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3D Cell Arrangement and Its Pathologic Change
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3D shapes of biological cells and their arrangement were discussed. The positional relationship between cell
arrangement and blood vessels was studied, and it was found that the blood vessels go along some edges of
the cells in the tissue. A quantitative topological analysis of the 3D microvascular network of the liver, i.e.
hepatic sinusoids, was performed with the aid of a computer system for reconstruction from serial tissue sections.
The pathologic change of the sinusoids (vascular channels between the liver cell plates) in cirrhosis (hard liver
with nodular surface) and hepatocellular carcinoma (primary malignant epithelial tumor of the liver) was also
studied. There was a statistically significant difference of the first Betti number, p1, of the sinusoids in the three
groups, the two pathologic cases and normal one. A 2D index was proposed, based on the results from the
reconstruction study and Alexander duality theorem in topology, to perform rapid structural analysis of the 3D
sinusoidal network. It was concluded that the 2D index was useful for estimating the complexity degree of the
3D sinusoidal network.
Key words: 3D Cell Arrangement, Topology, Alexander Duality Theorem, Hepatic Sinusoids, Pathologic
Change

1. Introduction
There are two different types of cells in the body: ep-

ithelial cells and non-epithelial ones. The epithelial cells
cover the free surfaces of the body, varying from the ex-
posed external surface to the smallest free facets within the
internal organs. At least one face of each epithelial cell,
other than stratified epithelium (epithelial cell sheet having
two or more cell layers), looks towards an external space or
an internal lumen (inner space), and another face looks to-
wards a supporting extracellular matrix, the basement mem-
brane. Each epithelial cell therefore has the apical to basal
direction, i.e. it has a polarity. The remaining faces di-
rectly cohere adjacent epithelial cells. On the other hand,
non-epithelial cells have no face looking towards the exter-
nal space or the internal lumen. All the faces of the non-
epithelial cells look towards the connective tissue, extracel-
lular matrix. Each non-epithelial cell has no polarity.
1.1 Epithelial cell

The glandular epithelial cell, forming glands (aggrega-
tion of cells specialized to secrete or excrete materials),
produces substances in the cell and excretes them into the
extracellular space. The excreted fluid goes into the adja-
cent duct, whose inner surface covered by epithelial cells,
and is transported to the internal lumen. The size of the
space in the center of the glands or of the tube is similar to
that of their epithelial cells, or larger than that of them. A
face of each glandular epithelial cell or ductal epithelial one
therefore looks towards the space, and another face looks
towards the basal layer, and the remaining faces front the
adjacent epithelial cells (Fig. 1). Then the 3D shape of most
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of the epithelial cells is hexagonal prism (Fig. 2).
1.2 Non-epithelial cell

Non-epithelial cells, such as fibroblasts or chondrocytes,
are usually discretely distributed in the extracellular matrix
(Fig. 3). Skeletal muscle is also non-epithelial, and consists
of long bundles of more or less parallel cells called mus-
cle fibers. The photomicrograph of skeletal muscle fibers
in cross section illustrates their polygonal outline (Fig. 4).
Hexagons predominate among the polygons.
1.3 Topology of plane division

Among polygonal cells, not only epithelial but also non-
epithelial ones, which are packing a plane, the hexagons
predominate. This can be proved by the use of topology.

When a plane is divided by polygons, the number of
polygons F , the number of edges E and the number of
vertices V give the Euler-Poincaré characteristic denoted by
χ , as follows (Coxeter, 1989a):

χ = F − E + V, (1)

where χ = 2 for a spherical surface, χ = 1 for a flat plane
and χ = 0 for a torus surface.

We assume further that F polygons include f i i-sided
polygons (i = 3, 4, . . . ), then we have �f i = F . Let pi
be the probability of the existence of i-sided polygons, then
pi is f i/F and �i · f i = 2E . In the same way, let v j be
the number of edges joining a vertex ( j = 3, 4, . . . ), then
we have � j ·v j = 2E . In a stable cell division, the number
of edges joining every vertex is three, hence V = v3, and
3 · v3 = 2E .

We can prove that the average of i converges to 6 for large
number of F . Put the above relations into Eq. (1), then we

S9



S10 H. Shimizu

Fig. 1. Photomicrograph of the perpendicular section of the colon epithelial cells. The cytoplasm of each epithelial cell is filled by mucin, white in the
micrograph, and its nucleus is locating at the lower basis. The upper horizontal line is the surface of each epithelial cell, and the lower line is the
basal line towards the extracellular matrix.

