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First and Second Nearest Distances in Archimedean Tilings
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This paper provides the average and maximum distances to the first and second nearest vertices of Archimedean
tilings. Distance is measured as the Euclidean distance. The distances in Archimedean tilings are useful for
location analysis. The average distance can be used as a criterion of efficiency, whereas the maximum distance
can be used as a criterion of equity. As an application to location analysis, we consider bi-objective problems
where two distances are minimized. The result shows that tilings other than three regular tilings can be Pareto
optimal.
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1. Introduction
The distance from a random point to its nearest point,

which is called the nearest neighbor distance, provides fun-
damental characteristics of point patterns. Since the near-
est neighbor distance method was introduced by Clark and
Evans (1954), many statistics based on the nearest neighbor
distance have been proposed for describing patterns for the
distribution of various geographical objects (Cressie, 1993;
Illian et al., 2008). Although the nearest neighbor distance
is the most important, the distance to the kth nearest point
is necessary to deal with complicated patterns. Holgate
(1965b) considered the distance to the second nearest point.
Jones (1971) examined up to the sixth nearest neighbor dis-
tance. Ripley’s K -function, which is one of the most fre-
quently used tools for point pattern analysis, handles dis-
tances between all pairs of points (Ripley, 1976). The K -
function method has been applied to the distribution of pop-
ulation (Getis, 1983), traffic accidents (Jones et al., 1996),
and trees (He and Duncan, 2000).

The nearest neighbor distance has also been used in lo-
cation analysis. The distance from customers to their near-
est facility represents the service level of facility location.
Koshizuka and Ohsawa (1983) examined the location of
schools using the distribution of the distance to the nearest
school. The distance to the kth nearest facility is also impor-
tant when facilities are closed or disrupted. In fact, facility
location models incorporating a reliability aspect have con-
sidered service from the kth nearest facility. Weaver and
Church (1985) addressed the vector assignment p-median
problem, where a certain percentage of customers could be
serviced by the kth nearest facility. Pirkul (1989) stud-
ied a similar problem in which customers are served by
two facilities designated as primary and secondary facili-
ties. Drezner (1987) formulated the unreliable p-median
and p-center problems, and suggested heuristic solutions
when the probability of facility failure is the same for all
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facilities. In both models, customers are assigned to the
kth nearest facility when closer facilities fail. Berman et
al. (2007) extended Drezner’s model by assuming that the
probabilities of facility failure are not identical. Snyder and
Daskin (2005) proposed two reliability models based on
the p-median problem and the uncapacitated fixed-charge
location problem. They made an ordered assignment of
each customer to each facility. Lei and Church (2011) pre-
sented generalized closest assignment constraints in terms
of multiple levels of closeness. Service from the kth nearest
facility is also found in emergency vehicle location mod-
els, where the service availability is computed using queue-
ing theory (Larson, 1974; Marianov and ReVelle, 1996;
Sorensen and Church, 2010).

Analytical expressions for the kth nearest distance have
been obtained for regular and random point patterns. The
nearest Euclidean distance was derived by Clark and Evans
(1954) for the random pattern, Persson (1964) for the square
lattice, and Holgate (1965a) for the triangular lattice. The
kth nearest Euclidean distance was derived by Thompson
(1956) and Dacey (1968) for the random pattern, Koshizuka
(1985) for k = 1, 2, 3 for the square lattice, and Miyagawa
(2009) for k = 1, 2, . . . , 7 for the square, triangular, and
hexagonal lattices.

In this paper, we obtain the distances to the first and
second nearest vertices of Archimedean tilings, as shown
in Fig. 1, where (36) means that each vertex is sur-
rounded by six triangles. Distance is measured as the Eu-
clidean distance. Archimedean tilings are edge-to-edge
tilings by regular polygons such that all vertices are of the
same type. They clearly include the three regular tilings
(36), (44), (63), which are the only edge-to-edge monohe-
dral tilings by regular polygons (Grünbaum and Shephard,
1987). The first and second nearest distances in the three
regular tilings were given by Miyagawa (2009). The present
paper extends the analysis to Archimedean tilings.

