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Topological Properties of the Braid Stirring Pattern
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Put several rods in the fluid and stir them with the rules of braid. A beautiful and strange stirring pattern appears
on the surface of the fluid. We name this pattern “the braid stirring pattern (BSP)”. We discuss the topological
properties of BSP, for example, the tunnel number, the growth rate of tunnel length, and the ratios among tunnel
lengths.
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1. Introduction
In everyday life, we pour milk into coffee in a cup, and

may stir milk and coffee with a spoon. The figure appearing
on the surface is an example of rod stirring pattern. Boy-
land, Aref and Stremler (Boyland et al., 2000) published
the article discussing the properties of the rod stirring pat-
tern on the surface of viscous fluid. According to the rule of
braid, they moved three rods inserted into the fluid. Here,
the motion of fluid is approximately two-dimensional. They
applied the braid theory to analyze the pattern on the surface
of the fluid. If the braid used to stir several rods possesses a
positive topological entropy, the topological chaos exists on
the surface. The fluid is stirred by the rods slowly. Thus, the
topological chaos is not a phenomenon caused by a turbu-
lent flow. The chaotic trajectory is observed as the boundary
curve between milk and coffee. It is stretched and folded by
the fluid motion and it does not intersect itself. The bound-
ary curve on the surface of fluid is a suitable object to study
the mixing process. Changing the number of rods and the
braid, the rod stirring pattern has been extensively studied
(Thiffeault and Finn, 2006). In this paper, instead of “the
rod stirring pattern”, we call the pattern on the surface of
fluid “the braid stirring pattern (BSP)”.

Using any braid, BSP is constructed. In order to discuss
the properties of BSP rigorously, it is necessary to under-
stand the properties of braid. In this paper, we use the braid
constructed by the periodic orbit in the two-dimensional
area preserving map. Particularly, we use a braid β5 con-
structed by the period-5 orbit.

β5 = σ−1
4 σ−1

3 σ−1
2 σ−1

1 σ−1
4 σ−1

3 . (1)

This is the well-known braid, which has the minimum pos-
itive topological entropy among the braids for period-5 or-
bits. Here the notation σ−1

k represents the generator of braid
(Murasugi, 1996). We study the geometrical and algebraic
properties of BSP constructed by β5.
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In Sec. 2, we explain the origin of β5 and how to make
BSP. In Sec. 3, the geometrical and algebraic properties of
BSP are discussed. Our results are summarized in Sec. 4.

2. Braid Stirring Pattern
2.1 Origin of the braid β5

First, we explain the origin of braid β5, briefly. We use
the two-dimensional area preserving map T in the Hénon
family (Yamaguchi and Tanikawa, 2009, 2011).

yn+1 = yn + fa(xn), (2)

xn+1 = xn + yn+1. (3)

Here, fa(x) = a(x − x2), and a(≥ 0) is a parameter. At
a > 0, two fixed points P = (0, 0) and Q = (1, 0) exist.
The fixed point P is a saddle point. The other one Q is an
elliptic orbit at 0 < a < 4, and a saddle with reflection
at a > 4. All orbits except for P and Q rotate around Q
clockwise. There are two symmetry axes Sh (y = 0) and
Sg (y = − fa(x)/2)(see Fig. 1). At a ≥ 5.1766 · · · , there
exists the Smale horseshoe in the phase space (Devaney,
2003; Yamaguchi and Tanikawa 2009, 2011). Thus, the
topological entropy of T is less than or equal to ln 2.

At a = 5.1192 · · · , the saddle-node bifurcation occurs,
and two periodic orbits with the rotation number 2/5 ap-
pear. These orbits rotate around Q twice during one period.
In Fig. 1, the saddle orbit is depicted. Using the orbital
points rotating around Q clockwise, the braid is constructed
(Fig. 2). We set two planes. Every strand starts from the up-
per plane representing the configuration at t = 0 and arrives
at the lower plane representing the configuration at t = 1.
In order to understand the movement of strands, we add
the strand of Q illustrated by thick line in Fig. 2. Rotating
around the thick strand, every strand goes down. For exam-
ple, the strand from z2 to z3 passes backside of thick strand
and the strand from z3 to z4 passes in the front of the thick
strand. Finally, we delete the thick strand, and obtain the
braid β5 depicted in Fig. 3.

