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Chaos and Spatiotemporal Chaos in Convective Systems
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Much of early research on chaos from the viewpoint of physics was performed using spatially confined
convective systems. In spatially extended convective systems, on the other hand, spatiotemporal chaos occurs.
However, there is no unified definition for the term spatiotemporal chaos as for chaos. To unify definition, a
property common to the three kinds of spatiotemporal chaos observed in electroconvection of nematic liquid
crystals is presented.
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1. Chaos in Convective Systems
If fluid filled between two parallel plates is heated from

below, thermal (Rayleigh–Bénard) convection occurs. On
such convective systems much research has been done un-
der the heading of nonlinear physics, chaos being one of
the most important phenomena studied in nonlinear physics.
Research on chaos in dissipative systems from the view-
point of physics has been closely connected with convective
systems. For example, the Lorenz model (Lorenz, 1963), in
which important concepts about chaos such as the butterfly
effect (sensitivity to initial conditions) and strange attractor
were discovered (Bergé et al., 1986), was derived as a dy-
namical system describing the time-development of ampli-
tudes of a convective structure. The Lorenz model showed
that ordinary coupled differential equations with only three
variables can induce nonperiodic motion. The experimen-
tal verification of the Feigenbaum constant, discovered in
period-doubling bifurcation to chaos in the logistic map,
was done in convective systems (Libchaber et al., 1983).
A comparison between a map which exhibits intermittent
scenarios to chaos and real physical systems was also per-
formed for convective systems (Bergé et al., 1980).

When the Lorenz model was derived, spatially incoherent
motion was ignored. As a result, ordinary coupled differen-
tial equations with no spatial degrees of freedom were de-
rived. However, real convective systems intrinsically have
spatial degrees of freedom. Therefore, to experimentally
observe chaos, a spatially confined system for which the as-
pect ratio � is small (∼ O(1)) needs to be prepared. Here,
the aspect ratio � is defined as the ratio of the width L of
the plate to the distance d between the parallel plates; i.e.,
� = L/d. � ∼ O(1) signifies that the number of roll
pairs in the system is O(1). The spatial coherence of the
motion of convective rolls can be maintained in such con-
vective systems.
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Furthermore, we need to determine whether a nonperi-
odic oscillation appearing in such a small convective sys-
tem is chaos, namely induced by a few degrees of freedom.
The technique and determining criterion were established
as follows. If a small noninteger fractal dimension and at
least one positive Lyapunov exponent are obtained from an
orbit in phase space formed by the embedding technique,
the dynamics can be classified as chaos. Furthermore, if
the nonperiodic oscillation appears from a limit cycle via a
characteristic bifurcation such as period doubling, torus col-
lision or intermittency by increasing the control parameter
(Rayleigh number), the classification becomes more defi-
nite.

We observe that a convective roll pattern shows nonpe-
riodic oscillations after a characteristic bifurcation while
maintaining spatial coherence only when the Rayleigh num-
ber is relatively small. Even in a system with the small �,
spatial coherence is lost in developed turbulence for high
Rayleigh number. Such nonperiodic oscillations at low
Rayleigh number in convective systems constitute so-called
weak turbulence.

2. Spatiotemporal Chaos
Weak turbulence in artificially prepared convective sys-

tems with small � has been studied within the context of
chaos. In contrast, for systems with large aspect ratio, dis-
order appears spatially as well as temporally. Such weak
turbulence in large systems is called spatiotemporal chaos
(Cross and Hohenberg, 1993).

However, there is no criterion to determine whether spa-
tiotemporal disorder appearing in a spatially extended sys-
tem is spatiotemporal chaos. Indeed, how is spatiotempo-
ral chaos distinguished from developed turbulence? From
here, we shall present a unified perspective of spatiotempo-
ral chaos based on the correlation length of spatially dis-
ordered patterns by considering electroconvection in a ne-
matic liquid crystal (de Gennes and Prost, 1993) as an ex-
ample. In the electroconvection of nematics, various types
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Fig. 1. Pattern in electroconvection of nematics. White lines correspond
to convective rolls.

of spatiotemporal chaos appear in consequence of the in-
teraction between convection and molecular alignment (Hi-
daka and Kai, 2009a).

3. Spatiotemporal Chaos in Electroconvection of Ne-
matics

Electroconvection in planar alignment systems, for which
the nematic director is parallel to the electrodes, has been
under continual research since its discovery. The stripe
pattern corresponding to the convective periodic structure
appears after applying a voltage beyond a certain threshold
(Fig. 1).

The stripe pattern becomes unstable and fluctuates with
increasing applied voltage. These fluctuations induce the
creation of defects and their motion as shown in Fig. 2(a).
Because defect creation and motion occurs irregularly in
space and time, this phenomenon is called defect turbu-
lence.

As voltage increases, the defects assemble into a lat-
tice pattern called a defect lattice (Oikawa et al., 2004).
By further increasing the applied voltage, the defect lattice
breaks into developed turbulence via a type of spatiotempo-
ral chaos called spatiotemporal intermittency (Fig. 2(b)). In
spatiotemporal intermittency, turbulent areas partially ap-
pear, and disorder and order spatially coexist.

In contrast, the electroconvection in homeotropic align-
ment systems has been actively investigated over the past
two decades. In this system, stationary stripe patterns
become immediately unstable because of the Nambu-
Goldstone mode for the nematic director and consequently
spatiotemporal chaos appears (Hidaka and Kai, 2009b). In
this type of spatiotemporal chaos, called soft-mode turbu-
lence (Fig. 2(c)), local convective rolls assume any and ev-
ery direction (Hidaka et al., 2006).

