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A Trapezium Generates Tiling of Concentric Regular Pentagons
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A case of tiling using a single tile of golden trapezium is presented and each of the five pentagonal sectors when
seen in isolation, reveals planes of translation suggesting periodicity. It is shown that this tile not only tessellates
Euclidean plane, expanding to infinity, but also maintains perfect regular pentagonal outline at each completed
generation of tiling. The entire tiling suggests a five-fold intergrowth structure of a twinned crystal, which should
yield sum of five discrete and superimposed ordered periodic diffraction patterns. Clue to this tiling was primarily
provided by a Coccolithophore species: Braarudosphaera bigelowii, which makes an elegant regular pentagonal
dodecahedron of mineral Calcite, invisible to unaided human eye.
Key words: Golden Trapezium, Periodic Tiling, Concentric Regular Pentagons, Twinned Crystal, Braaru-
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1. Introduction
A single tile tessellating Euclidean plane only nonperi-

odically continues to elude scientists, but a single tile of
golden trapezium dealt herein could possibly be a potential
candidate for generating forced aperiodic tiling when edges
are marked, coloured or keyed. Congruent convex polygons
generating nonperiodic tiling also tile periodically (Gard-
ner, 1977). There are just three regular convex congru-
ent polygons permitting complete tessellation of Euclidean
plane in periodic patterns: equilateral Triangle, Square and
regular Hexagon. Possibilities multiply when non-regular
convex polygons are used (Grünbaum and Shephard, 1987).
However, much confusion exists in mathematical litera-
ture about the terms periodic, aperiodic, nonperiodic and
quasiperiodic. Penrose tilings are examples of aperiodic
and quasiperiodic tiling, which require that the tile edges
be coloured or keyed to force aperiodicity (Penrose, 1974).
Non-repeating pattern is characteristic of aperiodic tiling,
which lacks translational symmetry and serves as a model
for quasicrystals (Schechtman et al., 1984). In contrast,
nonperiodic tiling tiles the plane in an irregular pattern but
can also tile in a regular periodic manner.

2. Golden Trapezium and Braarudosphaera bigelowii
It was found that this unique single tile designated

as “golden trapezium” could be carved out from the
Pythagorean pentagram, which also contains familiar pairs
of Penrose tiles (Fig. 3). Initial clue to this tiling was fur-
nished by Scanning electron- and polarized light micro-
scopic observation of a single cell fossil and extant marine
haptophyte alga belonging to Coccolithophores: Braaru-
dosphaera bigelowii (Gran and Braarud, 1935; Deflandre,
1947).
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The tests of B. bigelowii (Figs. 1 and 2) are made up of
12 regular pentagonal plates of finely laminated (ca. 0.1
µm) crystallites of mineral Calcite resulting in perfect reg-
ular pentagonal dodecahedral symmetry (Jafar, 1975, 1998;
Brieskorn, 1983; Hagino et al., 2013).

B. bigelowii which probably makes the most perfect regu-
lar pentagonal dodecahedral hollow test comprising of min-
eral Calcite (CaCO3)—a unique combination of periodic
lattice enveloping quasiperiodic dodecahedral frame in the
world of microbiogenic particles (ca. 10–15 µm diame-
ter). Three variants of dodecahedral tests are found match-
ing with Euclidean-flat, Elliptic-convex and Hyperbolic-
concave pentagonal faces (Thurston and Weeks, 1984).
Each regular pentagonal plate displays minor variations but
is occasionally subdivided into five “golden trapeziums”
by five dextrally oriented radial sutures (Figs. 1 and 2).
Another extinct Coccolithophorid species Micrantholithus
hoschulzii (Reinhardt, 1966; Thierstein, 1971), flourished
over 140 million years ago in ancient sea, also built perfect
regular pentagonal dodecahedral tests with hollow interior,
but owing to weak architectural design complete tests are
not preserved but regular pentagonal plates with five radial
sutures joining at vertex and creating five isosceles (72◦ -
54◦ - 54◦) triangular units of mineral Calcite (CaCO3) are
preserved. These triangular units can be used to gener-
ate similar concentric tiling as by golden trapezium in B.
bigelowii, expanding to infinity.