We explain the properties of periodic orbit depicted in
Fig. 1. We stand at Q and observe the orbit. The polar-
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Fig. 1. Saddle periodic orbit with rotation number 2/5 where z1 = T z5,
z2 = T z1, z3 = T z2, z4 = T z3, and z5 = T z4. This orbit rotates
around Q twice during one period. The orbital point z2 locates on Sh ,
and z4 locates on Sg . a = 5.15.
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Fig. 2. How to make the braid β5. The upper plane represents the
configuration at t = 0 and the lower one represents the configuration
at t = 1. Thick arrow represents the direction of the time evolution.
For example, the strand starts at z1 in the upper plane goes down and
arrives at z2 in the lower plane. The thick strand starts at Q in the upper
plane goes down and arrives at Q in the lower plane. Each strand rotates
around thick strand and goes down.

coordinate representation (θk, rk) is used. Here, we measure
an angle clockwise from the segment Q P . We observe the
angular velocities of the orbital points from z1 = (θ1, r1)

to z4 = (θ4, r4). During three iterations, the orbit rotates
around Q approximately once (θ4 − θ1 ≈ 2π ). The orbit
from z1 to z4 rotates slowly. On the other hand, during
two iterations, the orbit from z4 to z1 rotates around Q
approximately once. Thus, the orbit from z4 to z1 rotates
rapidly.

The slow rotation is characterized by the rotation number
1/3 and the rapid one by the rotation number 1/2. Thus, the
total rotation is characterized by the rotation number 2/5,
which is divided as follows.

2

5
= 1 + 1

3 + 2
≡ 1

3
◦ 1

2
. (4)
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2 3
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Fig. 3. Braid β5. The upper region of braid represents the configuration
at t = 0 and the lower one the configuration at t = 1. Time flows from
the upper region to the lower one (see thick arrow). Let R0 be the set of
Strings {a, b, c, d} located above the braid, and R1 be the set of Strings
{a1 = β5a, b1 = β5b, c1 = β5c, d1 = β5d} located below the braid.
Thick arrow in R1 represents the entrance of tunnel (gray region). Here,
σ−1

k (k = 1, 2, 3, 4) are the generators to represent the braid.

In the situation that the periodic orbit satisfying Eq. (4) ex-
ists, there exists the periodic orbit with the rotation number
1/3 and that with the rotation number 1/2 (Yamaguchi and
Tanikawa, 2009, 2011). In fact, the former orbit appears at
a = 3 through the rotation bifurcation of Q. At a = 3,
two periodic orbits appear. One orbit is an elliptic orbit and
the other one is a saddle orbit. At a = 4, the periodic orbit
with the rotation number 1/2 appears through the period-
doubling bifurcation of Q. The periodic orbit rotates about
180 degree per one iteration around Q. Using the coexis-
tence of the saddle periodic orbit with rotation number 1/3
and the periodic orbit with rotation number 1/2, we discuss
the properties of BSP in Subsec. 3.1.
2.2 Braid and braid stirring pattern

Using the braid β5 = σ−1
4 σ−1

3 σ−1
2 σ−1

1 σ−1
4 σ−1

3 , we ex-
plain how to make BSP. All strands go down from the up-
per plane to the lower one (Fig. 3). Time progresses towards
the lower plane from the upper one and the inverse progress
never occur. The braid β5 means the action to describe the
time evolution.

Let the positions at which the strands start be Position
Pk (k = 1, 2, · · · , 5). In Fig. 3, the abbreviated notations 1,
2, 3, 4 and 5 are used. In fact, the first strand starts at Point
1 and reaches at Point 2, the second one starts at Point 2 and
reaches at Point 4, and so on.

