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Image noise may prevent proper diagnostic X-ray imaging. This study is aimed at developing new noise
rejection methods using a mathematical model that describes the form of X-ray image noise. Stationary noise
is one type of noise found in X-ray images. Stationary noise is nonstochastic and appears independent of
the radiographic factors. In this paper, we verify methods for identifying stationary noise using a polynomial
regression model, and extracting such noise from X-ray images obtained from a CR system. The results of this
study demonstrate that stationary noise can be extracted with high precision using a particular low-pass filter
frequency. We found that a regression model for greater than second-degree polynomials can be applied for
roughly identifying stationary noise. However, the fitting accuracy of the regression curve is not significantly
improved in terms of the amount of multiplication required when increasing the degree of the polynomial
regression model.
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1. Introduction
With the advancing digitization of radiographic imag-

ing systems, digital X-ray imaging systems are being used
in many medical facilities. Digital X-ray images obtained
from these systems are widely used in many clinical fields
such as diagnoses and mass-screening, as they do not re-
quire a processing procedure, can easily be subjected to
image processing, and can easily be compared with im-
ages from prior examinations. Among digital X-ray images,
those obtained from CR (computed radiography) or FPD
(flat panel detector) systems are some of the most basic im-
ages used in determining the condition of a patient (Kono
and Adachi, 2008). To improve the accuracy of diagnostic
imaging, it is important to be able to vividly extract only in-
formation on a subject. This is achieved by removing from
the images any existing noise that may prevent the detec-
tion of important clues, such as the source of the patient’s
condition.

A selective multi-frequency process has been generically
performed for noise reduction in digital X-ray imaging sys-
tems (Yamada and Murase, 2005). This noise-reduction
process is based on the characteristics of the images, in-
cluding those of the subject. However, because both noise
components and diagnostically important signals uniformly
undergo the noise-reduction process, it is highly possible
that this process does not selectively and completely remove
only the noise contents. To solve this problem, we have
therefore attempted to improve the diagnostic accuracy by
developing a noise-rejection method that accurately realizes
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the noise-generating mechanism related to the X-ray imag-
ing system mathematically (in this paper, the authors define
an X-ray imaging system to include an X-ray generator).
Unlike a noise-reduction method using a conventional X-
ray imaging process, the objective of this study is to de-
velop a noise-rejection method using a mathematical model
that realizes an accurate digital X-ray imaging system; the
mathematical model may also realize the noise-generating
mechanism. In diagnostic imaging, medical judgment of
normality or abnormality is performed based on informa-
tion of the signal forms found in diagnostic images: the
term “signal form” indicates a particular signal’s figure or
pattern. Image noise may cause an inter-reader to make an
improper medical judgment, because such noise may dis-
tort information of the signal form. Hence, mathematically
identifying, and further modeling, the form of an image
noise may contribute toward improving the accuracy of di-
agnostic imaging.

In identifying a suitable mathematical model, we have
to consider the characteristics of the noise components of
the X-ray imaging systems as such characteristics consist
of various factors (Rossmann, 1963; Barnes, 1982; Ogawa
et al., 1995). Noise superimposed onto an X-ray image con-
sists of both stochastic and nonstochastic noise (Dobbins et
al., 2006). One type of stochastic noise is quantum noise
caused by a fluctuation of radiated photons. Another type
is electrical noise attributed to the X-ray imaging system.
On the other hand, non-stochastic noise includes fixation
noise attributed to the X-ray imaging system. These noise
components are always superimposed onto X-ray images.
The aim of this study is to perform the mathematical iden-

S37



S38 A. Sugiura et al.

Fig. 1. X-ray images with 2 mAs (these images share the same window
widths to integrate the noise hue).

Fig. 2. X-ray images with 20 mAs (these images share the same window
widths to integrate the noise hue).

tification of non-stochastic low-frequency noise (stationary
noise) superimposed onto X-ray images from a CR system.
We then aim to develop a noise rejection method using a
mathematical model that realizes an accurate digital X-ray
imaging system.

