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This text describes a novel mathematical model that unifies all geometrical minimal shape problems by defining
geometrical finite elements. Three types of elements are defined: line, triangle and tetrahedron. By associating
a volume for each element type, the elements can be used together in the discretization of a geometrical shape.
For each element type, its corresponding isovolumetric element is also defined. The geometrical minimal shape
problem is formulated as an equality constrained minimization problem. The importance of this approach is that
apparently distinct problems can be treated by a unified framework. The augmented Lagrangian method is used
to solve the associated unconstrained minimization problem. A quasi-Newton method is used, which avoids the
evaluation of the Hessian matrix. The source and executable computer codes of the algorithm are available for
download from the website of one of the authors.
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1. Introduction
This text describes a mathematical model that unifies all

geometrical minimal shape problems by defining geomet-
rical finite elements. Three types of elements are defined:
line, triangle and tetrahedron. The elements can be used to-
gether through the unifying concept of volume. For each
element type, its corresponding isovolumetric element is
also defined. The shape is discretized into line, triangle and
tetrahedron elements. The elements are interconnected at
their nodal points. The geometrical minimal shape problem
is formulated as an equality constrained minimization prob-
lem. The augmented Lagrangian method is used to solve the
associated unconstrained minimization problem. A quasi-
Newton method is used, which avoids the evaluation of the
Hessian matrix.

The following conventions apply unless otherwise speci-
fied or made clear by the context. A Greek letter expresses
a scalar. A lower case letter represents a column vector.

2. Line Element Definition
Figure 1 shows the geometry of the line element for a

3D space. The nodes are labeled 1 and 2. The nodal
displacements transform the element from its initial state
to its final state.

v̄ = v + u2 − u1 (1)

‖v̄‖ = (v̄T v̄)1/2. (2)

The previous expression can be written as:

‖v̄‖ = [
vT v + 2vT (u2 − u1) + (u2 − u1)T (u2 − u1)

]1/2
.

(3)
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2.1 Element final volume
Supposing that the line element has a fixed cross sec-

tional area α, its final volume can be written as:

φe(u) = α‖v̄‖. (4)

2.2 Gradient of the element final volume
The nodal displacements vectors are numbered accord-

ing to its node numbers. Their individual components are
numbered as follows:

u1 =

u1

u2

u3


 , u2 =


u4

u5

u6


 . (5)

The gradient of the element final volume with respect to the
nodal displacements can be written as:

∇φe(u) = α
1

‖v̄‖
[−v̄

+v̄

]
. (6)

3. Triangle Element Definition
Figure 2 shows the geometry of the triangle element for a

3D space. The nodes are labeled 1, 2 and 3 while traversing
the sides in counterclockwise fashion. Each side is labeled
with the number of its opposite node. The nodal displace-
ments transform the element from its initial state to its final
state.

v̄1 = v1 + u3 − u2 (7)

v̄2 = v2 + u1 − u3 (8)

v̄3 = v3 + u2 − u1 (9)

w = v1 × v2 (10)

w̄ = v̄1 × v̄2. (11)
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The previous expression can be written as:

w̄ = w

+v1 × u1 + v2 × u2 + v3 × u3

+u1 × u2 + u2 × u3 + u3 × u1. (12)

The vectors w and w̄ are orthogonal to the element in the
initial state and final state respectively. Note that these
vectors point toward the observer.
3.1 Element final volume

Supposing that the triangle element has a fixed thickness
λ, its final volume can be written as:

φe(u) = λ

2
‖w̄‖. (13)

3.2 Gradient of the element final volume
The derivatives of the element final volume with respect

to the nodal displacements can be written as:

dφe

du j
i

= λ

2‖w̄‖

(
w̄1

∂w̄1

∂u j
i

+ w̄2
∂w̄2

∂u j
i

+ w̄3
∂w̄3

∂u j
i

)
. (14)

The nodal displacements vectors are numbered according
to its node numbers. Their individual components are num-
bered as follows:

u1 =

u1

u2

u3


 , u2 =


u4

u5

u6


 , u3 =


u7

u8

u9


 . (15)
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The gradient of the element final volume can be written as:

∇φe(u) = λ

2‖w̄‖


 w̄ × v̄1

w̄ × v̄2

−w̄ × v̄1 − w̄ × v̄2


 . (16)

