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Golden Distribution of Probabilities
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A novel concept based on the golden ratio φ, where the cumulative probability of the Fibonacci numbers
coincides with the reciprocal of φ, is presented for discrete probability distributions. In addition to the binomial,
Poisson, and geometrical distributions, the Benford-type as well as the inverse power distributions are considered.
For the latter, in the limit of n → ∞ (n being a parameter of the present distribution), the value of the power
is found to approach the fractal dimension of the golden tree. Finally, examples being close surprisingly to the
golden distribution are shown for the analysis of the word spectra of texts written in English.
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1. Introduction
Since ancient times the rectangle with the aspect ratio

1:1.618 . . . has been believed to be most beautiful. For this
reason, this special plane figure has been called the golden
rectangle, and its proportion that can be expressed with the
infinite decimal has been called the golden ratio. According
to an established theory of the art history, it is said that since
old times the idea of this ratio has been applied to a variety
of art works such as, for instance, the Parthenon in Greece.
In fact, this special ratio was, at the same time, a number
in which mathematicians including Euclid and Kepler had
been interested. Here we should note that the approximate
value of the golden ratio can be obtained by calculating the
ratio between numbers adjacent each other in the Fibonacci
sequence and that in the limit of infinity it converges on
φ = 1.6180339 · · · . As the times proceed the golden ra-
tio φ was found in unexpected fields of both mathemati-
cal and natural sciences, namely, concerning studies on the
growth mechanism of nautili’s shells, the arrangement of
sunflower’s seeds, the configuration of Penrose tiling, the
quasicrystallographic structure, and the dynamics of a se-
quential stock market. In recent years, it appears that mys-
teries for the golden ratio as the world’s most astonishing
number have constantly been enhanced (Livio, 2002). Inci-
dentally, one might notice later that all the frames of twelve
illustrations to be seen in this paper exhibit the aspect ra-
tio close to φ, supporting the validity of the Fechner’s psy-
chological experiment that was done in the 1870’s, where
a preference for the rectangle with the aspect ratio close to
φ was demonstrated. In this paper a novel concept based
on the golden ratio φ, where the cumulative probability of
the Fibonacci numbers coincides with the reciprocal of φ, is
presented for any discrete probability distribution. To date,
it seems that the appearance of φ in the two-point distribu-
tions of categories has been reported but restricted mainly to
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the three cases (Schroeder, 1991; Livio, 2002), namely, 1)
the mixture between long range correlated binary symbols
(0 versus 1, A versus B, etc.) in strings generated by ap-
plying a prescribed procedure on the basis of a substitution
algorithm; instead of the symbols, Fibonacci used two kinds
of rabbits, 2) the blending between kites and arrows in the
Penrose tile, for which several astonishing properties have
been found (Penrose, 1979), and 3) the arrangement scheme
of cells in sunflowers and in pinecones, where their cellu-
lar patterns are composed of the clockwise and the coun-
terclockwise spirals, which were once studied by Schimper,
Braun, and the Bravais brothers. In contrast to these preced-
ing studies on the two-point distribution of qualitative data,
in this paper we shall focus our attention on the golden ratio
for any n-point probability distribution of quantitative data.
Here, in addition to classical cases such as the binomial,
Poisson, and geometrical distributions, the Benford-type as
well as the inverse power functions are chosen. Finally, ex-
amples close to the golden distribution are shown for the
analysis of the word spectra of texts written in several natu-
ral languages.

