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We study the (near or close to) ground state distribution of N softly repelling particles trapped in the interior of
a spherical box. The charges mutually interact via an inverse power law potential of the form 1/rγ . We study three
regimes in which the charges form an single spherical shell at the edge of the box (γ = 1), a series of concentric
shells of increasing density (γ = 2) and γ = 12 for which the charges form shells with a more uniform charge
distribution. We conduct numerical simulations for clusters containing up to 5000 charges and compare charge
density across the system with continuum limit results. The agreement between numerical (discrete) results and
the continuum limit is found to improve with increasing N . These findings are accompanied by a visual gallery
of some of the low energy ground states found by simulated annealing.
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1. Introduction
The generalised Thomson problem, as dubbed by Bow-

ick et al. (2002), is concerned with finding the minimal en-
ergy configuration of N point particles, that are confined
to the surface of a sphere, and repel each other via an in-
verse power law potential φ(γ ) = 1/rγ . For over a decade
the study of such problems has yielded fundamental in-
sights into crystallisation and order on curved surfaces. Ap-
plications include understanding virus morphology (Zandi
and Reguera, 2005), self-assembly of colloids on emulsion
droplets (Bausch et al., 2003) and multi-electron bubbles in
superfluid helium (Bowick et al., 2006).

However, the original Thomson problem has its origins
in the “plum” pudding model of the atom. The model, pro-
posed by J. J. Thomson in 1904, postulates that the atom
consists of classical electrons embedded in a neutralising
droplet of positively charged fluid (Thomson, 1904). Al-
though this pre-quantum era model of the atom is now obso-
lete, nevertheless, the Thompson problem and its variations
continue to be of interest to modern science in areas such as
packing problems (Aste and Weaire, 2008), for benchmark-
ing various optimisation algorithms (Cecka et al., 2013) and
as means of efficiently discretising space for lattice simula-
tions (Hüttig and Stemmer, 2008).

In this paper we return to the original spirit of the Thom-
son problem and conduct numerical simulations to find
(near) ground states for clusters of particles, in a spherical
box of radius R, which interact through a potential φ(γ ).

Such inverse power law potentials have been widely stud-
ied (see Agrawal and Kofke, 1995; Prestipino et al., 2005;
Bowick et al., 2006) and provide a continuous path be-
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tween the hard sphere packing limit (γ → ∞) and the soft
one-component plasma (γ = 1). In practice, such a path
can be realised using dilute solutions of colloidal particles
with polymer chains grafted onto their surface. The effec-
tive pairwise interaction between colloidal particles can be
tuned by changing the thickness of the polymer layer and
modelled with an inverse-power-law potential of the type
φ(γ ) (Likos, 2001; Prestipino et al., 2005).

In contrast to bulk systems (where at equilibrium
particles—interacting via an inverse power law potential—
crystallise into bcc or fcc arrangements) we show that in
strongly confined systems the morphology of the ground
state is dominated by the shape of the confining box. The
main finding is that whereas for γ = 1 (Coulomb interac-
tion), the particles are pinned to the surface, for higher val-
ues of γ bulk aggregation is observed, either in the form of
concentric shells (for intermediate γ values) or in the form
of a quasi-uniform fluid (for higher gamma values). By tun-
ing the effective interaction range in colloidal systems (for
example by changing the screening length (Yethiraj and van
Blaaderen, 2003) similar transitions could be observed in
strongly confined systems.

In the absence of a neutralising fluid, and in the limit of
large N , the continuum limit ground state distribution of
particles within the spherical box falls into three distinct
regimes. (i) For γ ≤ 1 the repulsive interaction is strong
enough to drive all the particles to the surface of the sphere
(Levin and Arenzon, 2003), that is the problem of finding
the ground state of N point-particles inside a sphere reduces
to the problem studied by Bowick et al. (2002, 2006) and
Bausch et al. (2003). (ii) While for 1 < γ < 3 this is
no longer the case and charges are found in the interior
of the sphere with a non-uniform radial density. Finally,
(iii) for γ ≥ 3 the particles are expected to be distributed
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Fig. 1. Colour online. (a) Low energy metastable state of 2000 charges interacting via an inverse potential γ = 1 (i.e. the Coulomb potential) showing
an isolated rosette defect. (b) More typically however are grain boundary scars (of alternating positive and negative disclinations) as can be seen in
this low energy metastable state of 5000 charges with γ = 1. Positive and negative disclinations in (a) and (b) are coloured red and green respectively.
(c ) A small cluster of 100 charges with γ = 2; the particles are arranged into two distinct shells, an inner shell of 13 particles and an outer shell with
87 charges. (d) The two outermost shells for a system with 5000 charges and γ = 2. Positive and negative disclinations on the inner shells in (c) and
(d) are coloured yellow and blue, respectively. (e) The two innermost shells in a cluster of 2000 charges with γ = 2. (f) Outer shell of a low energy
state of 1000 charges interacting via an inverse potential with γ = 12.