4. Tetrahedron Element Definition
Figure 3 shows the geometry of the tetrahedron element.

The base nodes are labeled 1, 2 and 3 while traversing the
sides in counterclockwise fashion looking from the apex,
which is labeled 4. The nodal displacements transform the
element from its initial state to its final state.

v̄1 = v1 + u1 − u4 (17)

v̄2 = v2 + u2 − u4 (18)

v̄3 = v3 + u3 − u4. (19)

4.1 Element final volume
The final volume of the tetrahedron element can be writ-

ten as:

φe(u) = −1

6
(v̄1)T (v̄2 × v̄3). (20)

Note that if the apex moves below the base, the volume
becomes negative.

v̄1 = v1 + u1 − u4

v̄2 = v2 + u2 − u4

v̄3 = v3 + u3 − u4


 ⇒ (21)

φe(u)

= −1

6
(v1 + u1 − u4)T

[
(v2 + u2 − u4) × (v3 + u3 − u4)

]
(22)

di = ui − u4 ⇒ (23)

−6φe(u) = (v1)T (v2 × v3)

+(d1)T (v2 × v3) + (d2)T (v3 × v1) + (d3)T (v1 × v2)

+(v1)T (d2 × d3) + (v2)T (d3 × d1) + (v3)T (d1 × d2)

+(d1)T (d2 × d3). (24)
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4.2 Gradient of the element final volume
The nodal displacements vectors are numbered accord-

ing to its node numbers. Their individual components are
numbered as follows:

u1 =

u1

u2

u3


 , u2 =


u4

u5

u6


 , u3 =


u7

u8

u9


 , u4 =


u10

u11

u12


 .

(25)

The gradient of the element final volume can be written as:

∇φe(u) = 1

6




v̄3 × v̄2

v̄1 × v̄3

v̄2 × v̄1

−v̄3 × v̄2 − v̄1 × v̄3 − v̄2 × v̄1


 . (26)

5. Isovolumetric Element Definition
An element that does not change its volume is desir-

able for many problems types. Ideally, the volume change
should be zero for the isovolumetric element in its final
state.
5.1 Constraint function

Considering φ0
e as the initial volume, a constraint func-

tion associated with the element can be defined as:

ϕe(u) = φe(u) − φ0
e

φ0
e

. (27)

An element with constant volume satisfies the following
equation:

ϕe(u) = 0. (28)

A tolerance for the constraint violation implies that the rela-
tive volume change is less than or equal this tolerance. Note
that the element can change its shape while keeping a con-
stant volume.
5.2 Gradient of the constraint function

The gradient of the constraint function with respect to the
nodal displacements of the element can be written as:

∇ϕe(u) = 1

φ0
e

∇φe(u). (29)

5.2.1 Line element

∇ϕe(u) = 1

‖v‖‖v̄‖
[−v̄

+v̄

]
. (30)

5.2.2 Triangle element

∇ϕe(u) = 1

‖w‖‖w̄‖


 w̄ × v̄1

w̄ × v̄2

−w̄ × v̄1 − w̄ × v̄2


 . (31)

5.2.3 Tetrahedron element

∇ϕe(u) = 1

(v1)T (v3 × v2)

·




v̄3 × v̄2

v̄1 × v̄3

v̄2 × v̄1

−v̄3 × v̄2 − v̄1 × v̄3 − v̄2 × v̄1


 . (32)

5.3 Severe cancellation
Inaccuracy often results from severe cancellation that oc-

curs when nearly equal values are subtracted (Goldberg,
1991). Note that inaccuracy can result from the difference
between the final and initial volumes because they can be
arbitrarily close for the isovolumetric element. However,
severe cancellation can usually be eliminated by algebraic
reformulation. The constraint function associated with the
element, reformulated to avoid severe cancellation, can be
written for the line, triangle and tetrahedron elements.

5.3.1 Line element

‖v‖v̂ = v (33)

‖v‖z = u2 − u1 (34)

ϕe(u) = zT (2v̂ + z)

‖v̂ + z‖ + 1
. (35)

5.3.2 Triangle element

‖w‖ŵ = w (36)

‖w‖z = (v1 − u2) × u1

+(v2 − u3) × u2

+u3 × (v1 + v2 + u1) (37)

ϕe(u) = zT (2ŵ + z)

‖ŵ + z‖ + 1
. (38)

5.3.3 Tetrahedron element

‖vi‖v̂i = vi (39)

‖vi‖zi = ui − u4 (40)