In order to reproduce the pattern of boundary curve on the
surface of fluid, we prepare the four strings. At t = 0, we
set String a connecting from Point 1 to Point 2. Similarly,
we also set String b, String c, and String d. These lengths
are assumed to be one. These are deformed by the action
of β5. Let R0 be the set of Strings {a, b, c, d}. In the
following, we study the structure of Rk = βk

5 R0 (k ≥ 0),
which inherits the properties of β5.
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Fig. 4. Two rods named Rod 1 located at Point 1 and Rod 2 located at Point 2 are observed from the top. Around the center illustrated by a circle, two
rods rotate 180 degrees clockwise. This process is represented by the generator σ−1

1 .

Fig. 5. Operating σ−1
3 on bc, the clockwise turn occurs at Point 4 (Left figure). Operating σ−1

3 on c̄b̄, the counterclockwise turn occurs at Point 4 (right
figure).

R 2

321 4 5

a2b2

c2

d2

a c

Fig. 6. BSP:R2. There exist two entrances named Entrances a and c. Note that a2 = β5a1 = β2
5 a.

We define the x-axis along the direction from Point 1 to
Point 2 and the y-axis perpendicular to the x-axis. Here,
the x-y plane expresses the surface of fluid. Rod 1 and
Rod 2 rotate 180 degrees clockwise around a circle between
two rods (see Fig. 4). It is noted that all rods rotate clock-
wise. Operating β5 on the rods, the fluid around these rods
are dragged to the x-direction and to the y-direction. The
movement along the y-direction naturally gives rise to the
expansion of Rk . In order to study the geometrical proper-
ties of BSP, we need the expansion along the y-axis of Rk .
On the other hand, when we investigate the algebraic prop-
erties, we need only the stretching and shrinking of Strings
{a, b, c, d} along the x-axis.

Under the braid in Fig. 3, R1 is shown. Next, we draw
R2. By the action β5, the image of Point k (1 ≤ k ≤ 5) is
determined. The image of Point 1 is Point 2. This transition
is represented as 1 → 2. Here, we set the vector A at Point
1 perpendicularly. The direction of β5 A and that of A are
the same. In order to represent this fact, the transition is
represented as 1̄ → 2̄ and 1 → 2. Next, we consider

the transition 4 → 3. We also set the vector B at Point
4 perpendicularly. The direction of β5 B and that of B are
reverse. Thus, the transition is represented as 4̄ → 3 and
4 → 3̄. The images of all points are obtained.

Rule I.

1̄ → 2̄, 1 → 2, (5)

2̄ → 4̄, 2 → 4, (6)

3̄ → 5̄, 3 → 5, (7)

4̄ → 3, 4 → 3̄, (8)

5̄ → 1, 5 → 1̄. (9)

If the image passes the upper (lower) region of Point k,
we represent this fact as k̄ (k). The image of String a is
a1 = bc. The image bc passes the upper region of Point
3. Adding this information, a1 = b3̄c is given. The other
images are similarly defined. The rules for four strings are
obtained.



54 Y. Yamaguchi

3
21

4
5R 3

d3

c3 b3

a3

a c

d̄c̄

Fig. 7. BSP:R3. There exist three entrances.
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Fig. 8. BSP:R4. There exist three entrances.
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Fig. 9. Definitions of Region a, Region b, Region c, Region d, and the
fundamental region Z in the x-y plane representing the surface of fluid.
Symbol k (k = 1, 2, · · · , 5) represents Point k.

Rule II.

a1 = b3̄c, (10)

b1 = d, (11)

c1 = d̄4c̄, (12)

d1 = b̄2ā. (13)

Here, a1 = β5a, b1 = β5b, c1 = β5c, d1 = β5d. For
example, 4 in c1 means that the image c1 passes the lower
region of Point 4. The orientation of c and that of d are
right, and the orientation of c̄ and that of d̄ are left.

