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This paper examines the angle between the directions of the first and second nearest facilities. An application
of the angle can be found in location analysis of refuges where the direction of facilities is important. The
angle represents the service level of facility location when customers are serviced by the first and second nearest
facilities. The distribution of the angle is derived for regular and random patterns of facilities. The distribution
shows how the angle is distributed in a study region, and is useful for location models using the direction of
facilities. The distribution of the angle for actual facility location is also calculated.
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1. Introduction
Facility location problems have been addressed in a vari-

ety of fields such as geography, economics, and operations
research. The most frequently used assumption of location
models is that customers get service from their nearest fa-
cility. Facilities might, however, be closed or disrupted due
to accidents, disasters, and intentional strikes. The possi-
bility of closing should therefore be considered particularly
when locating emergency facilities.

The service from the second nearest facility has been in-
troduced into location models. Weaver and Church (1985)
developed the vector assignment p-median problem, where
a certain percentage of customers could be serviced by the
kth nearest facility. The problem was extended by Lei and
Tong (2013) to the expected median location problem and
Lei and Church (2014) to the vector assignment ordered
median problem. Pirkul (1989) studied a similar problem
in which customers are served by two facilities designated
as primary and secondary facilities. Drezner (1987) for-
mulated the unreliable p-median problem, where customers
are assigned to the kth nearest facility when closer facilities
fail. Efficient heuristic solution methods for the problem
were presented by Lee (2001). Berman et al. (2007) ex-
tended the unreliable p-median problem by relaxing the as-
sumption that the probability of facility failure is the same
for all facilities. Snyder and Daskin (2005) proposed the re-
liability p-median problem and the reliability fixed-charge
location problem. They made an ordered assignment of
customers to facilities. Lei and Church (2011) presented
generalized closest assignment constraints in terms of mul-
tiple levels of closeness. Miyagawa (2008) and Miyagawa
(2009) found the optimal location that minimizes the aver-
age distance to the nearest open facility when some of the
existing facilities are closed. Miyagawa (2014) considered
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bi-objective problems where the distances to the first and
second nearest facilities are minimized.

Most of the facility location models reviewed above ex-
amined the distance from customers to facilities. If cus-
tomers are serviced by the first and second nearest facili-
ties, not only the distance but also the direction of facilities
is important. For example, when evacuating from disasters,
the first and second nearest refuges should be in the oppo-
site direction, because otherwise both the refuges might be
disrupted. In fact, securing two-way evacuation routes is re-
quired in evacuation route planning (Mishima et al., 2014).
On the other hand, when purchasing shopping goods, it
would be convenient if the first and second nearest shops
are in the same direction. Thus, the angle between the di-
rections of the first and second nearest facilities represents
the service level of facility location.

In this paper, we derive the distribution of the angle be-
tween the directions of the first and second nearest facili-
ties. The distribution shows how the angle is distributed in
a study region, and will thus supply building blocks for fa-
cility location models using the direction of facilities. We
focus on regular and random patterns of facilities to obtain
analytical expressions for the distribution. The analytical
expressions allow us to examine fundamental characteris-
tics of the angle. The analytical expressions are also useful
to interpret and comprehend numerical results.

The remainder of this paper is organized as follows. The
next section derives the distribution of the angle for regular
and random patterns of facilities. The following section
examines the distribution of the angle for actual facility
location. The final section presents concluding remarks.

2. Regular and Random Patterns
Facilities are represented as points of regular and random

patterns on a continuous plane, as shown in Fig. 1. Since
actual patterns of facilities can be regarded as intermediate
between regular and random, the theoretical results of these
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Fig. 1. Regular and random patterns of facilities: (a) Square lattice; (b) Triangular lattice; (c) Hexagonal lattice; (d) Random.
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Fig. 2. (a) Contour of the angle; (b) Locus such that � = θ .

extremes serve as a basis for empirical analysis of actual
patterns. In fact, the regular and random patterns have fre-
quently been used in location analysis (O’Kelly and Murray,
2004; Sadahiro, 2005; Miyagawa, 2009). If customers are
uniformly distributed, the optimal location that minimizes
the average distance to the nearest facility is the triangular
lattice (Fig. 1b) (Leamer, 1968; Iri et al., 1984; Du et al.,
1999).