These three types of spatiotemporal chaos are seem-
ingly different. However, these have common properties by
which they maintain local order corresponding to a convec-
tive roll pair despite the presence of global disorder. Here

Fig. 2. Snapshots of patterns emerging as spatiotemporal chaos. (a) Defect
turbulence. (b) Spatiotemporal intermittency. (c) Soft-mode turbulence.

we denote the width of the roll pair by λ; λ corresponds to
d mentioned above.

4. Correlation Lengths of Spatiotemporal Chaos
Defect turbulence is recognized as a phenomenon where

the position of rolls in x is fluctuating. A snapshot u(r)
(r = (x, y)) of the defect turbulence is described as

u(r) = R(r) exp
[
i (qx + α(r))

] + c.c., (1)

where q = 2π/λ. Thus defect turbulence can be described
by the phase α in the reduced form. Figure 3(a) shows
sin α(r) obtained from Fig. 2(a) using an image process-
ing technique. A defect corresponds to a singular point
of α(r). Because α(r) can be recognized as a kind of
two-dimensional XY field, a two-point correlation function
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C(r) of α(r) can be introduced

C(r) = 〈
cos[α(r + r0) − α(r0)]

〉
r0
, (2)

where r = |r| denotes the distance between any two points.
By analogy with the two-dimensional XY model (Käser
et al., 2007), it is conjectured that C(r) is expressed as
exp(−r/ξ) and that the correlation length ξ corresponds
to the average distance between the nearest defects. As
observed in Fig. 3(a), ξ is sufficiently larger than λ.

Each point in the image of a snapshot of spatiotemporal
intermittency is classified as either turbulent or ordered.
Figure 3(b) is obtained from Fig. 2(b) by this classification.
In this view, spatiotemporal intermittency is similar to an
Ising spin system or a percolation system. In the percolation
model, the two-point correlation function is defined as the
probability that two specified points are included in the
same cluster of a state. If each cite is in the state with
probability p,

C(r) = pr = exp

(
− r

ξ

)
, (3)

where ξ = −1/ ln p corresponds to the average diameter
of the cluster (Stauffer and Aharony, 1994). If an analogy
between the percolation model and spatiotemporal intermit-
tency is assumed, p corresponds to the areal fraction of the
turbulent state, and ξ corresponds to the average diameter
of the turbulent cluster. Also in this case, ξ is sufficiently
larger than λ.

In soft-mode turbulence, with the local convective roll
assuming any direction, a snapshot u(r) is expressed as

u(r) = R0 exp
(
iq(r) · r

) + c.c., (4)

where R0 is constant. The wavevector q(r) can be described
only by the azimuthal angle ψ , namely,

q(r) = (q cos ψ(r), q sin ψ(r)) , (5)

where q = |q(r)| = 2π/λ is constant. Figure 3(c) is a real-
ization of ψ(r) obtained from Fig. 2(c). This image shows
that the spatial pattern consists of patches over which the
direction of the local convective roll is uniform. The two-
point correlation function for ψ(r) decays as exp(−r/ξ)

(Anugraha et al., 2008) where the correlation length ξ cor-
responds to the average diameter of patches.

The property common to the three types of spatiotempo-
ral chaos is that the correlation length ξ of disorder is suf-
ficiently larger than the size λ corresponding to local order.
This can be a universal criterion for spatiotemporal chaos in
convective systems.

5. Discussion
By adopting this criterion, spatiotemporal chaos can be

distinguished from developed turbulence where ξ is much
smaller than λ. Indeed, because convective rolls are broken
in developed turbulence, we should express it as ξ � d.

In a system where chaos can be observed, � ∼ O(1) im-
plies L ∼ λ, because λ ∼ d . The fact that ξ is sufficiently
larger than λ means that L is sufficiently smaller than ξ . Be-
cause ξ corresponds to the size of coherent motion, global

Fig. 3. Reduction patterns for the three types of spatiotemporal chaos.
Each image corresponds to Fig. 2. (a) Gray scale indicates sin α. White
and black correspond to sin α = 1 and −1, respectively. (b) White and
black indicate ordered and turbulent states, respectively. (c) Gray-scale
plot of ψ . White and black correspond to ψ = π/2 and −π/2, respec-
tively.

coherence is kept in the system with L sufficiently smaller
than ξ .

The order of convective structures remains in the scale
range between λ and ξ in soft-mode turbulence and defect
turbulence. This means order and disorder coexist. Re-
cently the form of the temporal correlation function was
found to change with the time range (Narumi et al., 2013).
It is thought that this “dual structure” reflects this coexis-
tence.

The coexistence is explicit in spatiotemporal intermit-
tency. The spatial correlation functions for defect tur-
bulence and spatiotemporal intermittency have not been
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sufficiently-well investigated. In this article, C(r) was as-
sumed exponential for the sake of simplicity. In the Ising
and directed-percolation models the distribution functions
exhibit power-law behavior near the critical point. For some
nonequilibrium open systems, it was found that the distribu-
tion function exhibits power-law behavior over a wide range
for the control parameter (Roberts et al., 1996). This prop-
erty which is called “generic scale invariance” (Roberts et
al., 1996) may appear for actually obtained C(r) for defect
turbulence and spatiotemporal intermittency. If C(r) ex-
hibits power-law behavior, the correlation length cannot be
defined specifically. Nevertheless, it can be concluded that
the correlation size is larger than that of the local order in
spatiotemporal chaos.
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