
Art Column Forma, 30, 9–18, 2015
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Kolam is a traditional loop pattern, in which a line goes around some dots in an array. In this paper, we reported
on our study of the construction of Kolam, describing how many loops a drawn Kolam has. Considering Kolam
as a knot-link pattern and a navigating line (N-line) of Kolam as a planar graph of the knot-link, we analyze the
loop number as the component number using the Tutte polynomial and the invariant of it. In Appendix A, the
author introduced also two matrix processes from the Kolam pattern as a Medial graph to obtain a loop number.
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1. Introduction
Traditional loop patterns can be drawn on the sand such

as occurs with the Sona in Angola or the Nitus of Vanuatu
Island in the South Pacific: on some material, e.g. tomb-
stones, rings and knits such as with Celtic knots in Ireland;
and on the ground such as with the Kolam in South India.
These are designed or drawn using some very simple com-
mon rules and in simple structures: the pattern has also very
rich diversities in the form.

These artistic forms inspire some interesting issues. In
this paper, the author discuses two questions: What con-
ditions are possible to make a single loop or a multi-loop
pattern? and How many loops does the given loop pattern
consist of? In this study, we used Kolam as a representation
of loop patterns.

2. Kolam Patterns
Kolam is drawn in such a way that at first a woman

painter locates a set of dot arrays on the ground, and she
then begins to draw a line around a dot. The line continues
to go around the dot or another adjacent dot according to the
following rules: When the line goes around the other adja-
cent dot, it must change the direction of right (clockwise)
or left (anticlockwise) against the dot. When the line meets
with itself, or another line at a point between two adjacent
dots, the lines cross. At a crossing, the line goes straight (to
cut through) and after crossing, the line changes a turning
direction alternately. The line should be able to go back to
the beginning point.

A painter seems to imagine a filling polygon (tile) in tes-
sellation around each dot of the array, and also a crossing
point between two adjacent dots surrounded by the poly-
gons in her brain-inside-visual-field. Most Kolam patterns
are drawn on a regular rectangle (square) dot array and
crossing points between orthogonally arranged dots, which
are regular crossings. She imagines also a line between two
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adjacent dots for setting the crossing point on the line, and
this line is called a navigating line (N-line) by the authors.

There is an additional condition, in which instead of a
crossing on the N-line between two adjacent dots (tiles),
the lines become parallel at two points on the common
edge between two tiles and connect the two tiles. This
configuration is called a two-point-connection with non-
crossing shown in Fig. 2(1) in Sec. 5. In topology, two
adjacent tiles and two dots combine to form one expanded
tile and one combined dot, maintaining the character of the
graph.

3. How Many Loops does Kolam Consist of?
The Line around Dots - Swinging-Line Kolam pattern

(LaD - Sikku Kolam in Tamil language) is studied on these
questions: What conditions are possible to make a single
loop or a multi-loop pattern? or How many loops does the
given Kolam consist of?

The mat (lattice) Kolam is a Kolam of a regular dot (tile)
array of N × M, all edges of which have crossings. We
know already that the loop number of the lattice Kolam on
a N × M dot array is GCD(N,M)[1,2]. That fact came from
the problem of how a ball in billiards reflects the edges of
the table. Some other conditions were also analyzed using
the N-line. An open line of the N-line results that the loop
number is one, and one closed with even crossings results
that the loop number is one (odd crossings make a multi
loop Kolam).

However, when the N-line is a closed line (cycle), but not
one circuit, the loop component number is not given easily.
In graph theory, we know that the Tutte polynomial function
is decided with a vertex number and a component number
of a knot-link graph[3]. A Kolam corresponds to a knot-
link. Therefore finding the loop number of a Kolam, the
Tutte polynomial function will be useful.