First, we study a2 = β5a1 = β2
5 a. By Rules I and II, the

image a2 = d5̄d̄4c̄ is obtained. Here, we use the fact that

a bc

d

Fig. 10. Transitions among Regions (Strings) {a, b, c, d}, where a repre-
sents Region a, b represents Region b, and so on.

the image of 3̄ is 5̄ (see Eq. (7)). It is noted that the relations
of right and left and the vertical relations do not change
during the transition from 3̄ is 5̄. Omitting two numerals
included in d5̄d̄4c̄, dd̄c̄ is obtained. Thus, the length of
image is three. Repeating this procedure, the length of
image ak is calculated.

Next, consider c1 = β5c. Operate β5 on c1 = d̄4c̄. We
use the relation β5d̄ = a2b. This means that the image β5d̄
passes the lower region of Point 2 from the right side of
Point 2 to the left side. When Point 3 is mapped to Point
4, the image turns 180 degree clockwise. Thus, the vertical
relation reverses. The fact mentioned here is represented as
4 → 3̄ (see Eq. (8)). Finally, using β5c̄ = c4d, we obtain
the representation of c2. We summarize the results.

a2 = d5̄d̄4c̄, (14)

b2 = b̄2ā, (15)

c2 = a2b3̄c4d, (16)

d2 = d̄4c̄3̄b̄. (17)
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Fig. 11. The saddle periodic orbit with rotation number 1/3, where ξ1 = β5ξ3, ξ2 = β5ξ1, and ξ3 = β5ξ2. The orbital point ξ1 exists in Regions a
at y > 0, ξ2 in Region c at y > 0 and ξ3 in Region d at y < 0, where Ws(ξk) (k = 1, 2, 3) is the stable manifold of ξk and Wu(ξk) is the unstable
manifold of ξk . The unstable manifolds penetrate into R3 from the entrances.
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Fig. 12. Transitions among three entrances.

Combining these images, we obtain the notation for R2.

R2 : d 5̄d̄4c̄b̄2āa2b3̄c4dd̄4c̄3̄b̄. (18)

In order to draw the figure of R2, we start from Point
4 and draw the curve represented by d , which is the first
symbol of R2. We reach at Point 5 and rotate around Point
5 clockwise due to 5̄ in d 5̄d̄ .

We reach at Point 4, pass the lower region of Point 4, and
reach at Point 3. Next, we pass the lower region of Point 2,
and go forward Point 1. We encounter āa included in R2.
Therefore, we turn clockwise or counterclockwise at Point
1, and go toward Point 2. We have to determine how to turn
at Point 1.

Remember the fact that two rods rotate clockwise by the
generator. We operate σ−1

3 on Strings b and c facing right.
Thus, the clockwise turn occurs at Point 4 (see the left figure
of Fig. 5). We operate σ−1

3 on Strings b̄ and c̄ facing left.
Thus, the counterclockwise turn occurs at Point 4 (see the
right figure of Fig. 5). These imply that the way of the turn
at the point is decided by the direction of original string.

We remark that ā in āa is a part of image of d. The
direction of d is right. Thus, ā is the image of string facing
right. As a result, the clockwise turn occurs at Point 1.

We go to Point 2, pass the lower region of Point 2, and
pass the upper region of Point 3. If we pass the upper region
of Point 4, the image c2 intersects the image a2. Thus, we
pass the lower region of Point 4 and reach at Point 5. At
Point 5, we determine how to turn. Since d in dd̄ is a part of

the image of c̄, the counterclockwise turn occurs at Point 5.
We pass the lower region of Point 4, pass the upper region
of Point 3 and reach at Point 2. Thus, the figure of R2 in
Fig. 6 completes. Using the procedure mentioned here, we
can draw the figures of R3 and R4 (see Figs. 7 and 8).

3. Properties of BSP
3.1 Geometrical properties of BSP

Thick arrows illustrated in Figs. 6,7 and 8 represent the
entrances. The fluid flows into Rk from the entrances. The
fluid flowing into Rk is stretched and folded in Rk . This is a
typical chaotic process (Devaney, 2003).