2. Definition
To make a definition of the golden distribution of proba-

bilities, we shall begin with writing the cumulative proba-
bility of the Fibonacci numbers:

rF = p(1) + p(2) + p(3) + p(5)

+p(8) + p(13) + p(21) + p(34) + . . . , (1)

where 0 ≤ rF ≤ 1; p(x) = P(X = x) stands for a
discrete probability distribution. Although Eq. (1) is written
in the form of an infinite series, for some cases such as the
binomial distribution the series will be truncated at the finite
number of terms. The golden distribution will be defined as
that meeting the following condition

rF = 1/φ, (2)
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Fig. 1. Relation between two parameters of the binomial distribution
B(n, p) in which the golden condition, rF = 1/φ, is met.

with 1/φ = 2/(1+√
5) = 0.6180339 · · · . Here Eq. (2) is a

transcendental equation which will be solved for parameters
included in p(x).

3. Analysis
Probability distributions have been used for solving var-

ious problems in spatial statistics as well as in stochastic
geometry. In recent years, one could find the stochastic ap-
proach to analyze many interesting problems in fractal ge-
ometry of nature (Schroeder, 1991; Takaki, 2003).
3.1 Binomial distribution

As the most important discrete probability distribution
we first consider the binomial distribution

p(x) = P(X = x) = nCx px (1 − p)n−x , (3)

which is denoted frequently by B(n, p). Here x =
0, 1, 2, . . . , n; n and p (0 < p < 1) are parameters with
which the profile of the present distribution is determined.
Substituting Eq. (3) into Eq. (2) with Eq. (1), we obtain the
solution (n, p). The results are plotted in the scatter dia-
gram of Fig. 1, where three branches are seen. For n = 2
and n = 3, there is a single solution which is located on
the lowest branch; for n ≥ 4, there are twin solutions ex-
cept n = 5, 8, 13, 21, 34, . . . , all of which are found to
be Fibonacci numbers. Evidently, the behavior of the up-
per branch shows a sharp contrast to that of the lower twin
branches. With increasing n, the former increases slowly
and approaches p = 1, while the latter decreases and ap-
proaches p = 0. According to the Poisson’s theorem, the
lower branches link to the Poisson distribution that will be
described in what follows. To examine the profile for the
three solutions, for n = 21 we show in Fig. 2 the depen-
dence of the probability p(x) as a function of x . In compar-
ison between the three cases, it is seen that with increasing
p the mode (Mo) of the distribution moves considerably
along the x-axis; specifically, Mo = 1, 4, and 21 for Figs.
2(a), (b) and (c), respectively.
3.2 Poisson distribution

Subsequently we consider the Poisson distribution

p(x) = P(X = x) = e−λλx/x!, (4)

where x = 0, 1, 2, . . . ; λ is a positive parameter. According
to the Poisson’s theorem, this distribution, which is denoted

Fig. 2. The binomial distribution B(21, p) for (a) p = 0.0463, (b)
p = 0.1822, and (c) p = 0.9773, which correspond to the three dots on
n = 21 in Fig. 1. For comparison, in (a) and (b) the Poisson distribution
with λ = 1.0058 and λ = 3.8464, respectively, is plotted with fine lines.

with Po(λ), can be obtained as a limit of B(n, p). Specifi-
cally, with np = λ remaining constant, for sufficiently large
n, B(n, p) can be approximated by Po(λ). With increasing
λ, the profile of the present distribution becomes less asym-
metric, and eventually becomes symmetric as λ → ∞. On
substitution of Eq. (4) into Eq. (2) one obtains twin solu-
tions:

λ = 1.00575 · · · , 3.84641 · · · .

For these parameters the profile of p(x) against the x-axis
is superposed with fine lines, respectively, in Figs. 2(a) and
(b).