(v̂1)T (v̂2 × v̂3)ϕe(u) = (v̂1)T (v̂2 + z2) × z3

+(v̂2)T (v̂3 + z3) × z1

+(v̂3)T (v̂1 + z1) × z2

+(z1)T (z2) × z3). (41)

6. The Geometrical Minimal Shape Problem
The geometrical minimal shape problem can be written

as an equality constrained minimization problem, with one
constraint for each isovolumetric element, as:

min π(u) =
∑

e

φe(u) (42)

subject to ϕe(u) = 0. (43)

6.1 Augmented lagrangian method
Historically, the quadratic penalty method was the first

method used for constrained nonlinear programming. Due
to its simplicity, it is still used in practice, although it has an
important computational disadvantage. The augmented La-
grangian method is related to the quadratic penalty method,
but it reduces the possibility of ill conditioning by intro-
ducing Lagrange multiplier estimates into the function to
be minimized. Consider µ as the penalty parameter, y as
the vector of Lagrange multipliers and that the subscript e
stands for a particular element. The augmented Lagrangian
function and its gradient can be written as:

π(u, y, µ) =
∑

e

φe(u) +
∑

e

[µ

2
ϕe(u) − ye

]
ϕe(u) (44)

∇uπ(u, y, µ) =
∑

e

∇φe(u) +
∑

e

[µϕe(u) − ye] ∇ϕe(u).

(45)
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Fig. 4.

Fig. 5.

The following algorithm was adapted from Conn et al.
(2010). The scalar µ is the penalty parameter. The vec-
tor y is the vector of Lagrange multipliers. The tolerance
ω is used to find an approximate solution with the current
value of the penalty parameter and the current estimates of
the Lagrange multipliers. The tolerance η is used to check
if the current value of the penalty parameter is producing
an acceptable level of relative volume change of the isovol-
umetric elements. As the iterations proceed, the Lagrange
multipliers are updated, the penalty parameter is increased
and the tolerances are tightened. The iterations terminate
if the infinity norm of the gradient of the augmented La-
grangian function becomes less than or equal to ω∗ and the
maximum relative volume change of the isovolumetric ele-
ments becomes less than or equal to η∗.

Choose u, y, µ, η∗ and ω∗;

η ← 1

µ0.1
;

ω ← 1

µ
;

while max |ϕe(u)| > η∗ or ‖∇uπ(u, y, µ)‖∞ > ω∗
loop

Minimize π(u, y, µ) until ‖∇uπ(u, y, µ)‖∞ ≤ ω;
if max |ϕe(u)| ≤ η

ye ← ye − µϕe(u);
η ← η

µ0.9 ;
ω ← ω

µ
;

else
µ ← 10µ;
η ← 1

µ0.1 ;

ω ← 1
µ

;
end if;

end loop;
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Fig. 6.

Table 1.

Elements y(0) Error (%)

384 0.8470554 0.15

1536 0.8480256 0.04

6144 0.8482543 0.01

Fig. 7.

It is interesting to note that one special type of geometrical
minimal shape problem, composed only of line elements,
can be used to define the form of tensegrity structures. A
review of the important literature related to form finding
methods for tensegrity structures is given by Tibert and Pel-
legrino (2003) and more recently by Juan and Tur (2008).

7. Nonlinear Programming Problem
In order to find the local minimum points of a nonlin-

ear multivariate function, the general strategy that can be
used is: Choose a starting point and move in a given direc-
tion such that the function decreases. Find the minimum
point in this direction and use it as a new starting point.
Continue this way until a local minimum point is reached.
The problem of finding the minimum points of a nonlin-
ear multivariate function is replaced by a sequence of sub
problems, each one consisting of finding the minimum of
a univariate nonlinear function. In quasi-Newton methods,
starting with the unit matrix, a positive definite approxima-

tion to the inverse of the Hessian matrix is updated at each
iteration. This update is made using only values of the gra-
dient vector. A direction such that the function decreases
is calculated as minus the product of this approximation of
the inverse of the Hessian matrix and the gradient vector
calculated at the starting point of each iteration. Conse-
quently, it is not necessary to solve any system of equations.
Moreover, the analytical derivation of an expression for the
Hessian matrix is not necessary. Note that by minimizing
a function it is almost impossible to find a local maximum
point. The only exception is that it is possible to find a sad-
dle point, that is, the point is a local minimum and also a
local maximum. However, even in this improbable situa-
tion, a direction of negative curvature to continue toward a
local minimum point can be found as described by Gill and
Murray (1974). The computer code uses the limited mem-
ory BFGS to tackle large scale problems as described by
Nocedal and Wright (2006). It also employs a line search
procedure through cubic interpolation as described by No-
cedal and Wright (2006).