throughout the sphere with uniform density (Hardin and
Saff, 2004).

Although it is recognised that for γ > 1 the presence of
charges in the interior of the spherical box becomes energet-
ically favourable (Levin and Arenzon, 2003), our simula-
tions demonstrate that these internal charges also condense
into spherical crystals (in which most charges have six near-
est neighbours) giving rise to a series of concentric shells.
Decreasing the range of interaction (by increasing γ ) drives

particles into the interior and leads to a higher occupancy
of the inner shells. This is in contrast to similar shell like
structures observed in spherical dusty plasma crystals (so
called Yukawa balls), where decreasing the range of inter-
action (achieved by decreasing the screening length) drives
particles towards the exterior and leads to a higher occu-
pancy of the outer shells (Baumgartner et al., 2009).

For γ ≥ 3 the continuum limit charge density is ex-
pected to be uniform. In finite sized clusters the charges
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are found to be self-organise into multi-shell arrangements
which could in principle be compared with similar carbon-
based structures such as nested Fullerines (Tománek et al.,
1993). Although the precise morphology of these latter sys-
tems depends on quantum chemistry, nevertheless the ap-
proach described here may prove useful in distinguishing
between simple features, which are largely geometric in na-
ture, and more complex properties arising from chemistry.

The ground state configuration of mutually repelling
charges is of interest in the efficient discretisation of spaces
as a framework for various numerical schemes (Hardin and
Saff, 2004). These include statistical sampling, finite ele-
ment tessellations, quadrature, interpolation and as starting
points for Newtons method. In the case of a spherical geom-
etry, in such problems the need can often arise for a greater
degree of resolution either at the centre or towards the sur-
face of the box (as for example in the modelling of seismic
waves through the earth (Akcelik et al., 2003; Grunberg et
al., 2004)). By fixing γ to be in the range 1 < γ < 3
the present study provides a simple method for generating a
mesh with a varying radial node density.

The paper is organised as follows. We begin by detail-
ing our numerical approach. We then elucidate the three
regimes by considering three exemplary cases, these are:
γ = 1, 2 and 12. In each instance we first state or derive
the expected continuum limit charge distribution and then
compare this with a series of finite sized clusters. In addi-
tion we also provide a brief pictorial gallery that is repre-
sentative of some of the low energy structures found by our
numerical simulations. We hope that these images will be of
interest to both scientists (e.g. chemists studying multi-wall
fullerenes) as well as nonscientists (e.g. designers working
with buckyball architecture).

2. Numerical Approach
The energy of a cluster of N particles, interacting via a

potential φ(γ ) and confined to the interior of a sphere of
radius R, by a hard wall potential is given by,

E =
N∑
i

V (ri ) +
N∑

i< j

1

|ri − r j |γ , (1)

where

V (ri ) =
{

0 for ri < R
∞ for ri ≥ R

and ri = (ri , θi , φi ). Finding the global minimum for a
function such as Eq. (1) is a difficult task. The number of
metastable states proliferate exponentially with N ; conse-
quentially the global minimum is obscured by a large num-
ber of local minima with energies close to that of the global
minimum. There exist a number of heuristic methods for
such problems. Although there is no guarantee of finding
the global minimum, it is possible to find states close to it.

We found that the standard Metropolis simulated anneal-
ing algorithm to be more effective than a conjugate gradient
algorithm. For a system with N particles the simulated an-
nealing algorithm was run with typically N × (5 × 106)

Monte Carlo steps. The temperature of the simulation
was decreased linearly. The average displacement of the

charges at each temperature step was chosen by an auto-
matic process to give an acceptance probability of 0.5 ±
0.01. Promising states were reheated and annealed repeat-
edly to iron out as many defects as possible. Finally the
results were put through a conjugate gradient algorithm to
remove any residual strains.