The Poisson distribution has been mentioned in the num-
ber density of particles randomly scattered on a plane. It
has been found that the so-called Voronoi tessellation aris-
ing from the distribution contains a variety of polygons such
as rectangles (m = 4) to octagons (m = 8), where m is the
number of angles on a polygon; the average of m has been
shown to be six (Takaki, 2003). To date, the Voronoi tes-
sellation has been investigated in the boundaries of cells,
the pattern of space division by territories (Hasegawa and
Tanemura, 1976), and the European map (Takaki, 2003). It
might be expected if the Voronoi tessellations that are gen-
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Table 1. Probability G (0.193728) versus Fibonacci numbers.

x p(x)

1 0.193728

2 0.156197

3 0.125938

5 0.081869

8 0.042910

13 0.014621

21 0.002611

34 0.000159

55 0.000002

89 0.000000

Sum 0.618035

erated from the distributions with the twin solutions derived
above possess possibly a unique property.
3.3 Geometrical distribution

In Bernoulli’s sequences of trials, the number of trials
necessary for the initial occurrence of an event is known to
obey the geometrical distribution G(p)

p(x) = P(X = x) = p(1 − p)x−1, (5)

with x = 1, 2, 3, . . . , which includes a single parameter p
(0 < p < 1). Substitution of Eq. (5) into Eq. (2) yields the
solution for the golden distribution:

p = 0.19372 · · · .

For the present solution, the probabilities of Eq. (5), which
have been calculated for several Fibonacci numbers, are
given in Table 1. Note that the cumulative probability be-
comes 1/φ.
3.4 Distribution that explains the first digit phe-

nomenon
For certain large-scale corpora of numerical data sources,

such as population, death rate, scores of baseball games,
basin areas of rivers, as well as of those in the entire articles
in a popular magazine, the statistical probability of a num-
ber on the first digit was found not to be uniform but to be
strongly dependent upon the number. For decimal data the
dependence can be expressed as (Benford, 1938)

p(x) = P(X = x) = log10(1 + x−1), (6)

where x = 1, 2, . . . , 8, 9. It is worth mentioning that
this formula, which nowadays is termed the Benford’s
law or the first digit phenomenon (Hill, 1998), holds also
for the Fibonacci numbers themselves (Washington, 1981).
The above equation was derived by integrating the inverse
power-type probability density function, f (t), from t = x
to t = x + 1, namely

p(x) =
∫ x+1

x
f (t)dt (7)

with

f (t) = Ct−q , (8)

Table 2. Comparison between the Benford’s law (q = 1)
and the golden distribution (q = 0.3742). In the latter,
rF = p(1) + p(2) + p(3) + p(5) + p(8) = 0.6181 �1/φ. The sum of
the golden distribution slightly exceeding unity is due to the round-off
error that has arisen from the finite-digit calculation.

x q = 1 q = 0.3742

1 0.3010 0.1684

2 0.1761 0.1382

3 0.1249 0.1217

4 0.0969 0.1107

5 0.0792 0.1026

6 0.0669 0.0964

7 0.0580 0.0913

8 0.0512 0.0872

9 0.0458 0.0836

Sum 1.0000 1.0001

where q > 0; C is an unknown positive constant. In the
derivation of Eq. (6) it has been assumed that q = 1, which
derives, from the normalization condition of probabilities,
the explicit form of the normalization factor:

C = log10 e. (9)

For q �= 1 the probability function p(x) becomes
(Schroeder, 1991)

p(x) = P(X = x) = {(x + 1)1−q − x1−q}/(101−q − 1),

(10)

where a single parameter q is included. Substituting Eq.
(10) into Eq. (2) for five Fibonacci numbers {1, 2, 3, 5, 8}
and subsequently solving it for q, one yields

q = 0.374196 · · · . (11)

The numerical results for Eq. (6) (q = 1) and for Eq. (10)
with Eq. (11) are compared in Table 2.
3.5 Inverse power distribution for rank-ordered statis-

tics
Here we consider the so-called inverse power distribution

(Zipf, 1949; Mandelbrot, 1954; Schroeder, 1991) for rank-
ordered data (x = 1, 2, . . . , n):

p(x) = P(X = x) = Cx−q , (12)

the profile of which exhibits the form that is identical to Eq.
(8), where C is a positive constant to be determined by im-
posing the normalization condition of the entire probability:

C =
[

n∑
x=1

x−q

]−1

. (13)

There are two parameters (n, q) included in Eqs. (12) and
(13); in the limit of n → ∞, the series in Eq. (13) leads to
the Riemann’s zeta function

ζ(q) =
∞∑

x=1

x−q , (14)
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Fig. 3. Relation between two parameters of the inverse power distribution
for which the golden condition, rF = 1/φ, is imposed. It is found
numerically that, in the limit of n → ∞, q → 1.4404, i.e., the value of
q approaches the fractal dimension of the golden tree. For illustrations
of the tree, see Figs. 4 and 5 that follow.