Let � be the angle between the directions from a ran-
domly selected location in a study region to the first and
second nearest facilities. The contour of the angle � is
given by a circle passing through facilities, as depicted in
Fig. 2a. Recall that angles subtended at the circumference
by the same arc of a circle are equal. The locus such that
� = θ is obtained as follows. Set the coordinate system as
shown in Fig. 2b, where facilities are at (−a/2, 0), (a/2, 0).
Note that θ is the angle subtended at the circumference by
the facilities. Let (0, −c) and r be the center and radius of
the circle, respectively. Since

c = a

2 tan(π − θ)
= − a

2 tan θ
,

r = a

2 sin(π − θ)
= a

2 sin θ
, (1)

the locus such that � = θ is the circles expressed as

x2 +
(

y ± a

2 tan θ

)2
= a2

4 sin2 θ
. (2)

2.1 Square lattice
Suppose that facilities are regularly distributed on a

square lattice with spacing a. Let F(θ) be the cumula-
tive distribution function of �, that is, the probability that
� ≤ θ . F(θ) is given by

F(θ) = S(θ)

S
, (3)

where S and S(θ) are the area of the study region and the
area of the region such that � ≤ θ in the study region,
respectively. The study region can be confined to the region
where two facilities are the first and second nearest, which
is the square centered at the midpoint of the facilities with
side length a/

√
2, as shown in Fig. 3. The area of the study

region is then S = a2/2. The region such that � ≤ θ

is given by the dark gray region in Fig. 3. Thus, S(θ) is
obtained by subtracting the area of the intersection of the
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Fig. 3. Region such that � ≤ θ for the square lattice.

two circles (2) and the square from the area of the square as

S(θ) = α


2α +

√
a2

sin2 θ
− 4α2




− a2

2 sin2 θ
arcsin

2α sin θ

a
,

π

2
≤ θ ≤ π, (4)

where

α = a

4


1 − 1

tan θ
−

√
2

tan θ
+ 1

sin2 θ


 . (5)

Substituting S and S(θ) into Eq. (3) yields

F(θ) = 2α


2α +

√
1

sin2 θ
− 4α2




− 1

sin2 θ
arcsin (2α sin θ) ,

π

2
≤ θ ≤ π, (6)

where

α = 1

4


1 − 1

tan θ
−

√
2

tan θ
+ 1

sin2 θ


 . (7)

Note that F(θ) is independent of the facility spacing a.
Differentiating F(θ) with respect to θ yields the probability
density function of � as

f (θ) = dF(θ)

dθ
. (8)

The distribution of the angle f (θ) is shown in Fig. 7.
2.2 Triangular lattice

Suppose that facilities are regularly distributed on a tri-
angular lattice. The study region can be confined to the
rhombus where two facilities are the first and second near-
est, as shown in Fig. 4. The cumulative distribution function
is similarly obtained by calculating the area of the intersec-
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Fig. 4. Region such that � ≤ θ for the triangular lattice.
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Fig. 5. Region such that � ≤ θ for the hexagonal lattice.

tion of the two circles (2) and the rhombus as

F(θ) =
√

3α


2α +

√
2
√

3

sin2 θ
− 12α2




−
√

3

sin2 θ
arcsin

(
31/4

√
2α sin θ

)
,

2

3
π ≤ θ ≤ π, (9)

where

α = 1

4 · 33/4
√

2

·
(√

3 − 3

tan θ
− 3

sin θ

√
2 +

√
3 sin 2θ − cos 2θ

)
. (10)

The distribution of the angle f (θ) is obtained from Eq. (8)
and shown in Fig. 7.
2.3 Hexagonal lattice

Suppose that facilities are regularly distributed on a
hexagonal lattice. The study region can be confined to the
rhombus where two facilities are the first and second near-
est, as shown in Fig. 5. The cumulative distribution function
is similarly obtained by calculating the area of the intersec-
tion of the two circles (2) and the rhombus as

F(θ) = α


3

√
3α +

√ √
3

sin2 θ
− 9α2




− 1√
3 sin2 θ

arcsin
(
33/4α sin θ

)
,

π

3
≤ θ ≤ π, (11)
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Fig. 6. Hospitals and nodes such that � < π/4 in Setagaya, Japan.

where

α = 1

4 · 33/4

(
3 −

√
3

tan θ
− 1

sin θ

√
2 +

√
3 sin 2θ + cos 2θ

)
.

