ≤ dH ≤ 4)
as

H : p = 1/2, K : p > 1/2, (6)

where H and K , respectively, are the null and the alternative
hypothesis. The cumulative probability of the frequency
can be calculated as follows:

p(28 ≤ Z ≤ 31) = 2.3 × 10−6 < α

for Type I ordering, (7a)

p(21 ≤ Z ≤ 31) = 3.5 × 10−2 > α

for Type II ordering, (7b)

with

p(Z = z) = B(31, 1/2) = 31Cz/231, (8)
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(a)

(b)

Fig. 8. Variation of Hamming distances between the left or the right
side boundaries of adjacent pairs. The solid (dashed) lines indicate
the result for the left (right) side boundaries. Incidentally, in (a), the
evolutional behavior along the x axis bears only a remote resemblance
to a Kármán’s vortex in a fluid. (a) Received (Type I) order. (b)
Miscellaneous (Type II) order.

Fig. 9. Stability analysis. Solid lines: Received (Type I) order. Dashed
lines: Miscellaneous (Type II) order.

where B(n, p) indicates the binomial distribution with its
parameters n and p. Therefore H is rejected for Type I
ordering, whereas it cannot be rejected for Type II ordering.
From the result of the hypothesis test, one could come to the
conclusion that composers of the received order carefully
determine the arrangement of hexagrammatic pairs so that
the orbit does not bounce out from the region as much as
possible.
4.2 Hamming distance between pairs

The results for Hamming distances between the left side
(solid lines) and the right side (dashed lines) boundaries on
neighboring pairs are shown in Fig. 8. Here the arrangement
as is illustrated in Fig. 1 (i.e., propagation from left to right)
is considered, where the entire system consists of thirty-

Table 5. Comparison between frequency distributions of �dH ’s in Fig. 9.

�dH Frequency

Type I Type II

−6 0 1

−4 1 2

−2 10 7

0 10 7

2 7 9

4 3 5

6 1 1

Sum 32 32

Table 6. Comparison between characteristic values of �dH ’s in Table 5.

Type I Type II

Â Dd H 8 < 16

Mean 0.25 < 0.50
Mode -1 < 2
Range 10 < 12
SD 2.28 < 2.74

two pairs (i, i + 1) for i = 1, 3, 5, . . . , 63. Note that the
neighboring pairs are composed of the head (i, i + 1) and
the end (i + 2, i + 3) pairs, where i = 1, 3, 5, . . . , 61. In
comparison between the plots of Fig. 8 we notice that the
two lines are more synchronous for Type I ordering than for
Type II counterpart. Specifically, the city-block distances
between the solid and the dashed lines can be evaluated as

D1 = 2 + 2 + 4 = 8

for Type I ordering, (9a)

D1 = 4 + 2 + 4 + 4 + 2 = 16

for Type II ordering, (9b)

indicating that the divergence for the latter becomes two
times larger than the one for the former. Again, it appears
that the received order (Type I) is of deeper significance
than the nonstandard arrangement (Type II).
4.3 Stability analysis

In Fig. 9 the results for a sensitivity test are superimposed
with solid (Type I) and dashed (Type II) lines. Here the
original arrangement is disturbed by altering the order of
hexagrams within a pair. For instance, for the fifth pair,
the original order, (9, 10), is reversed as (10, 9), with re-
maining thirty-one pairs being unperturbed. The ordinate
of Fig. 9 stands for the variation of the cumulative Ham-
ming distance, due to the additional perturbation. The fre-
quency distributions as well as the characteristic values, re-
spectively, are compared in Tables 5 and 6. It should be
noted herein that, the smaller the magnitudes of the char-
acteristic values become, the more the present arrangement
could be regarded as stable. With this criterion we come to
the conclusion that, in the presence of the disturbance, Type
I arrangement is more stable than Type II counterpart. This
conclusion is consistent with those made for Tables 2 and 4.
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(a)

(b)

Fig. 10. Altered arrangements for the received (Type I) order. (a) zong-gua method. (b) sagua method.