2. Stationary Noise
Stationary noise is a noise component that appears in-

dependent of the radiographic factors in the X-ray images.
Figures 1 and 2 show digital X-ray images without a subject
that were taken from the same CR system with different ra-
diographic factors. The radiographic factors in Fig. 1 are 70
kV and 2 mAs (a low-dose setting), while those in Fig. 2 are
70 kV and 20 mAs (a high-dose setting). Compared with
Fig. 1, Fig. 2 shows a decrease in spike-like noise caused by
fluctuations in the radiated photons. However, we can find a
comprehensive variation of density (pixel value) at the same
position in each image. This fluctuation component is sta-
tionary noise. In stationary noise, there is a nonuniform dis-
tribution of X-ray emissions attributed to the architecture of
the X-ray target, structural nonuniformity of the X-ray ac-
ceptance surface (structural nonuniformity of the imaging
plate (IP)), nonuniformity in the sensitivity of the IP read-
out systems, and so on.

A frequency analysis is generally used for the evaluation
of noise in X-ray images. Dobbins et al. (2006) stated that

Fig. 3. Geometric arrangement of the X-ray exposure.

Fig. 4. Direction of each line profile in the X-ray images.

when performing a frequency analysis, an evaluation of the
noise characteristics should be based on X-ray images that
have been cleared of stationary noise. On the other hand,
because stationary noise interferes considerably with diag-
nostic imaging, Kunitomo et al. (2010) stated that an evalu-
ation of noise characteristics should be based on X-ray im-
ages that include this type of noise component; however,
the direct current component should be removed to prevent
leakage-based errors. We also believe that this type of noise
component prevents accurate diagnostic imaging. There-
fore, stationary noise should be removed completely using
our suggested method.
2.1 Examination of stationary noise extraction method

In the mathematical identification of stationary noise, the
problem is how to extract stationary noise X-ray images that
include various noise components. Therefore, to solve this
problem, we consider the characteristics of stationary noise
and accordingly suppose that each image obtained from
the same X-ray imaging system with different radiographic
factors and processed by a low-pass filter (LPF) of a specific
frequency shares the same distribution profile. Based on
this supposition, we verified whether this presumption was
correct by using the X-ray images obtained from the same
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Fig. 5. Changes in the correlation coefficient based on changes in the cutoff frequency: (a) direction vertical to the X-ray tube (V-direction), and (b)
direction horizontal to the X-ray tube (H-direction).

X-ray imaging system at different X-ray doses and with a
gradual change in the LPF.

2.1.1 Subjects and methods To obtain digital X-ray
images without a subject, we performed a uniform X-ray
exposure using an X-ray generator (Shimazu Co., Ltd.) and
IP (Fuji Film Co., Ltd.). The geometric disposition of the
X-ray exposure had a source-interface distance (SID) of 2
m. The exposure area was reduced to the size of the IP,
as shown in Fig. 3. For the radiographic factors, we set
the tube voltage to 70 kV, and the dose settings to 2 (low
setting) and 20 mAs (high setting). Altogether, the X-ray
doses of these images differed by around a factor of 10.
Next, the X-ray images were created using an A/D conver-
sion in a CR system (Fuji Film Co., Ltd.). Finally, we ac-
quired the images (matrix size, 2510 × 2000; pixel pitch,
0.1 mm; Nyquist frequency, 5 cycles/mm) from the CR sys-
tem. Next, to extract the stationary noise, the images ob-
tained from the CR system were processed using an LPF
(cutoff frequency, 0.03 to 1 cycles/mm) processed through
Image J imaging software. Then, to verify the consistency
of both images, 1,024 line profiles (n = 1, 024) with con-
stricted pixel values in the vertical (V-direction) and hori-
zontal (H-direction) directions to the X-ray tube were ex-
tracted as analysis objects from the center of the X-ray im-
ages after processing through an LPF with different cutoff
frequencies.

To evaluate the consistency of each line profile, when the
line profiles of the 2 mA and 20 mA images were set as
{xi |i = 1, 2, 3, . . . , 1024} and {yi |i = 1, 2, 3, . . . , 1024},
respectively, we calculated their correlation coefficients us-
ing Eq. (1):

r =
∑

(xi − x̄)(yi − ȳ)√∑
(xi − x̄)2

√∑
(yi − ȳ)2

. (1)