Here, we discuss the number of entrances. In R1, there
exists only one entrance. Another entrance appears in R2,
and the third entrance appears in R3. New entrance does
not appear in R4. Thus, there exist three entrances and three
tunnels in Rk (k ≥ 4). The number of entrances (tunnels) is
the quantity characterizing BSP.

We define Region a in the x-y plane at which String
a exists (see Fig. 9). We draw a dotted line along the y
direction passing through Point 1. For the other points, we
draw dotted lines. Region a is an open area sandwiched by
the dotted line passing through Point 1 and by that passing
through Point 2. Similarly, Regions b, c and d are defined.
The open region between the dotted line passing through
Point 1 and that passing through Point 5 is the fundamental
region Z . For example, the portion of R2 extends outside
the fundamental region Z . The left and right regions outside
Z contribute the folding effect. However, these portions do
not contribute the algebraic properties discussed here.

Using Eqs. (10)–(13), we define the transition matrix M
among Regions a, b, c and d.

M =




a b c d
a 0 1 1 0
b 0 0 0 1
c 0 0 1̃ 1̃
d 1̃ 1̃ 0 0




. (19)

Here, a in M is the abbreviation of Region a or String a.
The first column means that the image of Region a covers
Region b and Region c. The symbol 1 means the admissible
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Fig. 13. Tunnels in R3.

transition and the symbol 0 the inhibited one. The image of
Region c covers Region c and Region d inversely. Simi-
larly, the image of Region d covers Region b and Region a
inversely. The symbol 1̃ in M represents the inverse cover.

The transitions among Regions (Strings) are depicted in
Fig. 10. For example, the transitions from a to b and c are
admissible. From Fig. 10, we obtain that there exist two
period-3 orbits.

a → b → d → a, a → c → d → a. (20)

Taking into account the covering direction, the first tran-
sition is rewritten as

a → b → d → ā → b̄ → d̄ → a. (21)

The second one is rewritten as

a → c → d̄ → a. (22)

After the one period, the direction around a in Eq. (21) is
inverted. Therefore, Eq. (21) represents the elliptic periodic
orbit or the saddle periodic orbit with reflection, and Eq.
(22) represents the saddle periodic orbit.

The transition

b ↔ d (23)

represents the period-2 orbit. Taking into account the cov-
ering direction, this transition is rewritten as

b → d → b̄ → d̄ → b. (24)

This implies that this periodic orbit is the elliptic periodic
orbit or the saddle orbit with reflection.

If the orbital points are located near the unstable manifold
of saddle point, these points flow along the unstable man-
ifold. Thus, the saddle point makes the entrance of fluid.
The first entrance named Entrance a appears at Region a at
y > 0 (see Fig. 3). The image of Region a is located at
Region c at y > 0. Thus, Entrance c appears at Region c
at y > 0 (see Fig. 6). The third entrance exists Region c
at y < 0 in Fig. 7. However, the image of Region c does
not cover Region a (see Fig. 10). We can reconsider that

Table 1. Increasing of tunnel lengths.

k La
3k Lc

3k Ld̄c̄
3k L3k

1 3 5 9 17

2 18 31 54 103

3 95 164 283 542

4 489 843 1452 2784

5 2502 4310 7422 14234

6 12783 22015 37911 72709

the third entrance extends over Regions c and d at y < 0.
As a result, Region d at y < 0 is mapped at Region a at
y > 0, and Region c at y < 0 is mapped at Region c at
y > 0. Thus, let Entrance d̄ c̄ be the third entrance. Hence,
the saddle point ξ1 exists in Region a at y > 0, ξ2 in Re-
gion c at y > 0, and ξ3 in Region d at y < 0 (see Fig. 11).
The existence of saddle points is consistent with that of en-
trances. We remark that this saddle orbit has the rotation
number 1/3.