Archimedean tilings are important for location analysis,
because these dispersed patterns of facilities can provide
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(36) (4 4) (6 3) (3 4.6)

(33.42) (3 2.4.3.4) (3.4.6.4) (3.6.3.6)

(3.122) (4.6.12) (4.8 2)

Fig. 1. Archimedean tilings.

close proximity to facilities. If customers are uniformly
distributed and serviced by their nearest facility, the optimal
facility location is (36), as shown by Leamer (1968), Iri et
al. (1984), and Du et al. (1999). If some of the existing
facilities are closed and customers are serviced by their
second nearest facility, however, other patterns of facilities
can be optimal. The distances in Archimedean tilings will
thus give an insight into facility location problems with
closing of facilities. As an application to location analysis,
we consider bi-objective problems where two distances are
minimized. We then present Pareto optimal solutions for
the problems. Pareto optimal solutions are such that no
other solution is superior to them and have been used in
multi-criteria facility location problems (Nickel et al., 2005;
Farahani et al., 2010).

The remainder of this paper is organized as follows. The
next section derives the average distances to the first and
second nearest vertices of Archimedean tilings. The follow-
ing section examines the maximum distances. The penulti-
mate section provides an application to location analysis.
The final section presents concluding remarks.

a

O

r

b

Fig. 2. Average distance in a right triangle.

2. Average Distance
Let E(R1) and E(R2) be the average distances from a

random point on a plane to the first and second nearest
vertices, respectively. In this section, we derive E(R1) and
E(R2) in Archimedean tilings.

The average distance from a random point in a right
triangle to a vertex was derived by Koshizuka and Ohsawa
(1983). Let R be the distance from a random point in the
right triangle with side lengths a and b (a > b) to the vertex
O , as shown in Fig. 2. The sum of the distances T (a, b) is
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(36) (4 4) (6 3) (3 4.6)

(33.42) (3 2.4.3.4) (3.4.6.4) (3.6.3.6)

(3.122) (4.6.12) (4.8 2)

Fig. 3. First and second nearest regions.

given by

T (a, b) =
∫ b

0

∫ arccos b/a

0
r2 dθ dr +

∫ a

b

∫ arccos b/a

arccos b/r
r2 dθ dr

= ab

6

√
a2 − b2 + b3

6
ln

a + √
a2 − b2

b
. (1)

Dividing T (a, b) by the area of the triangle S =
b
√

a2 − b2/2 yields the average distance E(R) as

E(R) = T (a, b)

S
= a

3
+ b2

3
√

a2 − b2
ln

a + √
a2 − b2

b
.

(2)

The average distances E(R1), E(R2) in Archimedean
tilings can be calculated by considering only one vertex, be-
cause all vertices are of the same type. Figure 3 shows the
regions where the white point is the first and second nearest.
We call these regions the first and second nearest regions,
respectively. E(R1) and E(R2) are then the average dis-
tances from a random point in the first and second nearest

regions to the white point. E(R1) and E(R2) are obtained
by partitioning the regions into right triangles. For exam-
ple, the first nearest region for (36) is the hexagon centered
at the white point with side length a/

√
3, where a is the

side length of a tile. The region is partitioned into 12 right
triangles with side lengths a/

√
3 and a/2. Using Eq. (1),

we have

E(R1) = 12

S
T

(
a√
3
,

a

2

)
= 4 + 3 ln 3

6 · 33/4
√

2ρ
≈ 0.377√

ρ
, (3)

where S = √
3a2/2 is the area of the first nearest region and

ρ = 1/S is the density of vertices. Partitioning the second
nearest region into right triangles, we have

E(R2) =
−4 + 6

√
3 − 3 ln

(
6 − 3

√
3
)

3 · 33/4
√

2ρ
≈ 0.729√

ρ
. (4)

E(R1) and E(R2) for the other tilings are similarly obtained
as follows:
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(44)

E(R1) =
√

2 + ln
(

1 + √
2
)

6
√

ρ
≈ 0.383√

ρ
(5)

E(R2) =
4 − √

2 −
(

1 − 2
√

2
)

ln
(

1 + √
2
)

6
√

ρ
≈ 0.700√

ρ

(6)

(63)

E(R1) =
6 + √

3 ln
(

2 + √
3
)

9 · 33/4√ρ
≈ 0.404√

ρ
(7)

E(R2) =
6 + 9 ln 3 − √

3 ln
(

2 + √
3
)

9 · 33/4√ρ
≈ 0.663√

ρ
(8)