Fig. 2. Oblique view image of the surface of the small intestinal epithelial cells by scanning electron microscope. Most of the cell surfaces are hexagons.

Fig. 3. Photomicrograph of the cartilage. Round chondrocytes are distributed in the extracellular matrix.
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Fig. 4. Photomicrograph of skeletal muscles in cross section.

Fig. 5. Photomicrograph of fat tissue in a thick section of a healthy person. The extracellular matrix between fat cell membranes is stained black.

have

F − E + V

= �f i − (1/2)�i · f i + (1/3)�i · f i

= �f i − (1/6)�i · f i = χ.

Then, we have

�(6 − i) · f i = 6χ,

�(6 − i) · pi = 6�pi − �i · pi

= 6 − 〈i〉 = 6χ/F,

where 〈i〉 is the mean number of edges of the polygons. The
larger the number of polygons (F) grows, the smaller 6χ/F
becomes, and 〈i〉 converges to 6.

2. 3D Shape of Cells in the Tissue
The fat tissue is mainly composed of fat cells, and a few

fibers and vessels. The fat cell contains much lipid in the
cytoplasm (material within cells), and then its nucleus is
compressed to the cell margin near the cell membrane. Fat
cells of healthy persons fill up the space in the fat tissue,

and their shapes become polyhedra (Fig. 5). Fat cells of
malnutritional persons become spherical and are discretely
distributed in the gelatinous matrix, because of exhaustion
of lipid (Fig. 6). The spherical cell shape is caused by
surface tension like the case of blood cells.
2.1 Why tetrakaidecahedron predominates in fat

cells?
We assume that one type of regular polyhedra with the

same size is filling the 3D space, and every face contacts
precisely with other polyhedron’s face. For the space-filling
regular polyhedra the following equation is satisfied (Cox-
eter, 1989b),

sin(π/p) · sin(π/r) = cos(π/q), (2)

where p is the number of edges of each face of a regular
polyhedron, q the number of edges or faces joining each
vertex in the polyhedron, r is the number of regular polyhe-
dra joining one edge in the 3D arrangement. The only one
combination of integers larger than 2 satisfying Eq. (2) is
p = 4, q = 3, r = 4, which is the case of cubes piled along
the cubic lattice.
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Fig. 6. Photomicrograph of fat tissue of a malnutritional person. Fat cells become spherical and are distributed discretely in the gelatinous extracellular
matrix.

Fig. 7. Photomicrograph of fat tissue in a thin section of a healthy person. Three border-lines of fat cells join one point in histological cross section.

Fig. 8. Micrograph of thick liver tissue by confocal laser scanning microscopy. The white arrows present bile canaliculi.
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Fig. 9. Micrograph of liver parenchyma by confocal laser scanning microscopy.

Fig. 10. Photomicrograph of liver tissue. The arrow presents one branch of the sinusoids. The branch goes along faces of the surrounding liver cells.

Another equation (3) comes for a regular polyhedron,

pF = 2E = qV (3)

where V , E and F are the numbers of vertices, edges, and
faces, respectively.

Needless to say, actual fat cells in the tissue are not reg-
ular polyhedra, and we have, in general, q = 3, r = 3, i.e.
the number of edges or faces joining each vertex is 3, and
the number of cells joining each edge in the packed cells is
also 3. Then, three border-lines of fat cells join one point in
histological cross section (Fig. 7). This fact means that four
cells join at one vertex in the space filling fat cells, owing
to dynamical stability. Then, if we put q = 3, r = 3 into
Eq. (2), we obtain p = 5.1044 . . . . This means that the

mean number of edges of one face of the space-filling fat
cells is 5.1044 . . . . Put these values into Eq. (3) and Euler’s
formula (4) (Coxeter, 1989c),

F − E + V = 2, (4)

hence we obtain F = 13.398 . . . . Thus, it is shown that the
mean number of faces of space-filling fat cells is 13.398 . . . .

Kajita (1980) reported of a statistical computer analysis
of space division, using random packing of spheres and
Voronoi polyhedron (Suwa, 1981), and of its geometri-
cal consideration. His study showed the predominance of
tetrakaidecahedra and pentagonal faces, and values of F
varied from 13.5 to 13.6, and those of p from 5.10 to 5.12
on the average. These two values are very close to those of
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(a) (b)

Fig. 11. (a) Histogram of the number of faces of a liver cell. (b) Histogram of the number of faces looking towards sinusoids per liver cell.