4. Tutte Polynomial and the Invariant
In the mathematical discipline of graph theory, the medial

graph of plane graph G is another graph M(G) that repre-
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(Definition 0) Vertex T(G;X,Y) = 1,

(D1) Bridge T(G;X,Y) = XT(G/e) = X, contraction, T(G; 1, 1) = 1, 

(D2) Loop  T(G;X,Y) = YT(G-e) = Y, deletion,     T(G; 1, 1) = 1 

(D1-2) T(G;X,Y) = XT(G/e3) = X XT(G/e3/e2) = X X X T(G/e3/e2/e1)  

= X X X,             T(G; 1, 1) = 1   

(D2-2) T(G;X,Y) = Y T(G-e2)= X Y T(G-e2/e1) =X Y,  

T(G 1, 1) = 1= ( 1)*( 1) = 1,  where e2 is a loop 

Fig. 1. These figures show how to obtain the invariants of a Tutte polynomial from a knot-link pattern L and a planar graph G of L. The Tutte polynomial
of G top-down to a polynomial of X, Y, and vertexes, without any edges of T(G; X,Y) = 1 (non-resolvable graphs) using recurrence relation. Finally,
we can calculate to obtain a real value of the invariant T(G; −1, −1).

sents the adjacencies between edges in the faces of G. M(G)
corresponds to a Kolam pattern or a knot-link pattern L in
this paper.

Here, the author introduces an analyzing way of a graph
called the Tutte polynomial to get the component number
of a knot-link, which corresponds to the loop number of a
Kolam pattern. (Note this loop is different from a loop in
(D2) of the Tutte polynominal, but a component in a knot-
link.)

We must first introduce the definition of the Tutte poly-
nomial. When G is a regular planar graph of a knot-link L -

L is the medial graph of G -, the Tutte polynomial satisfies
the following recurrence relations: Here an edge e ∈ E(G)

(D0) If G has no edges (only vertex, non-resolvable
graph), then T(G; X,Y) = 1.

(D1) If G has a bridge e (open circuit), e can then be
contracted to make the both of vertexes of e one vertex,
T(G; X,Y) = XT(G/e; X,Y) (contraction).

If an edge is cut and then the connected (total) component
number of G increments, the edge is a bridge (cut-edge). (If
an edge connects two isolated Gs, the edge is a bridge.) If
G itself is a bridge, T(G; X,Y) = X.
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(D3-2) T(G;X.Y) = T(G-e3) deletion  T(G/e3) contraction 

= X T(G-e3/e2) + ( T(G/e3-e2) + T(G/e3/e2) ) 

= X X T(G-e3/e2/e1) + ( X T(G/e3-e2/e1) + Y T(G/e3/e2-e1) ) 

= X X + X + Y,           T(G; 1, 1) = +1 1 1 = 1 

(D3-3) T(G;X,Y) = T(G-e4) deletion  T(G/e4) contraction 

= X X X  (X X + X + Y),  T(G; 1, 1) = 1+1 1 1 = 2 

(D3-1) T(G;X.Y) = T(G-e2) deletion  T(G/e2) contraction 

= X T(G-e2/e1) + Y T(G/e2-e1)= X + Y,   T(G; 1, 1) = 1 1= 2

Fig. 1. (continued).

(D2) If G has a loop e and e can be deleted, T(G; X,Y)
= YT(G-e; X,Y) (deletion). If both ends of an edge are the
same vertex, the edge is a loop. If G itself is a loop, T(G;
X,Y) = Y. (Note this loop is different from a loop of the
description of Kolam.)

(D3) If otherwise a closed circuit. e is neither a loop nor a
bridge, then T(G; X,Y) = T(G/e; X,Y) contraction + T(G-e;
X,Y) deletion.

We analyzed the Tutte polynomial of G top-down to a
polynomial of X, Y, and vertexes, without any edges of T(G;

X,Y) = 1 (non-resolvable graphs) using recurrence relation.
Finally, we can calculate to obtain a real value of the invari-
ant T(G; −1,−1). Figure 1 shows how to obtain the invari-
ants of the Tutte polynomial from a knot-link pattern L and
a planar graph G of L.