(12)

The distribution of the angle f (θ) is obtained from Eq. (8)
and shown in Fig. 7.
2.4 Random

Suppose that facilities are uniformly and randomly dis-
tributed. The probability that a region of area S contains
exactly x facilities, denoted by P(x, S), is given by the
Poisson distribution as

P(x, S) = (ρS)x

x!
exp(−ρS), (13)

where ρ is the density of facilities (Clark and Evans, 1954).
The probability P(x, S) is independent of the location and
shape of the region. The angle � is then uniformly dis-
tributed over the interval [0, π ] as

f (θ) = 1

π
, 0 ≤ θ ≤ π. (14)

The distribution of the angle f (θ) is shown in Fig. 7.

3. Actual Facility Location
In this section, we examine the distribution of the angle

for actual facility location to discuss whether the model of
the regular and random patterns can be applied to actual pat-
terns. As an example, we consider 32 hospitals in Setagaya,
Japan, as shown in Fig. 6, where black circles represent hos-
pitals.

Let � be the angle between the directions from a node
to the first and second nearest hospitals. The angle between
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Fig. 7. Distribution of the angle.

Table 1. Average and standard deviation of the angle.

Average Standard deviation

Hospital 1.39 (≈ 80◦) 0.91 (≈ 52◦)
Square 2.45 (≈ 140◦) 0.39 (≈ 22◦)
Triangular 2.71 (≈ 155◦) 0.25 (≈ 14◦)
Hexagonal 2.09 (≈ 120◦) 0.54 (≈ 31◦)
Random 1.57 (π/2 = 90◦) 0.91

(
π/

(
2
√

3
)

≈ 52◦
)

the directions from a node q to hospitals p1, p2 is given by

� = arccos
(p1 − q) · (p2 − q)

|p1 − q||p2 − q| . (15)

Dark gray circles in Fig. 6 represent nodes such that � <

π/4. It can be seen that the boundary of the set of the
nodes forms a circle, as shown in Fig. 2. The normalized
histogram of the angle for all nodes is shown in Fig. 7. The
distribution for the actual pattern is similar to that for the
random pattern. The average and standard deviation of the
angle are summarized in Table 1. The average angle for
the actual pattern is smaller than that for the regular and
random patterns, and the standard deviation is as large as
that for the random pattern. Note that the average angle
for the triangular lattice is the largest among three regular
patterns. It follows that the triangular lattice is suitable for
the location of refuges. Note also that the standard deviation
for the triangular lattice is the smallest, which leads to a
small disparity in service level among customers.

4. Conclusions
This paper has derived the distribution of the angle be-

tween the directions of the first and second nearest facilities.
The analytical expressions for the distribution for regular
and random patterns are useful for location models using
the direction of facilities as follows. First, they give an es-
timate for the service level of actual facility location. By
comparing distributions, we can evaluate the efficiency of
actual patterns. For example, if the angle for the location
of refuges is much smaller than that for the regular patterns,
relocating some refuges should be considered. Second, they
have all the information about the angle. The minimum, av-
erage, and standard deviation of the angle, which can be
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used as objective functions, are obtained from the distri-
bution. Finally, they lead to a better understanding of the
optimal facility location. Since the average angle for the
triangular lattice is the largest among three regular patterns,
the triangular lattice would be the most suitable for the lo-
cation of refuges.

Although the focus of this paper is on the angle between
the directions of the first and second nearest facilities, only
the angle is insufficient for evaluating the service level of
facility location. Future research should address facility
location problems that simultaneously consider the distance
and angle.
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