(34.6)

E(R1) =
18 + 8

√
3 + 3

√
3 ln 9

(
2 + √

3
)

21 · 33/4
√

7ρ
≈ 0.396√

ρ
(9)

E(R2) =
90 − 16

√
3 + 3

(
9 − 4

√
3
)

ln 3 + 9
√

3 ln
(

2 + √
3
)

21 · 33/4
√

7ρ

≈ 0.708√
ρ

(10)

(33.42), (32.4.3.4)

E(R1) =
4 + 4

√
2 + 3 ln 3 + 4 ln

(
1 + √

2
)

6
(

2 + √
3
)3/2 √

ρ

≈ 0.381√
ρ

(11)

E(R2) =
4 − 2

√
2 + 6

√
3 − 3 ln

(
6 − 3

√
3
)

− 2
(

1 − 2
√

2
)

ln
(

1 + √
2
)

3
(

2 + √
3
)3/2 √

ρ

≈ 0.714√
ρ

(12)

(3.4.6.4)

E(R1) = 1

12 · 33/4
(

2 + √
3
)5/2 √

ρ

·
{

36 + 42
√

2 + 24
√

3 + 22
√

6

+ 3
√

2
(

3 + 2
√

3
)

ln
√

3
(

3 + 2
√

2
) (

2 +
√

3
)}

≈ 0.395√
ρ

(13)

E(R2) = 1

6 · 33/4
(

2 + √
3
)5/2 √

ρ

·
{
−18 + 66

√
2 − 12

√
3 + 38

√
6 +

3
(

15 + 7
√

3
)

√
2

· ln 3 + 3
(

4 −
√

2
) (

3 + 2
√

3
)

ln
(

1 +
√

2
)}

≈ 0.693√
ρ

(14)

(3.6.3.6)

E(R1) =
36 + 4

√
3 + 3

√
3 ln 3

(
7 + 4

√
3
)

48
√

2 · 33/4√ρ
≈ 0.403√

ρ

(15)

E(R2) =
(

9 − √
3
)

(4 + 3 ln 3)

24
√

2 · 33/4√ρ
≈ 0.685√

ρ
(16)

(3.122)

E(R1) = 7 + 4
√

3(
12 + 7

√
3
)5/2

√(
2 − √

3
)

ρ

·
[

24 −
√

2 + 12
√

3 +
√

6 + 3
√

2 − √
3

2

·
{

ln 3 + 4 ln

(
2 +

√
3 + 2

√
2 +

√
3

)}]

≈ 0.499√
ρ

(17)

E(R2) = 1(
12 + 7

√
3
)5/2

√(
2 − √

3
)

ρ

·
{

228 + 47
√

2 + 132
√

3 + 27
√

6

+ 3

(
26 + 15

√
3 +

√
26 + 15

√
3

)
ln

(
2 +

√
3
)

+ 6
(

26 + 15
√

3
)

ln

(
2 +

√
2 −

√
3

)

− 3
√

2
(

5 + 3
√

3
)

ln
√

3

(
2 +

√
3 + 2

√
2 +

√
3

)}

≈ 0.676√
ρ

(18)

(4.6.12)

E(R1) = 1

3
(

3 + 2
√

3
)5/2

√(
2 − √

3
)

ρ

·
[

3
(

9 +
√

2 + 5
√

3 +
√

6
)

+
(

3 + 2
√

3
)

·
√

2 −
√

3
{

ln
(

1 +
√

2
) (

2 +
√

3
)

·
√

3 + 2
√

3

(
2 +

√
2 +

√
3

)
− 1

4
ln 3

}]

≈ 0.477√
ρ

(19)
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E(R2) = 1

3
(

3 + 2
√

3
)5/2

√(
2 − √

3
)

ρ

·
[

3
(

5 + 4
√

2 + 3
√

3 + 2
√

6
)

+
3

(
11 + 13

√
3
)

4
√

2

· ln 3 +
(

4 − √
2
) (

3 + √
3
)

2
ln

(
1 +

√
2
)

+
(

6 − 3
√

2 + 7
√

3

2
+

√
6

)
ln

(
2 +

√
3
)

+
(

12 + 7
√

3
)

ln

(
2 +

√
2 −

√
3

)
− 3

√
2 − √

3

2

·
{

ln
(

3 + 2
√

3
)