3. Concentric Regular Pentagonal Tiling
A paper of Bagley (1965) introduces an interesting tiling

of concentric pentagons by using a plane of hard spheres, so
that each pentagon side has an odd number of balls followed
by construction of a plane with an even number of spheres
per pentagon side. If both planes are placed in intimate con-
tact with their five-fold axes coincident, there results a layer
which can be stacked one upon another and packed to in-
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Fig. 1. Test of a complete regular pentagonal dodecahedron of Braaru-
dosphaera bigelowii (Gran and Braarud, 1935) Deflandre, 1947, from
ca. 15 million year old Miocene rocks of Walbersdorf, Austria. Note
dextral rotation of five radial sutures on each pentagonal plate of min-
eral Calcite occasionally carving perfect tiles of “golden trapezium”. A
total of 60 such tiles (sinistrally oriented) make up the entire and hollow
pentagonal dodecahedron (scanning Electron Micrograph: reproduced
from Jafar,1975).

finity. Thus an infinite structure can simply be generated,
the nucleus of which is a pentagonal dipyramid of seven
spheres. This structure bears striking resemblance to isosce-
les triangle tiling observed in Micrantholithus hoschulzii
with interior angles of 72◦ - 54◦ - 54◦. Length of the edge
of pentagon: 1, 2, 3, 4, 5 · · ·. Area of the pentagon: 1, 4,
9, 16, 25 · · ·. These increasing ratios are remarkably the
same as for golden trapezium tiling (Figs. 4 and 5), which
essentially differs from aperiodic Penrose tiling in lacking
nested properties, while Penrose tiling is a nested structure.
The trapezium tiling has a solitary centre of global five-fold
rotational symmetry. The Penrose tiling has both solitary
centre of global five-fold rotational symmetry and several
centres of the local five-fold rotational symmetry.

Golden trapezium by definition is an isosceles trapezium
whose two Legs and larger Base are of identical length and
Base angles are equal (108◦ - 108◦ - 72◦ - 72◦). An intercept
equal to the length of smaller Base made on any of the equal
line segments of Legs and larger Base results in golden ratio
phi: 1 + √

5/2 = 1.618 . . . (Mario, 2002). This tiling is
indeed unique and could be taken to imply that slicing a
regular pentagon into five golden trapeziums and concentric
expansion of the pattern using a single tile could actually
yield larger and larger regular pentagons in a perfect and
infinite manner.

A Pythagorean pentagram containing any inscribed fig-
ure can inflate or deflate to infinity as every line segment
in relation to the next smaller one maintains golden ratio.
Familiar Penrose pair of Kite-Dart and Fat-Slim rhombi
including “golden trapezium” described herein are demar-
cated (Fig. 3). Here it is shown that this single tile not only
tessellates in periodic pattern but also retains conspicuous

Fig. 2. Diagram of a complete regular pentagonal dodecahedral test
of a Coccolithophore: Braarudosphaera bigelowii (Gran and Braarud,
1935) Deflandre, 1947, consisting of finely laminated pentagonal plates
(six shown) of biogenic Calcite traversed by five dextrally rotated ra-
dial sutures carving six-sided Calcite units displaying outlines of tiles
matching “Golden Trapezium” (blue).

Fig. 3. Pythagorean Pentagram showing 3-generations of deflating
“Golden Trapezium” (ABCD) tile in fractal dimension. Fat (blue) -
Slim (red) rhombi and Kite-Dart pair of Penrose tiles are also marked.

regular pentagonal outline at each completed generation of
tiling. There is more than one elegant way to arrange five
“golden trapeziums” around a vertex and let the pattern be
inflated concentrically by adding 10 extra tiles in each com-
pleted generation of tiling: 5 - 15 - 25 - 35 - 45 . . . (Figs.
4 and 5). The tiling has been named as “Cobweb” pat-
tern. Figure 5 is generated by arranging the tiles slightly
differently: first layer sinistral (black), second layer dex-
tral (blue), third layer sinistral (red), fourth layer sinistral
(green).
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Fig. 4. The most fundamental concentric tiling of regular pentagons is
generated by arranging five “golden trapeziums” (108◦ - 108◦ - 72◦
- 72◦) dextrally around a vertex in the central area and the pattern is
concentrically inflated by adding more tiles around it as shown.

4. Tiling and Twinned Crystal
Senechal (1995) commented: “· · · while from a crystallo-

graphic perspective, the structure of Fig. 4 is just a twinned
crystal for which the twin boundaries can be filled nicely
with the same trapezoidal shape as is used to make the crys-
tals”. Closer examination of the areas between adjoining
vertices of pentagon and laying a lattice reveals period par-
allelograms containing identical pieces of the tile match-
ing fundamental domains having twice the area of golden
trapezium and displaying translational symmetry, charac-
teristic of periodic tiling. The central region displaying
pentagonal-chiral symmetry could be interpreted as a 5-fold
intergrowth structure of a twinned crystal. If subjected to
laser beam experiment, such a tiling would reveal pseudo-
fivefold rotational symmetry with periodic bright spots. The
diffraction pattern would thus be a sum of discrete periodic
diffraction patterns.

However, Bagley (1965) citing experimental evidence,
suggested that it is unlikely that twinning could produce
such a structure in small sized nanoparticles, instead, for-
mation of pentagonal dipyramid nucleus and its subsequent
growth is a simpler and more probable mechanism.
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