Fig. 12. Photomicrograph of pancreas. Pancreatic tissue is filled by acini, encased by black lines. The white arrow presents an acinus, composed of
pleural cells. The black arrows present microvessels, going along the edge of the pancreatic acini.

the fat cells obtained above.
2.2 Liver cell as a unique epithelial cell

Liver cells are epithelial, but have a unique shape and a
unique cell arrangement. The liver cell is a glandular ep-
ithelial cell that produces and excretes bile (fluid secreted
by liver cells). Each liver cell must play the role of not only
a glandular epithelial cell but also a ductal epithelial cell,
because there is large distance between the liver cell and
interlobular bile duct. Minute canals, in which bile flows
from liver cells to interlobular bile ducts, are called bile
canaliculi. Bile canaliculi run between liver cells through-
out the hepatic lobules. As a rule established by observa-
tion, a single canaliculus runs between each adjacent pair of
liver cells. The diameter of the bile canaliculi is extremely
smaller than the size of lever cells, and the lumina of the
canaliculi have no influence on the shape and arrangement
of liver cells (Fig. 8).

Liver cells fill up the space between sinusoids, 3D net-
works of small vessels, throughout the hepatic lobules, and

liver cells form liver cell plates with 3D networks. The
shape of liver cells is polyhedral. Some faces of each liver
cell look towards the sinusoids, and the remaining faces
front adjacent liver cells. The liver lobule is therefore com-
posed of two structures, i.e. liver cell plates and sinusoids,
and this is different from fat tissue. The volume fraction
of liver cell plates and that of sinusoids are about 80% and
20% of the liver lobules, respectively.
2.3 How many faces each liver cell has in average?

The present author made an experiment to measure the
average number of faces of liver cell. The human normal
liver tissue labeled by rhodamine phalloidin was used, and
liver cell membranes of fifty cells were observed by confo-
cal laser microscopy at intervals of 1.013 µm in thickness
(Fig. 9). The diameter of each branch of sinusoids was sim-
ilar to the size of liver cells, and the sinusoids were found
to go along faces of the cells (Fig. 10). Eleven-sided liver
cells predominate, and the mean number of faces of liver
cells was 13.02. On the other hand, the cells with four faces
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(a) (b)

Fig. 13. (a) Illustration of three cells meeting at one vertex on a plane. (b)
Illustration of four cells meeting at one vertex on a plane.

(a) (b)

Fig. 14. Illustrations (a), (b) transformed from the unstable pattern in Fig.
13b.

looking towards sinusoids predominated and the mean num-
ber of faces looking towards sinusoids per liver cell is 3.82
(Figs. 11a and 11b) (Shimizu et al., 1998).

The mean number of faces, 13.02, is close to that of fat
cells obtained based on the topology and that of Voronoi
polyhedra by the statistical computer simulation. But, the
predominant value did not agree with the theoretical one.
In the topological analysis or the computer simulation, the
examined space was divided by a single kind of cells. On
the other hand, the human liver is filled up by two structural
elements, i.e. liver cells and sinusoids, this may influence
on the predominant number of faces.

In conclusion, when cells fill up the space, the mean
number of faces of each cell is close to 14, regardless of
type of cells, such as non-epithelial cells or epithelial cells.
And when polyhedra fill up the space, the mean number of
faces of each polyhedron is close to 14, regardless of type of
the used method, such as topology or computer simulation.

3. Who Determines the Arrangement of Blood Ves-
sels?

A cell in general means a small, more or less closed space
or room. In biology a cell means the smallest unit of pro-
toplasm (living contents in a cell) capable of independent
existence. An acinus (small unit) of the pancreas (an or-
gan) is composed of plural cells, and it is a more or less
closed space, then we can consider a pancreatic acinus as a
cell (Fig. 12). We regard a cell as a general meaning in the
following discussion.