Schwarzler and Welsh[4] introduced the relation between
the component number of L and invariant T(G; −1,−1) of
the Tutte polynomial of G, which was proofed by Martin[6].

Here, when T(G; X,Y) is the Tutte polynomial of a graph
G (E an edge set, V a vertex set), |E(G)| is the edge number
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1: Unknot-with no edge (no crossing. Two-point connection Kolam) E = 0,  

2: The infinity symbol, unknot E = 1, The edge in the graph G (N-line of this Kolam) 

is contracted to the graph (1). It corresponds to an untwisting or uncrossing Kolam.  

3: Hopf Link E = 2, C = 2,  4: Trefoil Knot using diagonal crossings E = 3,  

5: Link E = 3, C = 2,  6: Figure Eight Knot E = 4,  7: Unknot E = 4,  8: Link E = 4, 

C = 2 

9: Link E = 4, C = 3, 10:Whitehead Link E = 4, C = 2, 11:Link E = 5. C = 3 

1 

2 3 4 5 

6 8 7 

9 10 

11 

12: Borromean Rings E=6, C=2, 13; Link E=6, C=4, 14: Link E=8, C=4, 15: Link E=8, 

C=5. 

12 13 15 14 

Fig. 2. Samples of relations between Kolam (L) and N-lines (G). Some patterns of the cases of the graph 1–19 are analyzed by the Tutte polynomial.
Refer to Table 1 for the cases 1–15. The case 20 will be studied more for getting a formula in the future.

of the graph G, and C(L) is the component number of a
knot-link L, the following relational equation is known:

T (G; −1, −1) = (−1) ∗ ∗|E(G)| ∗ (−2) ∗ ∗(C(L) − 1),

where a medial graph of G is a knot-link L (a planar regular
four-edge graph), as each vertex of the crossing points of
Kolam has four edges of lines- and C(L) is the component
number of L. |E| and C correspond to the crossing number
and the loop number of a Kolam respectively.

According to the previous equation, the author calculated
and confirmed the Tutte polynomial invariants T(G; −1,−1)
of some Kolam patterns shown in Table 1. The component
number C(L) is derived by reverse lookup from this table or
it is derived from the following reserve equation.

C = Log−2(T (G; −1, −1)/(−1)|E(G)|) + 1

= Log2(|T (G; −1, −1)|) + 1.
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16: When the N-line of a Kolam is an open circuit, it looks like the branches of a tree. 

Imagine N-lines to some branches, around which a vine twines or a snake winds at 

the crossings. When the snake bites its tail, or the initial vine is combined with the 

last, it makes a loop. When the twining line is untwisted at the crossing on the 

initial edge e1, the number of the edges decreases by one. This operation, a 

contraction in the Tutte polynomial, continues until the terminal edge eE and 

finally, we can obtain only one loop (C=1).  

T(G; X,Y) = XT(G/e1) = XXT(G/e1/e2) = XXXT(G/e1/e2/e3)  

= X**E T(G/e1/e2/e3…/eE) = … = X**E,  T(G; 1, 1) = ( 1)**E, then C = 1. 

16 

17: When the N-Line is one closed circuit. Delete and contract the final edge eE, and 

the deleted G becomes open and the contracted G becomes closed, then again 

contract the e(E 1) edge of the closed G, and continue until only the initial edge e1 

(Refer D3-1, D3-2 and D3-3 in the previous Sec. 4) 

T(G; X,Y) = T(G-eE) + T(G/eE)= X**(E 1)+ T(G-eE-eE 1)+T(G/eE/eE 1) 

= X**(E 1) + X**(E 2) + T(G-eE-eE 1-eE 2) + T(G/eE/eE 1/eE 2) 

 … = X**(E 1) + X**(E 2) + X**(E 3) +…+ X**2 + X + Y 

= Sum(n=1 to E) (X**(n 1)) + Y,   

T(G; 1, 1)= Sum(n=1 to E) (( 1)**(n–1)) 1,= { 2 for E even, 1 for E odd} 

Then C= {2 loops for E even of Figure left, 1 loop for odd of Figure right} 

17 

Fig. 2. (continued).