+ 2 ln
(

2 +
√

3
) (

2 +
√

2 +
√

3

)}

−
√

2
(

3 −
√

3
)

ln
(

2 +
√

2 +
√

3 +
√

6
)]

≈ 0.689√
ρ

(20)

(4.82)

E(R1) = 1

3
(

3 + 2
√

2
)5/2

√(
2 − √

2
)

ρ

·
[

28 + 20
√

2 +
√

20 + 14
√

2 +
√

10 + 7
√

2

·
{

ln
(

1 +
√

2
)

+ 2 ln

(
1 +

√
2 +

√
4 + 2

√
2

)}]

≈ 0.430√
ρ

(21)

E(R2) = 1

3
(

3 + 2
√

2
)5/2

√(
2 − √

2
)

ρ

·
[

12 + 8
√

2 +
√

676 + 478
√

2 +
√

2 −
√

2

·
{(

5 + 4
√

2
)

ln
(

1 +
√

2
)

− 2
(

3 + 2
√

2
)

· ln

(
1 +

√
2 +

√
4 + 2

√
2

)}
− 4

(
7 + 5

√
2
)

· ln

(
−3 + 2

√
2 +

√
20 − 14

√
2

)]

≈ 0.665√
ρ

. (22)

E(R1) and E(R2) in Archimedean tilings are shown in
Table 1, where the density of vertices is normalized at ρ = 1
for comparison. Note that (36) has the smallest E(R1). This
is the reason why the optimal facility location is (36) when
customers are serviced by their nearest facility. Note also
that (63) has the smallest E(R2).

3. Maximum Distance
Let U (R1) and U (R2) be the maximum distances from

a random point on a plane to the first and second nearest
vertices, respectively. In this section, we derive U (R1) and
U (R2) in Archimedean tilings.

U (R1) and U (R2) are the distances from the farthest
point in the first and second nearest regions to the white

point in Fig. 3, and obtained as follows:
(36)

U (R1) =
√

2

33/4√ρ
≈ 0.620√

ρ
(23)

U (R2) =
√

2

31/4√ρ
≈ 1.075√

ρ
(24)

(44)

U (R1) = 1√
2ρ

≈ 0.707√
ρ

(25)

U (R2) = 1√
ρ

(26)

(63)

U (R1) = U (R2) = 2

33/4√ρ
≈ 0.877√

ρ
(27)

(34.6)

U (R1) = U (R2) = 2 · 31/4

√
7ρ

≈ 0.995√
ρ

(28)

(33.42), (32.4.3.4)

U (R1) = −1 + √
3√

ρ
≈ 0.732√

ρ
(29)

U (R2) = 2√(
2 + √

3
)

ρ

≈ 1.035√
ρ

(30)

(3.4.6.4)

U (R1) = U (R2) =
31/4

(
−1 + √

3
)

√
ρ

≈ 0.963√
ρ

(31)

(3.6.3.6)

U (R1) = U (R2) = 31/4

√
2ρ

≈ 0.931√
ρ

(32)

(3.122)

U (R1) = U (R2) = 2
√

−3 + 2
√

3√
ρ

≈ 1.363√
ρ

(33)

(4.6.12)

U (R1) = U (R2) = 2

31/4√ρ
≈ 1.520√

ρ
(34)

(4.82)

U (R1) = U (R2) = 2√(
2 + √

2
)

ρ

≈ 1.082√
ρ

. (35)

U (R1) and U (R2) in Archimedean tilings are shown in
Table 2. Note that (36) has the smallest U (R1) and that
U (R1) = U (R2) for the tilings with hexagons, octagons,
and dodecagons.
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Table 1. Average distance.

(36) (44) (63) (34.6) (33.42) (3.4.6.4) (3.6.3.6) (3.122) (4.6.12) (4.82)

E(R1) 0.377 0.383 0.404 0.396 0.381 0.395 0.403 0.499 0.477 0.430

E(R2) 0.729 0.700 0.663 0.708 0.714 0.693 0.685 0.676 0.689 0.665

Table 2. Maximum distance.