Fig. 4. Illustration of bifurcating lunes that will be evolving eventually
to the golden tree (Walser, 1996). Here the term, lune, signifies a
two-dimensional shape like a convex lens. Note that the ratio of the
bifurcating lune-length over the preceding one coincides exactly with
1/φ. If the ratio exceeds 1/φ, neighboring branches on the tree overlap
each other. (a) Unit lune (a trunk). (b) First generation. (c) Second
generation. (d) Third generation.

which is valid for q > 1. An example of this distribution
was initially found in linguistics. For corpora written in En-
glish, it was once demonstrated by Zipf (1949) that the rel-
ative frequencies, i.e., the statistical probabilities, of words
obey Eq. (12) with q = 1. Later, this property, which is
frequently called Zipf’s law or a rank-frequency rule, has
been ascertained in other diverse fields of sciences, such
as demography, geography, biology, physics, and, more re-
cently, informatics. Among them a case which might possi-
bly be most unexpected was mentioned by Ma (1999) in the
context of nuclear physics, where, for arbitrary q, Zipf’s
law was tested for the charge distribution of nuclear clus-
ters in the liquid gas phase transition. In Fig. 3 the relation
is shown between the two parameters of the inverse power
distribution for which the golden condition, Eq. (2), is met.
It is confirmed numerically that, in the limit of n → ∞,
q → 1.4404. It seems to be much interesting and rather
surprising to notice that this value of q does coincide with
the fractal dimension of the golden tree (Walser, 1996):

D = log 2/ log φ = 1.4404 · · · .

Here the golden tree is defined as the most significant self-
similar tree depicted by using the upper boundary of the
coefficient of reduction, above which branches of the tree
collide each other; it was verified that the boundary value
of the reduction coincides exactly with 1/φ (Walser, 1996).
Illustrations which explain the method for generating the

Fig. 5. The golden tree realized through the procedure of Fig. 4 (Walser,
1996). (a) Basic structure. (b) Composition of the three basic elements.

golden tree are given in Figs. 4 and 5. To conclude, the
results shown in Fig. 3 suggest that, in the limit of n → ∞,
the concept of the golden distribution would have relevance
close to that of the self-similar golden tree and, possibly, the
property of the zeta function.

4. Examples in Word-Spectral Analysis
Examples of the golden distribution could be found in the

word-spectrum analysis of texts in a corpus. Here the term
word spectrum, which might be borrowed from the termi-
nology of either physics or chemistry, can be defined by the
frequency versus the length of words in a text. With these
spectra being analyzed, one can obtain a stylistically im-
portant quality of texts, because their profile would depend
on the writer’s personality as well as the language. For
all texts written by Shakespeare and by Bacon, Menden-
hall (1901) analyzed their spectra and compared those of
the two authors. The main conclusion was that the most
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Table 3. Hellinger distance, DH2 (×10−3), between word spectra of
English texts. To make a comparison the Poisson distribution with
λ = 3.8464 is also included.