5. Application of the Tutte Polynomial to Kolam Pat-
terns

In this section, a Kolam corresponds to a graph L of a
knot-link projected onto a plane, and the N-line of Kolam is
also a planar graph G - a segment of the N-line is an edge
of G and a dot is a vertex of G. - L is the medial graph of G
consisting of vertexes (at crossing points) with four degrees
of edges in L. There should be one crossing of L on each
edge e of G. The edge number E of G is the same as the
crossing number on the N-line of the Kolam.

The following figures of Fig. 2 show samples of relations
between Kolam (L) and N-lines (G). Some figures are ana-
lyzed by the Tutte polynomial. Refer to Table 1.

6. How to Modify from a Multi-Loop Kolam to a Sin-
gle Loop Kolam and the Reverse

For reducing the loop number of a multiple loop pattern,
one crossing of two different loops will be uncrossed to
join the different strings of the loops (x → > <), or a new
crossing at the near points of two different loops will be
made a combined loop (> < → x); this reduction process
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18 A closed N-line Kolam pattern from combining an open N-line Kolam pattern 

with some additional vertexes and edges. Let us consider an original pattern, which 

consists of one component loop and an open N-line. Then connect an additional 

common vertex (black dots with dotted lines) to all of the terminal vertexes 

belonging to the original pattern through each edge respectively. In a new pattern, 

a closed cycle - N-Line consists of two new edges from the original terminal vertexes 

and the additional vertex, and some other original edges (left-upper).  

When the number of the edges, or crossings, on each cycle of N-lines is odd, the 

loop number of the new pattern is kept the same (one loop) as the original 

(left-lower). 

When the number of the edges on a cycle of N-lines is even, the loop number of the 

N-line cycle increases by one. In this case (center), the edge numbers on two cycles 

of the N-lines are two and two (even), and the edge number of another cycle of the 

N-line is five (odd), and then the total loop number of the Kolam pattern becomes 

three. The maximum possible loop number becomes the original terminal-vertex 

number, so that all of the numbers of the edges on each cycle of N-lines are even 

(right). This result implicates "Proposition 1: For a tree T, the link component 

number of the suspended tree ST is at most the number of the leaves of T” reported 

by Endo [5-1,5-2]. 

18 

Fig. 2. (continued).

will continue until the loop number becomes only one.
The proof is the following: Imagine a crossing of two

different loops, and four lines A, B, C and D of the crossing.
A line from B goes to A out of the crossing, and another line
from C goes to D. When the crossing is made uncrossed,
and A and C, and B and D should be connected respectively.
On the result, the line goes to A-C-D-B-A in one loop. The
proof of the reversal case making a crossing of a loop is
made on the reversal.

7. Summary and Future Works
This paper described the process of making a Kolam

pattern, which is a knot-link consisting of loops. When L is
a knot-link, and G is a planar graph of L, which corresponds
to the N-line of the Kolam pattern, the component number
C of the knot-link L or the loop number C of the Kolam

pattern L is calculated from the invariant T(G; −1,−1) of
the Tutte polynomial of G and the edge number E of G, or
the crossing number E of L.

However, it is very difficult to calculate this T(G;
−1,−1), as a Tutte polynomial cannot be obtained from the
Kolam pattern directly; it is also very difficult to analyze
the first polynomial to the final polynomial in recurrence
relation.

The loop numbers of some Kolam were obtained practi-
cally using actual Kolam patterns, and the Tutte polynomial
T(G; X,Y) was not used for them.