(a) (b)

Fig. 11. Scatter diagrams for (a) zong-gua (rS = 0.999) and (b) sagua (rS = 0.549), where rS represents the Spearman’s rank-correlation coefficient.

4.4 Variants for orderings
There are three methods currently available for obtain-

ing variants of the sequential sixty-four hexagrams, which
are termed zong-gua, sagua, and wugua (Kawamura, 1994).
As is obvious through comparison between the original se-

quence, Fig. 2, and its variants that are shown in Figs. 10(a)
and (b), zong-gua and sagua, respectively, are obtainable
by turning the original hexagrams upside down and by in-
verting all the yin-yang combinations at once. The scatter
diagrams for the two variants (x) are plotted, respectively, in
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(a)

(b)

Fig. 12. Wugua arrangement for (a) Type I and (b) Type II order. (a) Type I′ order. (b) Type II′ order.

(a) (b)

Fig. 13. Variation of Hamming distance, dH , along the hexagrammatic sequence, x . (a) Type I′ order. (b) Type II′ order. The hollow circles indicate
the distances at the boundaries between adjacent pairs of hexagrams.

Figs. 11(a) and (b). In both cases, y indicates Type I order,
and symmetry is preserved across the diagonal line y = x .
Here we note that evidently all the results for the original
hexagrams, which have been presented in Figs. 6–9 as well
as in Tables 1–6, remain unchanged both for zong-gua and
for sagua. Next, we proceed to the third variant, wugua,
the definition of which would, in comparison with the other

two, be somewhat complicate. To explain the concept of
the present variant, we shall rewrite the original hexagram
in the symbolic form, s1s2s3s4s5s6, with si = 0 or 1 for
i = 1, 2, . . . , 6. With this notation one can generate wugua
according to the rule (Kawamura, 1994)

s1s2s3s4s5s6 → s2s3s4s3s4s5. (10)
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Table 7. Comparison between frequency distributions of Hamming dis-
tances in Fig. 13.

Distance Frequency

Type I′ Type II′

0 5 11

1 5 3

2 14 14

3 13 7

4 10 11

5 3 2

6 13 15

Sum 63 63

Table 8. Comparison between characteristic values of Hamming data in
Table 7.

Type I′ Type II′∑
dH 205 196

Mean 3.25 3.11

Mode 2 6

Range 6 6

SD 1.84 2.10

CV 0.57 0.68

µ3 0.51 0.07

Fig. 14. Variation of Hamming distances on the boundary between pairs
of hexagrams. The solid (dashed) lines represent the result for Type I′
(Type II′) order.

Note that with this rule the terminal components, s1 and s6,
on the original code are removed from the one being altered,
and simultaneously the pair s3s4 is repeated in it. The
wugua arrangement that has been realized by Eq. (10) is
given in Fig. 12(a), together with the Miscellaneous version
of the ordering (Fig. 12(b)); the latter corresponds to the
arrangement that has been generated by applying Eq. (10)
to the one shown in Fig. 3. Applying Eq. (10) to, e.g., the
third gua in Fig. 3, one obtains

010000[#8] → 100000[#23]

with s1 = s3 = s4 = s5 = s6 = 0, and s2 = 1 being
substituted into Eq. (10). In what follows we concentrate
on discussing numerical results obtained for Fig. 12.

The variation of the Hamming distance along the hexa-
grammatic sequence is plotted in Fig. 13(a) for Fig. 12(a)

Table 9. Comparison between frequency distributions of Hamming data
in Fig. 14.

Distance Frequency

Type I′ Type II′

0 1 7

1 5 3

2 6 6

3 13 7

4 2 3

5 3 2

6 1 3

Sum 31 31

Table 10. Comparison between characteristic values of Hamming data in
Table 9.