When cells fill up some part of a plane, it is dynamically
stable if three cells meet at one vertex (Fig. 13a). Four cells
rarely meet at one vertex (Fig. 13b), because this arrange-
ment is dynamically unstable, and transforms into a state
with two vertices at which three cells meet (Figs. 14a and
b).
3.1 Positional relationship between cells and blood ves-

sels
When many 3D cells fill up some part of the space, four

cells meet at one vertex and three cells meet at one edge,
this is dynamically a stable condition. If the diameter of
blood vessels is smaller than the size of cells, the vessels
go along the position of edges of the cells (Fig. 12). It is

(a)

(b)

(c)

Fig. 15. (a) Photomicrograph of a normal liver. (b) Photomicrograph of a
cirrhotic liver. (c) Photomicrograph of a hepatocellular carcinoma.
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Fig. 16. Construction of a node-branch network corresponding
to a multiply connected solid branches. Cycle rank p1 (num-
ber of independent cycles) is calculated by Euler-Poincaré formula:
p1 = p0 − n+ b= 1 − 16 + 17 = 2.

guessed that the pressure between cells forces small vessels
move to intercellular spaces such as the position along the
edges.

There is an observation that small blood vessels going
along the cell edges do not occupy all edges of cells but
use only some edges. Some researchers speculate on this
reason, but it is not confirmed. The length distribution of
small vessel branches therefore represents somewhat that
of cell edges.

It is noted here that no significant difference was ob-
served between space-filling cells with DNA and those
without DNA in distributions of the numbers of faces and
the numbers of edges of particular faces (Lewis, 1923,
1933; Matzke, 1939; Kajita, 1980). This fact should mean
that DNA has no effect on the shape of the cells. By the way
there are few reports on dimensions, such as edge lengths or
face areas, of the space-filling cells. DNA can of course or-
der the proliferation (increase in number) of small vessels
or endothelial cells at some stage. But DNA has no influ-
ence on where the small vessels go along or how long the
edges of the vessels are. Therefore, it is physical laws that
determine these things statistically.

4. Pathologic Change of the 3D Structure of Hepatic
Sinusoids

Liver cells exchange substances with the blood in the si-
nusoids. The lining of the sinusoids consists of a thin layer
of endothelial cells and fixed macrophages, the stellate cells
of Kupffer. The space between the sinusoids is light mi-
croscopically filled up by liver cell plates in normal human
liver (Fig. 15a). This condition is the same in cirrhotic liver
(Fig. 15b). In hepatocellular carcinoma (HCC), carcinoma
cells are filling up the space between the sinusoids (Fig.
15c). The liver cell plates are occupying the major part of
the liver lobules, and their 3D structure is very complicated,
so that we choose the sinusoids as an object of study that
are a complementary set of the liver cell plates, and their
3D structure can be handled more easily than that of the
liver cell plates.
4.1 Topological analysis of the 3D sinusoid structure

The 3D sinusoid structure can be treated much more eas-
ily if we replace each solid branch of the sinusoids by a
one-dimensional complex (node-branch network) of topo-
logically equal connecting relationship (Fig. 16). The node-

(a)

(b)

(c)

Fig. 17. Plane-type reconstruction figures of the sinusoids in seven serial
sections by a computer system. (a) Normal liver. (b) Cirrhotic liver. (c)
Hepatocellular carcinoma.
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(a)

(b)

(c)

Fig. 18. Schemas illustrating the relationship between the original net-
work and the network figure obtained using the author’s computer
system. (a) A reconstructed figure of sinusoids in three serial sec-
tions, by direct viewing from above. The sinusoids in the first sec-
tion are shown by the striped areas; those in the second section by the
white areas, and those in the third section by the dotted areas. (b) A
node-branch network corresponding the skeleton of (a), that is, the orig-
inal network. p1 = p0 − n+ b = 2 − 14 + 14 = 2. (c) A net-
work figure of (a) obtained using the author’s computer system. The
nodes in (c) denote the sinusoidal segments in the serial sections in (a).
p1 = p0 − n+ b= 2 − 12 + 12 = 2. In the algorithm, the number of
nodes (n) and number of branches (b) in (c) were different from those
of the original network in (b). However the number of connected com-
ponents (p0) and number of independent cycles (p1) in (c) are identical
with those of the original network in (b).

branch network of a sinusoid network is formed by putting
a line in each sinusoid branch and by putting a node at each
joining point and at each endpoint of the sinusoid branches.
Topological analysis can then be easily performed by means
of an invariant, i.e. cycle rank p1. p1 may be defined as the
number of independent cycles (Harary, 1972). Let n be the
number of nodes and b the number of branches, then p1 can
be determined by Euler-Poincaré formula

n − b = p0 − p1, (5)

where p0 denotes the number of connected components in
the network. An example of calculating the p1 of a network
is shown in Fig. 16. p0 and p1 are quantities termed the 0th
and 1st Betti numbers, respectively. The 1st Betti number
is a number of independent cycles (Fig. 16), and means the
complexity of the figure.
4.2 Computer-aided reconstruction

The computer-aided reconstruction system was em-
ployed, which was developed by Rise Co. Ltd. (Sendai,

Fig. 19. S 2 − {N} and R 2 are homeomorphic because there exists a
continuous bijective map f of S 2 − {N} onto R2 such that the inverse
map f −1 is also continuous. That is S 2 − {N} ∼= R2.