2.1.2 Results and discussion Figures 5(a) and (b)
show the average correlation coefficient grouping of each
cutoff frequency. Figure 5(a) presents the results for the
V-direction, while Fig. 5(b) presented the results for the H-
direction. The average correlation coefficient in both di-
rections decreases gradually with an increase in the cut-
off frequency of the LPF. Further, the relative amounts of

reduction increase in both directions. For the maximum
cutoff frequency (0.976 cycles/mm) in this verification, the
average correlation coefficient in the V-direction decreases
by 11% in comparison with the minimum cutoff frequency
(0.039 cycles/mm). On the other hand, in the H-direction,
a decrease of 3% in the average correlation coefficient was
found. Moreover, an increase in each standard deviation
was found with an increase in the cutoff frequency of the
LPF in both directions. We attributed these results to a
gradual increase in the interfusion of stochastic noise (white
noise) when the cutoff frequency of the LPF was increased.
Then, comparing the correlation coefficients of the V- (Fig.
5(a)) and H-directions (Fig. 5(b)), the correlation coefficient
of the H-direction was relatively higher than that of the V-
direction. Further, by increasing the cutoff frequency of
the LPF, we found that the correlation coefficient of the V-
direction decreased rapidly compared with the H-direction.
As for the reasons for the different values and decreasing
trends of the correlation coefficients in each direction, we
considered that the stochastic noise had anisotropy, or that
the V-direction was more susceptible to stochastic noise
than the H-direction. However, the results of both directions
showed very high correlation coefficient values. These re-
sults indicate that the same noise components could be ex-
tracted from each X-ray image despite their different radio-
graphic factors. Therefore, we consider that our presump-
tion and suggested extraction method, which use an LPF to
extract stationary noise, may be valid.

Next, to extract stationary noise from an original image,
using an X-ray dose of 20 mAs, we set the following two
conditions with respect to the set up error and anisotropy of
stochastic noise:

I) The correlation coefficient was more than 0.98.
II) The correlation coefficient did not decrease consider-

ably.
The cutoff frequency of the LPF that fulfills the two con-
ditions, which was determined to be 0.195 cycles/mm, was
adopted for extracting stationary noise. Therefore, as shown
in Fig. 6, we obtained a stationary noise image that was pro-
cessed using an LPF (0.195 cycles/mm).
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Fig. 6. The stationary noise image. An X-ray image processed using an
LPF (cutoff frequency: 0.195 cycles/mm).

3. Identification of Stationary Noise Using Polynomial
Regression Model

To perform a mathematical identification of stationary
noise, we fit the mathematical model to the image shown in
Fig. 6. As mentioned in Sec. 2, stationary noise may make
it impossible to use a regular signal generation process in
the signal distribution of X-ray images. This is because this
process is intricately related with the unique characteristics
of an X-ray imaging system, such as the nonuniformity dis-
tribution of the X-ray emission attributed to the imaging ge-
ometry, structural nonuniformity of the IP during the man-
ufacturing process, and nonuniformity in the sensitivity of
the IP readout system in the CR system. Therefore, as sta-
tionary noise consists of low-frequency components with-
out spike-like noise, and stationary noise changes depend-
ing on its position within the X-ray image, we attempted
mathematical identification using a polynomial regression
model due to its flexibility.
3.1 Subjects and methods

To perform a specific identification, we used two veri-
fication methods. The first is a fitting method that uses a
one-dimensional polynomial regression model utilizing the
line profiles extracted from a stationary noise image. The
second is a fitting method using a two-dimensional poly-
nomial regression model that utilizes the stationary noise
image directly.

First, in the line profile method, 1,024 line profiles
were extracted in each of the two directions (V- and H-
directions). Then, each line profile was fit in the one-
dimensional polynomial regression model as described by
Eq. (2):

E = z + a1x + a2x2 + . . . + ad xd , (2)

where E is the output value from the polynomial regression
model, x is an independent variable, d is the maximum or-
der of the polynomial regression model, and z and ad are
free parameters. In this case, d was set as 1 to 5. Further,
each parameter was determined using the method of least
squares. In order to evaluate the compatibility of each one-
dimensional polynomial regression model, the determina-
tion coefficient was calculated from each line profile.