(36) (44) (63) (34.6) (33.42) (3.4.6.4) (3.6.3.6) (3.122) (4.6.12) (4.82)

U (R1) 0.620 0.707 0.877 0.995 0.732 0.963 0.931 1.363 1.520 1.082

U (R2) 1.075 1.000 0.877 0.995 1.035 0.963 0.931 1.363 1.520 1.082

0.36 0.38 0.40 0.42 0.44 0.46 0.48 0.50
E (R 1)0.4

0.6

0.8

1.0

1.2

1.4

1.6
U(R 1)

(36)

(44)

(63)

(34.6)

(33.42)

(3.4.6.4) (3.6.3.6)

(3.122)

(4.6.12)

(4.82)

Fig. 4. Average and maximum distances.

0.36 0.38 0.40 0.42 0.44 0.46 0.48 0.50

0.64

0.62

0.66

0.68

0.70

0.72

0.74

0.76

E (R 1)

E (R 2)

(36)

(44)

(63)

(34.6)
(33.42)

(3.4.6.4)
(3.6.3.6)

(3.122)

(4.6.12)

(4.82)

Fig. 5. Average distance.

4. Application
The distances in Archimedean tilings are useful for lo-

cation analysis. The average distance can be used as a cri-
terion of efficiency, whereas the maximum distance can be

0.4 0.6 0.8 1.0 1.2 1.4 1.6
0.4

0.6

0.8

1.0

1.2

1.4

1.6

U(R 1)

U(R 2)

(36)
(44)

(63)

(34.6)(33.42)
(3.4.6.4)

(3.6.3.6)

(3.122)

(4.6.12)

(4.82)

Fig. 6. Maximum distance.

used as a criterion of equity. In this section, we present an
application to location analysis.

Suppose that facilities are located on vertices of
Archimedean tilings and that customers are uniformly dis-
tributed on a plane. We examine three bi-objective prob-
lems where two distances are minimized. For any two so-
lutions x and y, x dominates y, if each criterion for x is as
good as that for y and at least one criterion for x is strictly
better than that for y. The solution x is called Pareto opti-
mal, if no feasible solution that dominates x exists.

First, we consider the following problem:

min. (E(R1), U (R1)). (36)

E(R1) and U (R1) in Archimedean tilings are plotted in
Fig. 4. Since (36) has the smallest E(R1) and U (R1), (36)

dominates the other tilings and is Pareto optimal.
Next, we consider the following problem:

min. (E(R1), E(R2)). (37)

E(R1) and E(R2) in Archimedean tilings are plot-
ted in Fig. 5. It can be seen that (44) and
(3.4.6.4) dominate (34.6), (3.6.3.6) dominates (4.6.12),
and (63) dominates (4.82), (4.6.12), (3.122). Note that
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(33.42), (3.4.6.4), (3.6.3.6) as well as the three regular
tilings (36), (44), (63) are Pareto optimal.

Finally, we consider the following problem:

min. (U (R1), U (R2)). (38)

U (R1) and U (R2) in Archimedean tilings are plotted in Fig.
6. In this case, the three regular tilings (36), (44), (63) are
Pareto optimal.

5. Conclusion
This paper has obtained the average and maximum

distances to the first and second nearest vertices of
Archimedean tilings. The analytical expressions for the dis-
tances are useful for location analysis as follows. First, they
give an estimate for the service level of actual facility pat-
terns. Although actual patterns of facilities are not always
regular, the regular patterns are important as a typical dis-
persed pattern. By comparing the distances, we can evalu-
ate the efficiency of actual patterns. Second, they demon-
strate how the density of facilities affects the distances. This
relationship helps planners to estimate the number of fa-
cilities required to achieve a certain level of service. The
estimated number of facilities can be used as an input in lo-
cation models. Note that finding the relationship between
the number of facilities and the distances by using network
location models requires computations for each number of
facilities. Finally, the result that tilings other than three reg-
ular tilings can be Pareto optimal gives an insight into the
understanding of optimal facility location.

Although the Euclidean distance is a good approxima-
tion for the actual travel distance, the rectilinear distance is
more suitable for cities with a grid road network (Love and
Morris, 1979; Brimberg et al., 2007; Griffith et al., 2012).
In fact, the rectilinear distance has frequently been used in
facility location models (Francis et al., 1992; Aras et al.,
2008; O’Kelly, 2009). Examining the rectilinear distance in
Archimedean tilings could be an interesting issue for future
research.
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