Fig. 20. Schema illustrating the relationship between the number of
sinusoidal profiles and the first Betti number of the 3D hepatic cell
plates. Black islands are the counted profiles that are fully encased by
hepatic cell plates. Broken lines show handles of the 3D hepatic cell
plates.

Japan) and enables 3D image reconstruction from serial tis-
sue sections by the use of a personal computer. A square
test area with side of 200 µm was set in each serial tissue
section, and the outlines of the sinusoids contained in the
square areas were fed into computer through digitizer.

The reconstruction program consists of two types of jobs,
a plane type (Figs. 17a, b and c) and network type. By
means of the network reconstruction program, when a seg-
ment (sinusoid lumen) overlaps with another segment in an
adjacent tissue section, then a straight line is drawn between
each barycenter of the two segments (Fig. 18). After n, b,
and p0 are confirmed, p1 can be calculated. This computer
system also makes it possible to calculate the volume of the
structure from 2D images obtained from histological sec-
tions.
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(a) (b) (c)

Fig. 21. Sinusoidal profiles in a given area, 400 × 400 µm2 in size, on a single tissue section. Black islands are the counted profiles. (a) Normal liver.
(b) Cirrhotic liver. (c) Hepatocellular carcinoma.

4.3 3D structural change of sinudoids in cirrhosis and
hepatocellular carcinoma

The mean (±SD) p1 of the sinusoids in the examined
tissue, 200 × 200 × 80 µm3 in size, was 181.2 ± 23.9 in
the normal liver, 84.9 ± 19.1 in the cirrhotic liver (Shimizu,
1993), and 46.5±33.0 in HCC (Shimizu, 1996). There was
a statistically significant difference in p1 of the sinusoids in
the same size tissue between any two groups in the three
ones. The mean (±SD) sinusoid volume in the tissue was
6.43 ± 0.55 (105 µm3) in the normal liver, 6.11 ± 1.33 (105

µm3) in the cirrhotic liver (Shimizu, 1993), and 5.43 ±
1.94 (105 µm3) in HCC (Shimizu, 1996). There was no
statistically significant difference in the sinusoid volume in
the same size tissue between any two groups in the three
ones.

5. Which are More Complex, Sinusoids or Liver Cell
Plates?

The liver tissue is light-microscopically filled up by the
3D network of liver cell plates and that of sinusoids. Which
network is more complex? In order to answer this question
we must first explain one theorem in the topology.

The 1D sphere S1 is a circumference in the 2D Euclidian
space (R2) and the 2D sphere S2 is a surface of a solid
sphere in the 3D Euclidian space (R3). Let S1 − {M} be a
figure of S1 from which a point M is removed, and S2−{N}
a figure of S2 from which a point N is removed (Fig. 19).
In topology two figures X and Y are called homeomorphic,
i.e. X ∼= Y , if there exists a continuous mapping f of X
onto Y such that the inverse map f −1 is also continuous.
Then S1 − {M} and R1 are homeomorphic, S2 − {N} and
R2 are also homeomorphic. Therefore, S1 − {M} ∼= R1,
S2 − {N} ∼= R2.

Similarly, let S3 − {Q} be a figure of S3 from which a
point Q is removed, then S3 − {Q} ∼= R3. The figure of
S3 is identical with the figure of R3 ∪ {Q}, and the figure
of S3 cannot be embedded in R3, but can be embedded in
R4. We can sensuously consider that S3 is almost the same
as R3 where we live, but the space R3 is devoid of a point
of infinity.

Fig. 22. Regression line of p1 versus number of sinusoidal profiles in a
given area. Open circles (◦) show normal livers. Open squares (�) show
cirrhotic livers. Closed circles (•) show hepatocellular carcinomas.
Number of sinusoidal profiles = 0.42p1+27.96. Correlation coefficient
= 0.77.