Type I′ Type II′∑
dH 85 76

Mean 2.74 2.45

Mode 3 0, 3

Range 6 6

SD 1.34 1.88

CV 0.49 0.77

µ3 0.77 2.15

and in Fig. 13(b) for Fig. 12(b), where Type I′ (II′) order-
ing stands for Type I (II) ordering for wugua. In these plots
there exist null points where the Hamming distance between
neighboring hexagrams vanishes; more nulls can be seen in
Fig. 13(b) than in Fig. 13(a). In comparison between Fig.
6 and Fig. 13 the variation of the distance becomes more
complicate in Fig. 13, where the distance is fluctuating vio-
lently as though it were a white noise. To examine this be-
havior quantitatively, the frequency distributions as well as
the characteristic values of the distances are listed, respec-
tively, in Table 7 and in Table 8. Detailed comparisons be-
tween Tables 1 and 7 as well as between Tables 2 and 8 in-
dicate that, in contrast to the decreasing means, the distance
data contain more spreading in the wugua arrangement, the
results of which are indeed consistent with our impression
on the comparison between Figs. 6 and 13; the decreasing
means would be attributable to the generating null points
along the axis of abscissas. The behavior on the bound-
aries between pairs is highlighted in Fig. 14 by extracting
the marked points from Fig. 13, showing, in comparison
with Fig. 7, the enhanced complexity along the sequential
axis. In particular, for the dashed lines, one can find that
the distance is fluctuating with a feature being common to a
random walk due to the Brownian motion. This can be con-
firmed quantitatively in Table 9 and in Table 10, which rep-
resent, respectively, the frequency distributions of the Ham-
ming distances and their characteristic values; these should
be compared with those listed in Table 3 and in Table 4, re-
spectively. The results for Hamming distances between the
boundaries on adjacent pairs are shown in Fig. 15, where
the solid (dashed) lines represent the distances between the
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(a) (b)

Fig. 15. Variation of Hamming distances between the left or the right side boundaries of adjacent pairs. The solid (dashed) lines indicate the result for
the left (right) side boundaries. (a) Type I′ order. (b) Type II′ order.

Fig. 16. Stability analysis. Solid lines: Type I′ order. Dashed lines: Type
II′ order.

left (right) boundaries, with the arrangement from left to
right being considered. In comparison between the plots on
Fig. 15 we notice that, although the two lines are more syn-
chronous for Type I′ ordering than for Type II′ counterpart,
in both cases the degrees of synchronicity get considerably
lower than those observed in Fig. 8. Specifically, the city-
block distances between the solid and the dashed lines attain

D1 = 4 + 4 + 6 = 14

for Type I′ ordering, (11a)

D1 = 4 + 4 + 6 + 6 + 2 + 2 = 24

for Type II′ ordering. (11b)

These should be compared, respectively, with D1 = 8 (Eq.
(9a)) and with D1 = 16 (Eq. (9b)), which have already been
given for the original hexagrams. Finally, the results for
the stability analysis are superimposed in Fig. 16 with solid
(Type I′) and dashed (Type II′) lines, which should be com-
pared with those given in Fig. 9. The frequency distribu-
tions as well as the characteristic values, respectively, are
listed in Tables 11 and 12. Again, it should be noted that,
the smaller is the magnitude of the characteristic values, the
more could the present ordering be regarded as stable. With
this criterion we come to the conclusion that, in the pres-
ence of the disturbance, Type I′ ordering is more stable than
Type II′ counterpart. This evaluation coincides with the one
that has been made for the analysis of the original hexa-
grams (Fig. 9) and is consistent with those given for Tables
8 and 10 that have been obtained from the data in Fig. 16.

Table 11. Comparison between frequency distributions of �dH ’s in Fig.
16.

�dH Frequency

Type I′ Type II′

−8 0 2

−6 0 1

−4 4 3

−2 5 2

0 13 10

2 3 4

4 5 5

6 2 2

8 0 2

10 0 1

Sum 32 32

Table 12. Comparison between characteristic values of �dH ’s in Table
11.