8. Examples
The primary colors red, green and blue are used for the

line, triangle and tetrahedron elements respectively. The
secondary colors cyan, magenta and yellow are used for
the isovolumetric line, triangle and tetrahedron elements
respectively. The usual parameters used in the examples
are µ0 = 103, ω∗ = 10−3 and η∗ = 10−5.
Example 1: An initially flat circular surface with thickness
= 2, radius r = 1 and the boundary displaced according to
the following hyperbolic paraboloid equation, where h =
1/2. Figure 4 shows the meshes for the initial and final
surfaces.

z = h

[( x

r

)2
−

( y

r

)2
]

.

Example 2: A cylinder with thickness = 1, radius r = 1
and height h = 1. Figure 5 shows the meshes for the initial
and final surfaces.

The final surface is symmetrical about the Z axis. The
following analytical solution for the cross-section of the
surface in the Y Z plane is described by Isenberg (1992).

y(z) = c cos h
( z

c

)
.
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Fig. 8.

Fig. 9.

Note that y(0) = c. The value c is a solution of the
following equation. In this example, c = 0.8483379.

2r

h
= 2c

r
cos h

(
h

2c

)
.

Table 1 shows the relative error for y(0) with different ini-
tial meshes.
Example 3: A frustum cone with thickness = 2, upper
radius = 0.5, lower radius = 1 and height = 0.9. Figure
6 shows the meshes for the initial and final surfaces.
Example 4: On the top, Fig. 7 shows an initial path through
the corner points of a rectangle with horizontal dimension

equal to 4 and vertical dimension equal to 2. The line
elements have area = 1. On the bottom, Fig. 7 shows the
final path.

The general problem of connecting n points by the short-
est path length is called Steiner problem (Isenberg, 1992).
Its solution contains straight lines intersecting at 120◦. The
number of intersections is between zero and (n − 2).
Example 5: An initially flat square surface with thickness
= 1, side = 1 and two opposite corners displaced by +1/2
while the two other opposite corners displaced by −1/2.
The edges have line elements with area = 5. Figure 8 shows
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Fig. 10.

Table 2.

Node Coord-X Coord-Y Coord-Z

1 −s/2 −r/2 h

2 s/2 −r/2 h

3 0 r h

4 0 −2r h

5 s r h

6 −s r h

7 s −r −h

8 −s −r −h

9 0 2r −h

10 0 −r −h

11 −s/2 r/2 −h

12 s/2 r/2 −h

Table 3.

Elem Node Node

3 4 11

6 5 10

9 6 12

12 7 1

15 8 3

18 9 2

the meshes for the initial and final surfaces.
Note that minimizing the total volume results in opposite

effects on the lengths of the free edges. It tends to decrease
the surface area defined by the triangle elements and con-
sequently tends to increase the lengths of the free edges. It
tends to decrease the path lengths defined by the line ele-
ments and consequently tends to decrease the lengths of the
free edges. In this example, the free edges are curved due
to relatively small value for the areas of the line elements.

Fig. 11.

Table 4.

Elem Area Length

3 −1.25 1.4563

6 −1.50 1.5654

9 −1.75 1.6297

12 −2.00 1.8555

15 −2.25 1.8875

18 −2.50 1.8884

Table 5.

Elem Area Length

3 −1.00 1.7321

6 −1.00 1.7321

9 −1.00 1.7321

12 −1.00 1.7320

15 −1.00 1.7321

18 −1.00 1.7320

Example 6: An initially flat square surface with thickness
= 1, side = 1 and two opposite corners displaced by +1/2
while the two other opposite corners displaced by −1/2.
The edges have line elements with area = 500. Figure 9
shows the meshes for the initial and final surfaces.

Note that minimizing the total volume results in opposite
effects on the lengths of the free edges. It tends to decrease
the surface area defined by the triangle elements and con-
sequently tends to increase the lengths of the free edges. It
tends to decrease the path lengths defined by the line ele-
ments and consequently tends to decrease the lengths of the
free edges. In this example, the free edges are straight due
to relatively big value for the areas of the line elements.
Example 7: A straight prismoid with height = 3. The bot-
tom and top regular triangles are inscribed in a circle of



14 V. F. Arcaro et al.

Fig. 12.