3. First Case: γ = 1
For γ ≤ 1 the inter particle repulsion is strong enough to

drive all the charges to the edge of the spherical box. The
Coulomb (γ = 1) case is merely a reflection of the familiar
result from electrostatics that, under static conditions, the
charge density inside a conductor is always zero (Hardin
and Saff, 2004). Thus we expect the charges to be located
on the surface of the sphere and for the charge density, in
the continuum limit, to be described by a delta function of
the form,

ρ(r) = N

4π R2
δ(r − R). (2)

Setting γ = 1 in Eq. (1), we readily find an exact cor-
respondence between Eq. (2) and our numerical results for
N = 1000, 2000 (Fig. 1(a)) and 5000 (Fig. 1(b)). These
show that all the charges are indeed located in a single shell
at the edge of the system (no evidence of buckling was
found).

Using the Delaunay triangulation package Qhull we iden-
tify the number of nearest neighbours for each particle.
Particles with five/seven nearest neighbours are coloured
red/green, while particles with six neighbours are not high-
lighted.

Euler’s theorem stipulates that such spherical crystal can-
not consist entirely of six coordinated particles but must
also include a minimum of twelve pentagonal sites. Such
points with an anomalous coordination are topological de-
fects known as disclinations. Using Euler’s theorem we can
assign a topological charge to each disinclination, the sign
and magnitude of the charge depends on how much the co-
ordination number differs from 6. Thus, a pentagon has a
topological charge +1 while a square has a charge of +2.
Similarly a heptagon has a topological charge of −1 while
an octagon has −2. Obviously a hexagon is topologically
neutral. The total topological charge for any spherical clus-
ter is conserved and must always be equal to +12 (Bausch
et al., 2003).

Such disclinations induce an enormous elastic strain in
the lattice which can be reduced by arranging them sym-
metrically over the surface of the sphere. In addition the
lattice may also include dislocations (tightly bound five-
seven coordinated disclination pairs). Unlike disclinations,
the number of dislocations is not fixed by topology and are
only present if it is energetically favourable.

Large clusters (those with more that 520 particles (Wales
et al., 2009)) always contain dislocations. Typically,
such dislocations condense around disclinations to form
extended grain boundary “scars” of alternating positive-
negative disclinations, as can be seen in the case for N =
5000 (see Fig. 1(b)). The net topological charge of these
scars is +1. More exotic disinclination structures, such as
rosettes are also possible. An example is shown in the low
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energy state of a cluster of 2000 charges, see Fig. 1(a). Such
defects have a net topological charge of +1 and consist
of a central positive disclination surrounded by five nega-
tive disclinations alternating with five positive disclinations.
Rosette arrangements have been observed in both spherical
(Wales et al., 2009) and flat crystals (Radzvilavicius and
Anisimovas, 2011).

4. Second Case: γ = 2
In the range 1 < γ < 3 the charge density is expected

to be intermediate between being entirely concentrated at
the boundary and being uniform throughout the sphere. We
concentrate on γ = 2 since in this case it is possible to
derive the charge density in closed form.

For γ = 2 the energy given by Eq. (1) can be approxi-
mated by the integrals over the sphere r ≤ R,

E = 1

2

∫
d3r ′

∫
d3r

ρ(r′)ρ(r)
|r − r′|2 . (3)

The continuum approximation treats the density ρ(r) as a
smooth function rather than the sum of delta functions,

ρ(r) =
N∑

i=1

δ(r − ri ), (4)

where ri is the position of the i th charge. One then mini-
mizes the energy of the cluster, with respect to the smooth
function ρ(r), subject to the constraint that the number of
particles,

N =
∫

d3rρ(r), (5)

is constant. Introducing the Lagrange multiplier µ the con-
strained equation is,

E =
∫

ρ(r′)
[

1

2

∫
d3r

ρ(r)
|r − r′|2 − µ

]
d3r ′. (6)

A variation in the energy is given by,

δE = E[ρ(r) + δρ(r)] − E[ρ(r)], (7)

where δρ(r) represents a small change in the charge density.
Keeping only terms up to first order, Eq. (7) gives,