Poissonian Sasaki Turney Cohn

Poissonian 0 45.5 38.8 40.7

Sasaki 45.5 0 1.02 1.06

Turney 38.8 1.02 0 0.608

Cohn 40.7 1.06 0.608 0

frequent word length (i.e., the mode) of the former texts is
four, in contrast to three being the mode of the latter. With
this analysis the conjecture that Shakespeare might be none
other than Bacon was rejected. Indeed the word-spectrum
analysis has allowed one to make a comparative study of
the statistical property of texts and has subsequently been
applied to a wide range of literary texts (Brinegar, 1963;
Williams, 1975). In Fig. 6 the word spectra, i.e., the sta-
tistical probabilities of words with length x , are shown of
the famous Japanese novel Botchan (Work #N1) that was
translated into English (Sasaki, 1968; Turney, 1972; Cohn,
2005). Here the length of a word is defined with the number
of letters in it. First, it can be seen that the overall profile
of the English spectrum bears a resemblance to the Poisson
distribution already plotted in Fig. 2(b). For this reason,
in Figs. 6(a)–(c) the spectrum of the Poisson distribution
that meets Eq. (2) (λ = 3.8464) is juxtaposed with fine
lines. The divergence between two spectra can be quanti-
fied through calculation of the Hellinger distance DH 2 (≥0;
equality holds for the perfect similarity)

DH 2 (p|q) =
n∑

i=1

(
p1/2

i − q1/2
i

)2

with
n∑

i=1

pi = 1,

n∑
i=1

qi = 1.

Here pi and qi (i = 1, 2, 3, . . . , n) represent the relative
frequencies for the length x = i , and n is the maximum
word-length. For the results shown in Fig. 6, the distances
have been calculated for all combinations of the spectra
(Table 3), where the smallest divergence is seen between
the spectrum of Turney (Fig. 6(b)) and that of Cohn (Fig.
6(c)). In contrast to this case, the largest divergence can be
seen between the two spectra drawn with the bold and the
fine lines in Fig. 6(a), namely

DH 2 = 4.55 × 10−2.

It has been confirmed that this value is comparable to that
between the Spanish and the Filipino text of the same novel,
which becomes DH 2 = 4.09 × 10−2. Here we should re-
member the linguistic fact that for historical reasons Fil-
ipino has a considerable part of the vocabulary in common
with that of Spanish. Characteristic values of the word-
length data as well as the results of rF are summarized in
Table 4, along with those of the Poisson distribution, where
the relative difference between rF and 1/φ is defined by

δ = φ
∣∣rF − φ−1

∣∣ .

Fig. 6. Word spectrum of the famous Japanese novel Botchan (Work
#N1) that was translated into English by (a) Sasaki (1968; first printed
in 1922), (b) Turney (1972), and (c) Cohn (2005). Irrespective of the
translators, a single peak with a positively distorted shape (i.e., positive
skewness) is seen. There are steep walls between x = 1 and x = 2
as well as between x = 4 and x = 5. To make a comparison, the
spectrum of the Poisson distribution with rF = 1/φ (λ = 3.8464) is
superimposed with fine lines.

In Table 4 one will notice the interesting fact that the mag-
nitude of rF for all the English texts are extremely close to
1/φ. In particular, it would be surprising that for the text
translated by Sasaki the magnitude of δ is no more than
0.03%.

There are two reasons why Work #N1 was chosen. First,
it had been translated into exceptionally many languages.
Second, for several languages among them, there are dif-
ferent translations being available. Calculation has been
made also for non-English texts currently available. In Fig.
7 the word spectra are shown of Botchan (#N1) that was
translated into (a) Italian (Pastore, 2007), (b) Polish (Mu-
rakami, 2009), (c) Hungarian (Judit, 2003), and (d) Indone-
sian (Haryono, 1992); their characteristic values are listed
in Table 5. Here we notice that for the Italian text (Fig.
7(a)) the magnitude of rF would be close to 1/φ. In addi-
tion to the five languages listed in Tables 4 and 5, analyses
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Fig. 7. Word spectrum of Botchan that was translated into (a) Italian, (b) Polish, (c) Hungarian, and (d) Indonesian. In sharp contrast to the uneven
shape in the spectra of Italian, Polish, and Hungarian, the envelope of the Indonesian spectrum possesses a beautiful profile like a volcano, where no
abrupt variation as was seen in the English spectra can be observed.