Fig. 13.

radius = 1. It is composed by 3 line elements and 9 isovol-
umetric line elements. The line elements have area = 1. The
penalty parameter = 1.0E+03. The top triangle rotates 150
degrees clockwise relatively to the bottom triangle. Figure
10 shows the initial and final shapes.
Example 8: A straight prismoid with height = 2. The
bottom and top regular pentagons are inscribed in a circle
of radius = 0.75 and 0.5 respectively. It is composed by 5
line elements and 15 isovolumetric line elements. The line
elements have area = 1. The penalty parameter = 1.0E+03.
The top pentagon rotates 126 degrees clockwise relatively
to the bottom pentagon. Figure 11 shows the initial and final
shapes.
Example 9: Figure 12 shows the geometry of a sculp-
ture called Stella Octangula, which was proposed by David

Georges Emmerich. He was a Hungarian architect, sculp-
tor and author. An extensive description of his works is
given by Chassagnoux (2006). An analysis of this tenseg-
rity structure is described by Motro (2011).

The geometry is composed by 18 elements with length
equal to s and 6 diagonal elements with length equal to
s
√

3. Table 2 shows the coordinates of the vertices, where
the parameters r and h are given by:

r = s√
3

h = s√
6
.

Table 3 shows the connectivity of the diagonal elements.
A Stella Octangula with parameter s = 1 and support

constraints on nodes 1, 2 and 3 to prevent rigid body mo-
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Fig. 14.

Fig. 15.

tion. A nonregular Stella Octangula is generated by impos-
ing different areas for selected elements of a regular Stella
Octangula. Excluding the diagonal elements, all other ele-
ments are isovolumetric elements with area = 1. The areas
for the diagonal elements in the initial shape and the lengths
of the diagonal elements in the final shape are shown in Ta-
ble 4.

Figure 13 shows the initial shape (regular Stella Octan-
gula) on the left and the final shape (nonregular Stella Oct-
angula) on the right.
Example 10: The regular Stella Octangula is recovered
by imposing equal areas for the same selected elements
on the previously generated nonregular Stella Octangula.

The areas for the diagonal elements in the initial shape and
the lengths of the diagonal elements in the final shape are
shown in Table 5.

Figure 14 shows the initial shape (nonregular Stella Oc-
tangula) on the left and the final shape (regular Stella Oct-
angula) on the right.
Example 11: A circular prismoid with axis on a circum-
ference of radius = 10. The section is defined by a regular
triangle inscribed in a circle of radius = 1. It is composed
by 30 line elements and 60 isovolumetric line elements.
The line elements have area = 1. The penalty parameter
= 1.0E+03. Figure 15 shows the initial and final shapes.
Example 12: A square with side = 1 composed by 8 isovol-
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Fig. 16.

Fig. 17.

umetric triangle elements with thickness = 10. The square’s
perimeter has line elements with area = 1. The penalty
parameter = 1.0E+03. The triangle elements preserve the
square’s area while the line elements minimize its perime-
ter. The square turns into an octagon. Figure 16 shows the
initial and final areas.
Example 13: A cube with side = 2 composed by 24 isovol-
umetric tetrahedron elements. The cube’s surface has tri-
angle elements with thickness = 1. The penalty parameter
= 1.0E+03. The tetrahedron elements preserve the cube’s
volume while the triangle elements minimize its surface.
The cube turns into a 24 faces polyhedron. Figure 17 shows
the initial and final volumes.

9. Conclusion
This text describes a novel mathematical model that uni-

fies all geometrical minimal shape problems by defining ge-

ometrical finite elements. Three types of elements are de-
fined: line, triangle and tetrahedron. By associating a vol-
ume for each element type, the line, triangle and tetrahe-
dron elements can be used together in the discretization of
a geometrical shape. For each element type, its correspond-
ing isovolumetric element is also defined. The geometrical
minimal shape problem is formulated as an equality con-
strained minimization problem. The importance of this ap-
proach is that apparently distinct problems can be treated
by a unified framework.

A special application is the form finding of structures:
tensile fabric structure with constrained edges as shown by
example 1, hyperboloid cooling tower as shown by example
3, tensile fabric structure with free edges as shown by ex-
amples 5 and 6, tensegrity structure as shown by examples
7, 8, 9, 10 and 11. Example 4 is a classical Steiner prob-
lem. Examples 12 and 13 are simple geometrical problems
whose solution can be intuitively imagined. They were in-
cluded to show the correctness of the mathematical model.
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