Type I¢ Type II¢

Â Dd H 12 < 28

Mean 0.375 < 0.875
Mode 0 = 0
Range 10 < 18
SD 2.76 < 4.30

4.5 Comparison among city-block distances between
Hamming patterns

In summary, quantifying the divergence between Ham-
ming patterns, we shall mention the city-block distances be-
tween two patterns being chosen from Figs. 6 and 13. There
are fifteen combinations being possible (6C2 = 15), the an-
alyzed results of which are given in Table 13, together with
the remaining twenty-one (= 62−15) sites being imbedded.
As is expectable, aside from six nulls on the diagonal line,
one finds that the city-block distance gets minimum for the
combinations (Type I, Type I′) and (Type II, Type II′), be-
cause Type I′ (II′) is nothing but a variant of Type I (II). In
striking contrast to this, it attains the maximum for (Type
IV, Type II′), being the distance between the two extremes,
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Table 13. Comparison among city-block distances between Hamming patterns shown in Fig. 6 (Type I–IV) and in Fig. 13 (Type I′ and II′).

TypeI Type II Type III Type IV Type I′ Type II′

Type I 0 110 104 127 58 127

Type II 110 0 98 123 108 59

Type III 104 98 0 67 124 125

Type IV 127 123 67 0 141 148

Type I′ 58 108 124 141 0 127

Type II′ 127 59 125 148 127 0

(a)

(c)

(b)

(d)

Fig. 17. Two-dimensional expression of a series of Hamming distances with a notched spiral that provides the basis for creating a mandala. (a) Type I
order. (b) Type II order. (c) Type III order. (d) Type IV order.

i.e., the most orderly (Fig. 6(d)) and the most chaotic (Fig.
13(b)) variations. A pattern being shifted along the ordi-
nate may possibly shorten the divergence. Actually, shifting
Type III pattern upward by unity, we find that D1 = 87 for
(Type I, Type III) while D1 = 81 for (Type II, Type III).

5. Creating I Ching Mandalas
Mandalas are highly symmetrical arrangements of either

geometrical figures (Type A) or sacred symbols (Type B),
both of which constellate around the center (Jung, 1968).
Originally they were used as means of the religious achieve-
ment in the Hinduism as well as the Buddhism. The general
interest in the mandalas is nowadays such that they have far
exceeded the boundaries of Indology and Tibetology and
that the mandalas have now come to be regarded as one
of the universal problems directly related to the mysteries
of the substructure of the human psyche, as something es-
sential to, and inherent in human nature (Izutsu, 1976). In
the course of constructing the system of his depth psychol-
ogy, which nowadays is known as Jungian psychology, Carl
Gustav Jung (1875–1961) appreciated the mandalas as a
psychological expression of the totality of the self (Jung,

1968). In the mandalas with its symmetrical arrangement
of a variety of archetypal images, one experiences his own
inner world as an entirely new, organic, and integral whole.
Subsequently, through the study on the I Ching and Confu-
cian metaphysics, Toshihiko Izutsu (1914–1993) introduced
this concept in his astonishingly comprehensive knowledge
of symbolic systems, and aptly expressed it in the term ’I
Ching mandala’ (Izutsu, 1976). The I Ching mandala sig-
nifies the mandalic representation of the sixty-four hexa-
grams, which are constellated around a center with its con-
figuration preserving the four-fold symmetry. To date, sev-
eral pictorial representations of the hexagrams, such as the
Yellow River Diagram, the Lo River Writing, and illustra-
tions in the form of a magic square, have been categorized
into candidates for the I Ching mandala. In this section,
with application of the spiral mapping technique (Hayata,
2004, 2007) we shall attempt to express in a mandalic form
a series of the Hamming data that have been presented in
Fig. 6. In this method, from a point on the outermost orbit
to the center, a notched spiral with the clockwise rotation
is drawn in accordance with the direction of the sequence.
However, because of the uncertainty in the location of the
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(a)

(c)

(b)

(d)

Fig. 18. I Ching mandalas realized by the spiral mapping. (a) Type I order. (b) Type II order. (c) Type III order. (d) Type IV order.

initial point, in actual drawings, instead of the forward prop-
agation, a spiral with the counterclockwise rotation is cre-
ated backward. Applying the spiral mapping technique (see
Appendix B) to the sequence of, e.g., Fig. 6(a), one obtains
the transition

(0, 0) → (6, 0) → (6, 1) → (2, 1) → (2, 4) → (−2, 4)

→ (−2, 1) → (−6, 1) → (−6, −2) → (−4, −2)

→ (−4, −4) → (2, −4) → (2, −3)

→ · · · → (−6, −15) → (−6, −17) → (0, −17).