In Appendix A, two ways to get the loop number of
Kolam pattern using matrices of the graph of Kolam were
introduced. However the larger the size of Kolam is, the
larger the sizes of the matrixes are. And it is not easy to get
the first matrix of a large size Kolam. A new mathematical
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19: When two closed N-lines are combined, 

  The graphs of G1 and G2 have the same closed N-line (left). At first, combine 

these two graphs of G1 and G2 with a cut edge (Ce). Refer to Definition (1) in 

Section 4, or a bridge. The combined G is expressed G = G1 U G2 (center). Each 

string at the crossing on the Ce enters and exits to/from G1 and G2, and then joins 

to each one of the loops of G1 and G2. Therefore, C(G = G1 U G2, Ce) = C(G1)+C(G2) 

1. In the figure, C = 2 + 2 1 = 3. In this case, when Ce of the graph G (center) is 

contracted, the graph G becomes the graph with a common vertex Cv (left). The 

edge number decrements one. 

T(G=G1 U G2,Ce;X,Y) = XT(G/Ce) = XT(G = G1 U G2,Cv;X,Y), 

T(G1 U G2,Cv;X,Y) = T(G1 U G2,Ce;X,Y) /X 

Although the edge number decrements by one, and the sign of T(G; 1, 1) is 

changed by X= 1, the component number does not change in Table 1. therefore, we 

can obtain the following: 

C(G1 U G2,Cv) = C(G1 U G2,Ce) = C(G1) + C(G2) 1. 

20: A double closed N-line loop pattern from a closed N-line loop pattern (white dots) 

added vertexes (or edges, black dots) 

Left-upper: The original, the loop number Co=1. right: Additional edges Ea=5 (odd). 

19 

20 

center: The added loop pattern keeps the original loop number Ca=1. lower: By 

additional Ea=4 (even), the loop number increases Ca=2. 

Center-upper: The original, the loop number Co=2. lower: By additional edges Ea=2 

(even), the loop number decrease Ca=1.  

Right-upper: By additional edges Ea=3 (odd), the loop number decrease Ca=1. 

lower: By additional edges Ea=4 (even), the loop number increases Ca=3. 

A formula of the above will be studied in the future.  

Fig. 2. (continued).
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21: A lattice Kolam such that the Kolam pattern is drawn around all dots in the N x 

M matrix dot array is called a mat Kolam. In this Kolam, the loop number C is 

GCD(N x M). The author cannot find the proof of this result using the Tutte 

polynomial and also the invariant of T(G; 1, 1). 

21 

Fig. 2. (continued).

Table 1. Invariant values of the Tutte polynomial T(G; −1,−1) for E(G) and C(L); T (G; −1, −1) = (−1)∗∗|E(G)| ∗ (−2)∗∗(C(L)− 1), where C(L)
is the link component number and |E(G)| is the edge number of the planar graph G without any isolated vertexes of a knot-link L. In this paper, the
medial graph L of the graph G corresponds to the Kolam loop pattern, a regular planar graph with four degrees of a knot-link diagram. In the Kolam
loop pattern, |E(G)| is the same number as the crossing number of L. G is the same graph as the N-line circuit of L. C(L) is obtained from the reverse
lookup value of Table 1 or the following reversal equation; C = Log−2(T (G; −1, −1)/(−1)|E(G)|) + 1 = Log2(|T (G; −1, −1)|) + 1, * for any
|E(G)|, which should be larger than 2C-3. Each case indexed with the number is shown in Fig. 2 of the next section 5.