Next, in the method that directly utilizes the stationary

Fig. 7. Changes in the determination coefficient in the one-dimensional
polynomial regression model.

noise image, the stationary noise images were fit in the two-
dimensional polynomial regression model described in Eq.
(3):

E = z +a1x +a2x2 + . . .+ad xd +b1 y +b2 y2 + . . .+bd yd ,

(3)
where E is the output value from the polynomial regression
model, variable numbers x and y are independent variables
(for the V- and H-directions, respectively), d is the maxi-
mum order of the polynomial regression model, and z and
ad are free parameters. The order of model d was set to 1 to
5 as using the line profile method, and the orders of x and
y were set as the same value. Each parameter was also de-
termined using the method of least squares. To evaluate the
compatibility of each two-dimensional polynomial regres-
sion model, we calculated the determination coefficient as
using the line profile method. Moreover, each order of the
model was evaluated using Akaike’s information criterion
(AIC) as described in Eq. (4) (Akaike, 1973, 1974):

AI C = N ln

(∑1024
i=1 (Ei − Ē)2

N

)
+ 2K , (4)

where Ei is a two-dimensional polynomial regression curve
after determining each of the parameters, N is the number
of monument points (1024 × 1024), and K is the number
of free parameters.
3.2 Results

Figure 7 shows the results of applying the one-
dimensional polynomial regression model to the line pro-
files extracted from a stationary noise image. The vertical
axis of the graph displays the average value of the deter-
mination coefficient, while the horizontal axis is the poly-
nomial degree. In the line profiles of the V-directions, we
confirmed that the average determination coefficient of the
first-degree polynomial model was much lower than for the
other degrees. For the greater than second-degree polyno-
mial models, the average value of the determination coeffi-
cient increased gradually with an increase in the degree of
the polynomial model. The average value of the determi-
nation coefficient was 0.93 in the fifth-degree polynomial
model. On the other hand, in the H-direction, the average
value of the determination coefficient increased gradually
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Fig. 8. Results of fitting the two-dimensional polynomial regression model directly to a stationary noise image: (a) determination coefficient and (b)
AIC.

Fig. 9. Example of a line profile extracted from each direction, and a fifth-degree regression curve: (a) V- and (b) H-directions.

with an increase in the degree of the polynomial model, as
demonstrated in the V-direction. The highest average value
of the determination coefficient in the V-direction was 0.95
for the fifth-degree polynomial model.

Next, Figs. 8(a) and (b) show the results of applying the
two-dimensional polynomial regression model to the sta-
tionary noise image directly. Figure 8(a) shows the re-
sults of the average determination coefficient. In the first-
degree polynomial model, the average determination coeffi-
cient was much lower than in the greater than second-degree
polynomial models. With an increase in the degree of the
polynomial model, a gradual increase in the average value
of the determination coefficient was found. The highest av-
erage value of the determination coefficient was 0.93 in the
fifth-degree polynomial model in the H-direction. On the
other hand, Fig. 8(b) shows the results of the AIC. The
results of the AIC are opposite those of the determination
coefficient. The AIC of the first-degree polynomial model
was much higher than in higher-degree polynomial models.
The AIC in the second-degree polynomial model decreased
gradually with an increase in the degree of the polynomial
model.
3.3 Discussion

In mathematical identification using the one-dimensional
polynomial regression model, the determination coefficient

was calculated from 1,024 line profiles extracted from the
stationary noise images in both the V- and H-directions. As
a result, in the V-direction, the determination coefficient
of the first-degree model was much lower than that of the
other degree models. Moreover, the determination coeffi-
cient increased with an increase the in degree higher than
the second-degree model (Fig. 7). We believe that these re-
sults were due to the configuration of the line profiles in
the V-direction. The center line profile in the V-direction
had a relatively low value, and the line profiles at both ends
had relatively high values. Therefore, it is believed that ap-
plying the first-degree model did not duplicate the config-
uration of the line profile. On the other hand, in the case
of the higher-degree models, the determination coefficient
increased considerably due to gradually fitting the approxi-
mate configuration of the regression curve. To carry out re-
gression, the polynomial regression model is generally able
to be applied to a more difficult configuration by increas-
ing the degree, which is due to an increase in the latitude
of the regression curve. Therefore, in this study, it was also
presumed that the determination coefficient increased grad-
ually with an increase in the degree of the model. How-
ever, the polynomial regression model has a drawback of
not passing all data points when performing regression at a
low degree, compared with the amount of total data. More-
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Fig. 10. Appearance when fitting different two-dimensional polynomial regression models of the (a) first-, (b) second-, (c) third-, (d) fourth-, and (e)
fifth-degree.

over, the polynomial regression model also has a tendency
to oscillate at both ends of the data. Figures 9(a) and (b)
show examples of a line profile in each direction and a re-
gression curve of the fifth-degree model. These line profiles
were extracted from the center of a stationary noise image.