Table 4. Characteristic values for the word-length data of three translated
texts of Botchan (#N1) by Soseki Natsume. Original texts written in
Japanese are translated into English. Here �, L , Me, Mo, R, s, CV ,
α3, and α4 indicate, respectively, the entire number of words, mean,
median, mode, range, standard deviation, coefficient of variation, skew-
ness, and kurtosis of the data; the cumulative probability (rF ) of the
Fibonacci data (x = 1, 2, 3, 5, 8, 13, 21, 34, . . . ) and the relative differ-
ence between rF and 1/φ, respectively, are added to the second and the
first column from the bottom. In order to make a comparison, those of
the Poisson distribution with λ = 3.8464, for which the requirement of
the golden distribution is met, are given.

Poissonian English English English

(Sasaki) (Turney) (Cohn)

� — 54899 53536 56868

L 3.85 4.11 4.10 4.07

Me 4 4 4 4

Mo 3 3 3 3

R ∞ 18 35 16

s 1.96 2.25 2.19 2.16

CV 0.510 0.547 0.533 0.532

α3 0.458 1.13 1.13 1.11

α4 3.05 4.43 5.20 4.54

rF 0.6180 0.6179 0.6206 0.6193

δ (%) 0 0.03 0.42 0.21

are being made for all the texts currently available, specif-
ically, German (55.9–57.2%), French (58.3–58.5%), Span-
ish (63.4–65.5%), Russian (54.6%), Turkey (45.0%), Fil-
ipino (55.9%), and Malay (45.7%) texts, where the numeral
in each bracket indicates the latest estimation of rF . Finally,
preliminary results for texts including other languages but

Table 5. Same as Table 4 but texts (#N1) translated into four non-English
languages.

Italian Polish Hungarian Indonesian

� 45206 37619 38242 44986

L 4.83 5.26 5.56 5.74

Me 5 5 5 5

Mo 2 3 5 5

R 32 23 22 20

s 2.78 3.01 3.15 2.48

CV 0.576 0.573 0.566 0.433

α3 0.779 0.618 0.713 1.02

α4 3.35 2.86 3.39 4.36

rF 0.611 0.558 0.519 0.440

δ (%) 1.1 9.6 16 29

translations from other works in Japanese are given in Ta-
ble 6. Evidently, among them, concerning the value of rF ,
there is no case comparable to English. We would conclude
that, with respect to the golden distribution of probabilities,
the English texts could be regarded as cases passing along a
golden mean between two extremes such as, e.g., the French
and Spanish ones, for which rF < 1/φ and rF > 1/φ, re-
spectively.

To conclude, a method for generating artificial patterns
from the word-length data will be mentioned. In this
method, which was termed spiral mapping (Hayata, 2003),
starting from the center (0, 0), one draws on the Cartesian
coordinate a notched spiral with the counterclockwise rota-
tion in accordance with the direction of a sequence. For in-
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Table 6. List of preliminary results for other non-English texts. In work
numbers, N and K indicate Soseki Natsume and Yasunari Kawabata,
respectively.

Language rF Work Translator

Swedish 0.649 #N4 Emond (1996)

French 0.597 #N3 Cholley (1978)

French 0.597 #N4 Horiguchi (1987)

Portuguese 0.613 #N3 Teixeira (2008)

Italian 0.609 #N2 Origlia (2001)

Rumanian 0.609 #N3 Holca (2010)

Rumanian 0.607 #N4 Suzuki (1984)

Esperanto 0.609 #N5 Nishi (1960)

Serbian 0.609 #N4 Jankovic (2003)

Greek 0.594 #N4 Palantioy (2005)

Polish 0.544 #N3 Melanowicz (1977)

Latvian 0.499 #N4 Paegle (2004)