E=0 1 2 3 4 5 6 7 8 9 10

C=1 T=1 −1 1 −1 1 −1 1 −1 1 −1 1

case 1 2 4 6, 7

2 * * −2 2 −2 2 −2 2 −2 2 −2

case 3 5 8 10

3 * * * * 4 −4 4 −4 4 −4 4

case 9 11 12

4 * * * * * * −8 8 −8 8 −8

case 13 14

5 * * * * * * * * 16 −16 16

case 15

6 * * * * * * * * * * −32

method with computer software (program) will one day
solve this problem.
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Appendix A.
Other ways how to get the component or loop number

using matrixes.
After submitting the paper, the author was introduced by

Prof. Nikkuni to the paper “On the Component Number of
Links from Plane Graphs” by Daniel S. Silver and Susan G.
Williams[8].

The author is introducing a way using matrix because
the matrix way to obtain the loop number of a given Ko-
lam pattern might have simpler formula than the way of the
Tutte polynomial T(G; −1,−1) and it might be more pro-
grammable. Silver and Williams gave a short, elementary
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Fig. A.1. In Kolam (left), white dots represent vertices, but some dots surrounded by the lines with two-point-connections are combined to one vertex,
the N-lines of black linear lines represent the planar graph (right), and then the lines belonging crossings at the medial positions between two adjacent
and combined dots are the medial graph. This Kolam becomes a knot-link with up-down crossings. Components of the medial graph are called
left-right cycles sometimes. The numbers in the center are assigned to the vertices representing combined dots of Kolam. Note one vertex represents
some combined dots.

Fig. A.2. A sample Kolam (left. the medial graph of G, or the diagram D) and N-lines (G: black lines), the Tait graph G (center. the planar graph) and
the dual graph (right).

and self-contained proof of the following:

THEOREM A.1 (Silver and Williams). Let L be a link
arising from a medial graph M(�) by resolving vertices.
The number µ(L) of components of L is the nullity of the
mod-2 Laplacian matrix Q2(�). This Theorem was first
given in the paper by C. Godsil and G. Royle[8].

The process for getting the component number is the fol-
lowing: Start with the graph G and number the vertices with
the maximum vn. Make the adjacency matrix A (entry in
ith row and jth column is number of edges from i to j, with
loops counted twice). Obtain the Laplacian matrix Q = D −
A, where D is a diagonal matrix of degrees of vertices from
A. Finally, calculate the nullity of the mod-2 Laplacian ma-
trix Q2(G). and then the result is the component number of
the medial graph of G. The following calculation example
is of the sample Kolam (Fig. A.1) using Mathematica code
by the author;

Each matrix of the process for Fig. A.1 is the following
respectively: Adjacent matrix ma with vertex number vn of
four, Diagonal matrix md of degrees of vertices, md[i=j]
= sum{ma[I,1] + ma[I,2] + · · · + ma[I,vn]}, md[i!=j] =
0. Laplacian matrix mq = md - ma, modular matix m2 =
Mod[mq,2], and Mod-2 row reduced matrix mq2 from m2.

ma =




v1 v2 v3 v4

v1 0 1 1 1
v2 1 0 2 1
v3 1 2 2 1
v4 1 1 1 0


,

md =




3 0 0 0
0 4 0 0
0 0 6 0
0 0 0 3


 , mq =




3 −1 −1 −1
−1 4 −2 −1
−1 −2 4 −1
−1 −1 −1 3


 ,

m2 =




1 1 1 1
1 0 0 1
1 0 0 1
1 1 1 1


 , mq2 =




1 0 0 1
0 1 1 0
0 0 0 0
0 0 0 0


 .

The nullity is the number of zero rows in the matrix mq2.
From the rank-nullity theorem, Nullity = vn − Matrix-
Rank[mq2] = 2. Finally, we obtain the output 2, which
means that the component (loop in Kolam) number is two.
Note the rank of [mq2] is calculated using arithmetric mod-
ulo 2 as an example of ma = [[0,1,1][1,0,1][1,1,0]], mq2 =
[[0,1,1][1,0,1][1,1,0]], the rank of mq2 = 2, and then the
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nullity (=3−2) means 1 loop of ma.
The author was introduced also to another paper “On