The relations among three entrances are summarized in
Fig. 12. Three entrances exist in Rk (k ≥ 4), and three
tunnels exist in Rk (k ≥ 4). We call the tunnel with
Entrance a Ta . Similarly, Tc and Td̄ c̄ are used.
3.2 Algebraic properties of BSP

Using the properties of transition matrix M , the algebraic
properties of BSP are determined. The eigenvalue function

λ4 − λ3 − λ2 − λ + 1 = 0 (25)

is obtained. Solutions are 1.72208, 0.58069, and
−0.65138 ± 0.75874i . Let the maximum value be λmax =
1.72208 called a line-streching factor. Thus, the lower
bound for the topological entropy is ln λmax . If the system
has the braid β5, the topological entropy of the system is
larger than or equal to ln λmax . Thus, the chaos character-
ized by the braid is called the topological chaos (Boyland et
al., 2000). This chaos is determined by only the braid.

Using the transition matrix M3, we calculate the tunnel
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length.

M3 =




a b c d
a 2 2 1 1
b 0 1 1 1
c 1 2 2 2
d 1 1 1 2




. (26)

Comparing Eq. (26) and Fig. 13, we can understand how
to calculate the tunnel length. The total summation in the
first row of M3 is 4. This is the number of the images of
Strings a, b, c and d returning to Region a. Thus, in Region
a, there exist three tunnels. Each length is one and total
length is three. Similarly, there exist five tunnels in Region
b, four tunnels in Region c, and five tunnels in Region
d. Summing up these lengths, we obtain the total length
L3 = 17 in R3. Let m3k be the summation of elements
in M3k , and L3k be the total length of tunnels in R3k . We
obtain the relation

L3k = m3k − 4. (27)

The image of the first entrance represented by Entrance
a is located in Region b and c. For simplicity, we write
this image as bc. In the image bc, c represents Entrance c.
Omitting b in bc, we calculate the expansion of the rest part
c. Operating β2

5 on c, we have abcd. In this notation, a
represents Entrance a. Therefore, omitting the first symbol
a, we get bcd , which represents the tunnel whose entrance
is Entrance a. Thus, the tunnel length is three.

Next, we study the image of Entrance c. We obtain
β3

5 c = bcdd̄c̄b̄ā, and omit bc. Thus, the rest part dd̄c̄b̄ā
represents the tunnel. The tunnel length is five. Finally,
we obtain β3

3 d̄ c̄ = dd̄c̄b̄āabcdd̄c̄b̄. Omitting dd̄c̄, we have
b̄āabcdd̄c̄b̄. The tunnel length is 9. Repeating this proce-
dure, the lengths La

3k , Lc
3k , and Ld̄c̄

3k of tunnels Ta , Tc, and
Td̄ c̄ are calculated (see Table 1).

Using the data for large k, we determine the average ex-
pansion rate of the tunnel length. Summation of all ele-
ments in M3k diverges as λ3k

max . Let Lk be the total tunnel
length in Rk . After one operation β5, the total tunnel length

in Rk+1 is about Lk+1 ≈ λmax × Lk . The average expansion
rate for each tunnel is also λmax .

For the tunnels Ta , Tc, and Td̄ c̄, we obtain the relations:

Tc = β5Ta, Td̄ c̄ = β5Tc. (28)

Thus, Eq. (29) holds for large value of k.

La
3k : Lc

3k : Ld̄c̄
3k = 1 : λmax : λ2

max . (29)

Using the data for k = 6 in Table 1, we confirm these ratios.

λmax × 12783 = 22013.3 ≈ 22015,

λmax × 22015 = 37911.6 ≈ 37911.

4. Concluding Remarks
We summarize our results.

[1] The topological chaos appears in BSP constructed by
the repetitive action of braid β5. Drawing BSP by hand, we
can experience the stretching and folding processes, which
are the essential properties of chaos.
[2] If the non-uniform rotation induced by the action of
braid β5 is separated into the rapid rotation and the slow
one, the rapid rotation contributes the stirring effect of fluid
and the slow one determines the tunnel number. The tunnel
number affects the amount of fluid sucked into Rk . Com-
bining these effects, the efficiency of mixing is determined.
[3] There exist three tunnels in BSP constructed by β5, and
the enlargement of tunnel lengths is determined by the line-
stretching factor λmax .
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