5.1 Alexander duality theorem
Let Sn be an n-sphere and � be a subpolyhedron of

Sn. The p-th Betti number of figures is denoted by Rp.
Then, according to Alexander, between the Betti numbers of
the closed polyhedron � and those of the open polyhedron
Sn − � there takes place the duality relation (Lefschez,
1949)

Rp(S
n − �) = Rn−p−1(�) + δp,0 − δp,n−1, (6)

where the δi, j are Kronecker deltas (when i = j , δi, j = 1,
when i �= j , δi, j = 0). Put p = 1, n = 3 into the formula
(6), δ1,0 = δ1,2 = 0, and then

R1(S
3 − �) = R1(�). (7)
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5.2 Which are more complex, sinusoids or liver cell
plates?

The liver tissue is filled up by sinusoids and liver cell
plates, let the sinusoids be looked upon as �, then S3 − �

corresponds to the liver cell plates. Here we assume that the
outside of the examined domain is filled up only by liver cell
plates. Then the formula (7) shows that the p1 of sinusoids
is the same as that of liver cell plates. The complex degree
of sinusoids is therefore the same as that of liver cell plates
topologically.
5.3 2D index estimating the complex degree of 3D

structure
Reconstruction study from serial tissue sections requires

much time and energy, not being easily applicable to rou-
tine histopathological diagnosis. Based on the results from
the previous reconstruction study and resorting to the prin-
ciples of topology, we now propose a method to use an in-
dex that can easily be evaluated from a single tissue section
and indicates the degree of complexity of the 3D sinusoidal
structure. The index, called “numerical density” in stereol-
ogy, is the number of sinusoidal profiles (cross sections) in
a given area on a single tissue section.

Each segment of sinusoids has almost straight, having a
tubular structure, and no knots are found in normal liver,
cirrhotic liver, or HCC. There are in the network very few
sprouts or blind ends; in other words, each sinusoidal seg-
ment connects with others at its bilateral ending points
(Motta et al., 1978). One may see therefore that each si-
nusoidal profile appearing in a 2D section corresponds to a
“handle” of hepatic cell plates in 3D space, if the profile is
not cut at the examined area’s margin (Fig. 20).

The number of sinusoidal profiles, or 2D index, in a given
square area 400 × 400 µm2 on a single tissue section was
counted (Fig. 21). The mean number of sinusoidal profiles
(±SD) was 104.2 ± 13.1 in 5 normal livers, 77.0 ± 15.8 in
10 cirrhotic livers (Shimizu et al., 1994) and 34.0 ± 10.7
in 10 HCCs (Shimizu and Suda, 1998). The differences
between the three groups were statistically significant (P <

.01). The number of sinusoidal profiles was approximately
linearly related to the p1, a 3D structural index, of the
sinusoids. The correlation coefficient = .77 (Fig. 22).

The number of profiles in a given area on a single section
of a 3D structure is not always an effective index for struc-
tural analysis if the structure has anisotropic distribution,
has many sprouts or consists of curved branches. How-
ever, the sinusoidal networks from normal, cirrhotic liver
and from HCC proved to be isotropic in its distribution in
3D space. In addition, they had very few sprouts and were
composed of almost straight, tubular segments. Therefore,
the number of profiles in a given area on a tissue section
was considered to serve as a useful index in structural anal-
ysis (Shimizu et al., 1994). There is, however, an exception,
where the sinusoidal profile does not correspond to a handle
of hepatic or HCC cell plates. This case occurs when the si-
nusoidal network is cut just the branching point and appears
in the tissue section. The number of branching points con-

tained in a certain volume of tissue is larger in normal liver
than in cirrhotic liver, and the number is much less in HCC.
This suggests the number of sinusoidal profiles may have
been more underestimated that in normal liver than in the
cirrhotic liver and that in the cirrhotic liver the number may
have been more underestimated than in HCC. In spite of this
situation, the 2D index, or the number of sinusoidal profiles
in a given area on a single tissue section, is therefore useful
for estimating the degree of complexity of the 3D sinusoidal
network.

In routine histopathologic examination of needle biopsy
specimens (removed tissues for microscopic diagnosis)
from cirrhotic liver, the diagnosis of cirrhosis is not always
possible because of the small size of the biopsy specimen,
which often fails to contain septal tissues (fibrous bands)
characteristic of cirrhotic changes. In such cases, the 2D
index may be effective for strengthening a diagnosis of cir-
rhosis. It is thus anticipated that application of the 2D in-
dex would facilitate rapid characterization of the 3D struc-
ture of isotropically distributed capillaries and other 3D net-
work structures in other organs and their changes in various
pathologic conditions.
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