Hungarian 0.528 #N3 Erdos (1988)

Finnish 0.417 #K1 Kivimies (1968)

Mongolian 0.486 #N3 Dashdabaa (2002)

#N2: Kusamakura.
#N3: Wagahai wa Neko de Aru.
#N4: Kokoro.
#N5: Londonto.
#K1: Yukiguni.

stance, we consider the opening sentence by Cohn (2005),
{From the time I was a boy the reckless streak that runs
in my family has brought me nothing but trouble.}, which
yields a sequence of the word-length data {4, 3, 4, 1, 3, 1,
3, 3, 8, 6, 4, 4, 2, 2, 6, 3, 7, 2, 7, 3, 7}. Applying the spiral
mapping technique (see Appendix A) to this sequence, one
obtains a chain of transitions

(0, 0) → (4, 0) → (4, 3) → (0, 3) → (0, 4) → (−3, 4)

→ (−3, 3) → (−6, 3) → (−6, 0) → (−14, 0)

→ (−14, −6) → (−10, −6) → (−10, −10)

→ (−8, −10) → (−8, −12) → (−2, −12)

→ (−2, −15) → (5, −15) → (5, −13)

→ (12, −13) → (12, −10) → (19, −10). (15)

Here the adjacent points are joined with a segment line. The
spiral pattern realized with this path is shown in Fig. 8. Note
that, the more the length of a sequence increases, the more
the pattern becomes complicated. Previously, it was con-
firmed that the shape of the notched spiral depends criti-
cally both on languages and on translators (Hayata, 2003).
Namely, the two-dimensional pattern could be regarded as
something like a fingerprint of a text. If necessary, in order
to yield a mandala-like pattern with the four-fold rotation
symmetry, the original spiral and its seven copies would be
superimposed (Hayata, 2004).

5. Conclusion
A novel concept based on the golden ratio φ has been

presented for discrete probability distributions, where the
cumulative probability of the Fibonacci numbers coincides

Fig. 8. Illustration that explains the spiral mapping. Sample data are
selected from the opening sentence of the English text by Cohn (2005).
Continued mapping of the word length data yields a complicated spiral
pattern inherent in the language.

with the reciprocal of φ. In addition to classical cases such
as the binomial, Poisson, and geometrical distributions, the
one that explains the first digit phenomenon as well as the
inverse power functions have been chosen. For the latter, in
the limit of n → ∞, with n being one of the two parameters
of the inverse power distribution, the value of the power
has been found to approach the fractal dimension of the
golden tree. Finally, examples being close astonishingly to
the golden distribution have been shown for the analysis of
the word spectra of a novel written in English.

Appendix A. Outlining the Spiral Mapping
Method

1) Start from the center (0, 0) and move horizontally
along the x-axis with the increment �x . Here �x is the
length of the initial value of the sequence. For the data of
Cohn (2005), �x = 4.

2) Subsequently, move upwards with the increment �y.
Here �y is the length of the second value from the center.
For the present data, �y = 3.

3) For the point being in the first section (x > 0, y >

0), move backward along the horizontal direction (i.e., set
�x < 0, being the decrement) and upwards along the
vertical direction (set �y > 0) until the point attains into
the second section (x < 0, y > 0).

4) For the point being in the second section, move back-
ward along the horizontal direction (set �x < 0) and down-
ward along the vertical direction (set �y < 0) until the
point attains into the third section (x < 0, y < 0).

5) For the point being in the third section, move forward
along the horizontal direction (set �x > 0) and downward
along the vertical direction (set �y < 0) until the point
attains into the fourth section (x > 0, y < 0).

6) For the point being in the fourth section, move forward
along the horizontal direction (set �x > 0) and upwards
along the vertical direction (set �y > 0) until the point
returns to the first section (x > 0, y > 0).

7) Return to Step 3 and repeat this procedure until the
point attains the terminal of the data.
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