Here the adjacent points are joined with a segment line. The
spiral pattern realized with this path is shown in Fig. 17(a),
along with the other three, Figs. 17(b)–(d), which have been
obtained for the data, respectively, in Figs. 6(b)–(d). Even-
tually, in order to yield a pattern with the four-fold rotation
symmetry, the original pattern and its seven copies are su-
perimposed. The final results are exhibited in Fig. 18, in
which a variety of configurations are seen. Among them
one would recognize the pattern shown in Fig. 18(b) as most
entangled, whereas, in striking contrast to this, the one in
Fig. 18(d) exhibits the utmost curiosity with its entire shape
being far from the typical mandalic geometry such as a cir-
cle and a square. On the other hand, the pattern of Fig. 18(c)
would be recognizable as the one considerably akin to an
ideal form of mandalas, though its outermost contour dents,
which appears to resemble a flower bud waiting for bloom-
ing. In pronounced contrast to these three, the drawing of

Fig. 18(a), which has been generated from the data of Fig.
6(a), possesses indeed the quality of an authentic mandala
as an organic whole, representing a feature in common with
a flower being full-blown. In other words, the present pat-
tern could be appreciated as a golden mean between the two
extremes (Figs. 18(b) and (d)) mentioned above. Again, we
can find an evidence of concluding that the received (Type
I) ordering of the sixty-four hexagrams is undoubtedly of
most profound significance at least among their permuta-
tions currently available.

6. Conclusion
The sequential patterns of the sixty-four hexagrams in

the I Ching (the Book of Changes) have been analyzed by
calculating a divergence between adjacent hexagrams. Ge-
ometrically, the divergence is equivalent to the Hamming
distance between nodes on a six-dimensional hypercube.
Detailed comparisons have been made between the results
for the received ordering of the hexagrams and those for
other arrangements currently available. Emphasis has been
on the finding that the received ordering hides a sophisti-
cated mathematical structure, suggesting at the same time
that it would hold great significance as an integral whole
of a human archetype. Although the author might simply
be playing with a crab on the seashore, he believes that the
present paper makes surely a tiny contribution to revealing
the secrets of the I Ching.
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Appendix A. Listing the Four Books (#1 to #4) and
the Five Canons (#5 to #9) Which
Constitute the Nine Chinese Classics

#1 The Great Disciplines
#2 The Doctrine of the Mean (the Right Path)
#3 The Analects of Confucius
#4 The Discourses of Mencius
#5 The I Ching (the Book of Changes)
#6 The Shu Ching (the Book of History)
#7 The Shih Ching (the Book of Odes)
#8 The Li Ji (the Book of Rites)
#9 The Chunqiu (the Spring and Autumn Annals)

Appendix B. Outlining the Spiral Mapping
Method

1) Start from the center (0, 0) and move horizontally
along the x-axis with the increment �x . Here �x is the
length of the last value of the sequence. For the data of Fig.
6(a), �x = 6.

2) Subsequently, move upwards with the increment �y.
Here �y is the length of the second value from the terminal.
For Fig. 6(a), �y = 1.

3) For the point being in the first section (x > 0, y >

0), move backward along the horizontal direction (i.e., set
�x < 0, being the decrement) and upwards along the
vertical direction (set �y > 0) until the point attains into
the second section (x < 0, y > 0).

4) For the point being in the second section, move back-
ward along the horizontal direction (set �x < 0) and down-
ward along the vertical direction (set �y < 0) until the
point attains into the third section (x < 0, y < 0).

5) For the point being in the third section, move forward
along the horizontal direction (set �x > 0) and downward
along the vertical direction (set �y < 0) until the point
attains into the fourth section (x > 0, y < 0).

6) For the point being in the fourth section, move forward
along the horizontal direction (set �x > 0) and upwards
along the vertical direction (set �y > 0) until the point
returns to the first section (x > 0, y > 0).

7) Return to Step 3 and repeat this procedure until the
point attains the initial value of the data.
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