Region Crossing Change and Incidence Matrix” by Cheng
Zhiyun and Gao Hongzhu[9]. In that paper they prove that
a signed planar graph G represents an n-component link di-
agram D if and only if the rank of the associated incidence
matrix M(D) equals to c−n+1, here M(D) denotes the in-
cidence matrix of the diagram D from G, and c denotes the
size of the graph G. This way called Cheng’s process to ob-
tain the component number - loop number in Kolam- is the
following;

In Fig. A.2, in Cheng’s process, we must set some ver-
tices representing every region bounded by Kolam or knot-
link lines including regions without dots, e.g. the outside
region. In Godsil-Susan’s process, however, we are enough
to set only vertices representing every region by Kolam or
knot-link lines, which have vertex-dots, crossings of lines,
and edges connecting the crossings. The later is simpler
rather than the former.

Two first matrixes of Incidence matrix mi in Cheng’s pro-
cess and Adjacency matrix ma in Godsil-Susan’s process
are the followings:

For a loop of e1 though v1, mi[e1,v1] = mod(1+1,2) =
0, the graph of ma is undirected, and ma[v1,v1] = 2 on
counting twice. The Tait graph is the same as the planar
graph.

mi =




e1 e2 e3 e4

v1 0 1 0 1
v2 0 1 1 0
v2 0 0 1 1
v4 1 1 1 1
v4 0 1 1 1
v6 1 0 0 0




,

ma =



v1 v2 v3

v1 2 1 1
v2 1 0 1
v3 1 1 0


.

In Cheng’s process, the rank of the incidence ma-
trix rmi is 4, we obtain the component number
n=c+1−rmi=4+1−4=1, where c is the edge, or crossing,
number. In Godsil-Susan’s process, the rank of the mod-2
Laplacian matrix rmq2 is two, and we then obtain the com-
ponent number n=nullity=vn−rmq2=3−2=1, where vn is
the vertex, or dot, number, which connects together with the
edge.

Comparing the two, setting the first matrix from a given
graph in Godsil-Susan’s process is simpler, but matrix cal-
culation of Cheng’s is simpler than the other: this is maybe
a trade-off. For programming, the setting of the first matrix
from the given Kolam should be simple.

Notes
About the reference[4], the page 125 claimed the follow-

ing:

When M is the cycle matroid of a planar graph G, we
know that T (M; −1, −1) = (−1) ∗ ∗|E(G)| × (−2) ∗
∗(C(m(G)) − 1), where m(G) is the medial graph of G.
G = (V, E) is a finite undirected graph with a vertex v set V
and an edge e set E.

The author understands that M means the same as G, and
C(m(G)) is the same as C (knot-link L component number
or Kolam loop pattern) in this paper. Here |E(G)| is the edge
number of an edge set of E consisting of G.

About the reference[6], the page 321 claimed the follow-
ing:

THEOREM A.2 (Martin). For any planar multi-graph �,
with m edges,

χ(�, −1, −1) = (−1) ∗ ∗m(−2) ∗ ∗k,

where 0 < k < m/2. Furthermore, if � is connected, s = k +
1 is the number of strings of the medial graph corresponding
to any planar representation of �.

Proof. First, we notice that it is sufficient to prove the
proposition in the connected case: As a matter of fact, if
� is not connected, the polynomial χ (�) is equal to the
product π iχ (�i) over all the connected components �i of
�. Thus, as we check that m is the sum of mi and that
the relation k <= m/2 is preserved by summation, the
proposition reduces to the connected case. The proof of
the connected case can be performed by induction. There
are two one-edge multi-graphs. Each of them verifies that
χ (�,−1,−1)=−1 and has a medial composed of one string
(refer two graphs � of an edge and a loop of Definition 1
and 2 in Fig. 1). If m >= 2, the polynomial χ (�, x, y) may
be obtained by addition (Case 1) or multiplication (Case 2).
The rest is omitted.
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