δE =
∫

δρ(r′)
[∫

d3r
ρ(r)

|r − r′|2 − µ

]
d3r ′, (8)

where to make the functional derivative stationary we re-
quire that,

µ =
∫

d3r ′ ρ(r ′)
|r − r′|2 . (9)

Assuming spherical symmetry and expanding the denomi-
nator in the above equation as a power series, in terms of
Legendre polynomials, yields,

µ = 2π

∫ R

0
ρ(r ′)r ′2dr ′

∫ π

0
dθ sin θ (10)[

1

r2
>

∞∑
n=0

∞∑
m=0

(
r<

r>

)n+m

Pn(cos θ)Pm(cos θ)

]

where,

cos θ = r · r′

|r||r′| , (11)

and to ensure convergence r> is the greater of r and r ′.
Upon making the substitution x = cos θ we can write Eq.
(10) as,

µ

2π
=

∞∑
n=0

∞∑
m=0

∫ R

0
dr ′ρ(r ′)

r ′2

r2
>

(
r<

r>

)m+n

(12)

∫ 1

−1
dx Pn(x)Pm(x),

and upon using the orthogonality conditions of Legendre
polynomials we have,

µ

2π
=

∞∑
n=0

4π

2n + 1

∫ R

0
dr ′ρ(r ′)

r ′2

r2
>

(
r<

r>

)2n

. (13)

Equation (13) can be split into two parts r > r ′ and r < r ′

giving,

µ

2π
=

∞∑
n=0

4π

2n + 1

[∫ r

0
dr ′ρ(r ′)

(
r ′

r

)2n+2

+
∫ R

r
dr ′ρ(r ′)

( r

r ′
)2n

]
, (14)

and writing the power series in Eq. (14) in closed form we
have,

µr

2π
=

∫ r

0
dr ′g(r ′)r ′ ln

(
r + r ′

r − r ′

)

−
∫ R

r
dr ′g(r ′)r ′ ln

(
r + r ′

r − r ′

)
, (15)

where g(r ′) = r ′ρ(r ′). Differentiating both sides of Eq.
(15) with respect to r yields,

µ

2π
=

∫ R

0
dr ′g(r ′)

1

r + r ′ −
∫ r

0
dr ′g(r ′)

1

r − r ′∫ R

r
dr ′g(r ′)

1

r ′ − r
. (16)

Treating the last two integrals in Eq. (16) as a Cauchy prin-
ciple value integral we finally have,

µ

2π
=

∫ R

0
dr ′g(r ′)

2r ′

r ′2 − r2
. (17)

Equation (17) is a singular integral equation of the first
kind which can be solved to give (Polyanin and Manzhirov,
2008),

ρ(r) = µ

2π2

(
1

R2 − r2

)1/2

. (18)

To find the Lagrange multiplier we substitute Eq. (18) into
Eq. (5) and solve for µ, finally we have that the particle
density is,

ρ(r) = N

π2

1

R3

(
1 − r

R

2
)1/2 . (19)
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Fig. 2. Histograms of the fraction of the total charge of the system within a given radius r/R for γ = 2. Results for clusters containing 1000, 2000, and
5000 charges are coloured red, green and blue respectively. The continuum limit result is given by the black dashed line. The inset shows the charge
density for the system with 5000 particles.

Fig. 3. Histograms of the fraction of the total charge of the system within a given radius r/R for γ = 12. Results for clusters containing 1000, 2000, and
5000 charges are coloured red, green and blue respectively. The continuum limit result is given by the black dashed line. The inset shows the charge
density for the system with 5000 particles.
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Thus in the continuum limit, unlike the case for γ = 1, not
all of the charge is found at the edge of the system. The
fraction of charges within a fractional distance r/R from
the centre of the bounding sphere is given by integrating
Eq. (19), giving

N
( r

R

)
N

= 2

π

(
sin−1

( r

R

)
− r

R

√
1 −

( r

R

)2
)

. (20)

Equation (20) can be compared with numerical results for
low energy clusters with N = 1000, 2000 and 5000
charges, see Fig. 2. As expected, the agreement between
numerical and analytical results improves with increasing
N .