Each regression curve was able to capture the characteris-
tics of the line profile almost exactly. However, for points
with large variations in pixel value, or smaller fluctuations,
the regression curve did not capture the line profile com-
pletely. Therefore, for capture flexibly, it was determined
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that the model should be revised.
Next, in mathematical identification using the two-

dimensional polynomial regression model, the determina-
tion coefficient and the AIC were calculated directly from
the stationary noise images. As a result, the determina-
tion coefficient of the first-degree model was much lower
than that of the other degree models. Moreover, the de-
termination coefficient gradually increased when a greater
than second-degree model was used. The results of the AIC
indicated the opposite conclusion as the determination co-
efficient (Figs. 8(a) and (b)). For the first-degree model,
it was conceivable that the determination coefficient was
quite low, while the AIC was much higher, because the
first-degree model did not apply a curved surface in the V-
direction, as was the case when the one-dimensional poly-
nomial regression model was fitted. Figure 10 shows the
appearance when the two-dimensional polynomial regres-
sion model with the degree ranging from 1 to 5 is fitted.
The colored map in Fig. 10 shows variations in pixel value,
where the contour lines depict the appearance of a two-
dimensional regression curve. From Fig. 10, we were able
to find that the appearance of the contour line matched the
distribution of the color map with an increase in the degree
of the polynomial regression model. However, for the first-
degree of the polynomial regression model, the contour line
did not match the color map altogether. These results have
excellent agreement with those of the determination coef-
ficient and AIC. When the two-dimensional polynomial re-
gression model is fitted, the reproduction ability of the com-
plex configuration was lower than in the one-dimensional
polynomial regression model because the pixel value at
each position was determined by considering the charac-
teristics of both directions. Therefore, the two-dimensional
polynomial regression model fell short of duplicating the
complex configuration completely. Further, we also consid-
ered that it was very difficult to completely duplicate the
complex configuration if regression was carried out using
higher than a fifth-degree polynomial regression model.

In light of these results, it was possible that the stationary
noise was able to be partially acquired by applying a higher
than second-degree polynomial regression model. Further,
it was considered that the stationary noise was duplicated
with more precision when increasing the degree of the poly-
nomial regression model. However, the results of regression
by both the one-dimensional and two-dimensional models
show that increasing the degree of the polynomial regres-
sion model did not achieve significant improvement in the
determination coefficient or AIC. Moreover, it remains pos-
sible that the amount of improvement achieved when fit-
ting the model was low as compared to the increase in the
amount of calculation attributed to an increase in the model
degree. Therefore, for an accurate mathematical identifica-
tion of stationary noise, we suggest modifying the polyno-
mial regression based model, for instance, by capturing a
more difficult variance, rather than increasing the degree of
the polynomial regression model.

4. Conclusions
In this paper, we verified a method for extracting station-

ary noise. Further, we also performed mathematical iden-
tification of stationary noise using a polynomial regression
model as a fundamental study of the development of a noise
rejection method using a mathematical model that realizes
an accurate digital X-ray imaging system.

The results show that stationary noise can be extracted
with high precision using a particular LPF frequency. Next,
we performed mathematical identification of stationary
noise using a polynomial regression model. As a result, we
found that a greater than second-degree polynomial regres-
sion model can roughly identify stationary noise. Moreover,
it became possible to identify stationary noise in more de-
tail by increasing the degree of the model. However, the fit-
ting accuracy of the regression curve was not significantly
improved in terms of the amount of calculation required to
increase the degree of the polynomial used in the regres-
sion model. Therefore, we believe that retrieval should be
added to a basic polynomial regression model to accommo-
date variations of stationary noise with increased flexibility.

In this paper, the identification of the stationary noise was
verified using a single X-ray image. Thus, in the future we
will attempt to build a mathematical model that realizes ac-
curate characteristics of stationary noise using retrieval and
identification based on multiple X-ray images. Moreover,
stochastic noise will also be verified. Eventually, we expect
that this study will contribute toward an improvement in di-
agnostic imaging through identification of the form of an
image noise and the development of a correct mathematical
model.
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