In the case of such finite sized clusters the distribution
shown in Fig. 2 displays a step like behaviour, particularly
close to the edge of the system, which indicates that the
charges form a series of concentric shells around the centre
of the spherical box. This corresponds to a series of sharp
well defined peaks of increasing density as shown in the
inset in Fig. 2 for the N = 5000 system.

The morphology of small clusters (N � 500) in partic-
ular is dominated by the spherical hard wall boundary. In
small systems all of the charges are arranged into well de-
fined shells, where Euler’s theorem holds individually for
each shell. An example of a system with 100 charges is
shown in Fig. 1(c).

For larger systems this is only true close to the edge of
the system where the spherical boundary forces the charges
to be concentrated into shells, corresponding to sharp peaks
in density. Figure 1(d) shows the two outermost layers for
N = 5000. In both shells twelve grain boundary scars
comprised of alternating positive and negative disclinations
can be observed. However, towards the centre of the sys-
tem the influence of the spherical boundary diminishes and
the peaks in density become broader and less well defined.
Consequentially, the shells in the inner region are irregu-
larly shaped and it becomes difficult to uniquely identify
distinct shells, see for example Fig. 1(e) which shows the
two innermost shells for N = 2000. This task is made more
difficult by the presence of numerous isolated inter-shell
charges in the interior region, i.e. charges which are found
between adjacent shells and cannot be said to belong to ei-
ther shell. Furthermore, the system for N = 1000 appears
to be characteristically different from that of N = 2000
and N = 5000. The latter two are comprised of numer-
ous concentric shells while the former is not. Clearly there
is a critical value beyond N = 1000 at which the internal
shells start to fill up rapidly. A theoretical understanding
of where this critical point is located may be an interesting
future problem.

5. Third Case: γ = 12
For γ ≥ 3 the charge density in the continuum limit

is expected to be uniform (Hardin and Saff, 2004). We
focus on the case of γ = 12 which is the repulsive part
of the familiar Lennard-Jones potential. Once again, we
plot the fraction of charges N (r/R)/N , within a fractional
radius r/R and compare with the continuum limit result, see

Fig. 3. We find an improving agreement between analytical
and numerical results.

However, it is clear that in finite clusters there exists
a systematic deviation from the expected uniform charge
density, as seen by the fact that the peaks in density are
much higher towards the edge of the system, see inset in
Fig. 3 for N = 5000. Or to put it another way: the
mass fraction in inner region is always slightly smaller than
the theoretical curve. Such deviations are to expected (see
Mughal and Moore, 2007) for a comparative example) and
a closer match to the charge distribution in finite clusters
can be provided by higher order correction to the density
that takes into account the shell like structure of the system
close to the spherical boundary. It is possible that further
annealing may yield a more uniform charge distribution but
this has so far not proved to be the case, despite extensive
numerical efforts.

Again, near the spherical boundary the charges form a
series of concentric spherical crystals, as an example the
outermost layer in a system of 1000 charges is shown in
Fig. 1(f). However, towards the centre these shells are in-
creasingly deformed, and it becomes difficult to uniquely
identify separate shells (inter shell charges are also ob-
served in the interior region).

Similar arrangements of nested shells, of uniform den-
sity, are also expected to be observed in spherical clusters
made up of single-species of charged particle in a three-
dimensional confining potential. In such systems the tran-
sition to a bcc lattice is predicted to occur when the number
of charges in the system increases beyond 10000 (Totsuji
et al., 2002). Similarly, in the case of inverse power law
interacting charges in a spherical box the emergence of a
crystalline interior for γ ≥ 3 may only emerge when the
number of charges is sufficiently great enough to screen the
interior of the system from the presence of the spherical
boundary.

6. Conclusions
We studied a variant of the Thomson problem in which

we seek the minimal energy arrangement of generalised
charges (interacting via an inverse power law potential with
exponent γ ) in a spherical box. We find that the structure of
the cluster, especially whether the particles are localised to
the surface of the sphere, depends on the power law tail of
the interaction. Increasing the value of γ drives charges
from the edge of the box into the interior. We find that
in finite sized clusters the charges close to the edge of the
spherical box are arranged into a series of concentric shells,
within which the charges form well defined spherical crys-
tals. The presence of these shell like structures creates sig-
nificant deviation from the expected mass fraction results.
However, towards the interior of the box the influence of
the boundary is diminished and charges are arranged into
less well defined configurations.
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