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Quasicrystals
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Quasicrystals display diffraction patterns with symmetries forbidden in crystallography, and quasi-periodicity,
have been found to be stable phases in several alloy systems. Thanks to their stability, one can grow single grained
quasicrystals with large scale. In this article, we will first make a brief introduction to quasicrystals and describe
the state of the art of structure for icosahedral quasicrystal. The morphologies of icosahedral quasicrystals are
discussed in terms of atomic structures, surface structures and crystal growth mechanism.
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1. Introduction to Quasicrystal
Quasicrystal is a new form of matter, which differs from

crystalline and amorphous materials by exhibiting a new or-
dered structure, quasiperiodicity and symmetries, such as
five-fold, ten-fold, eight-fold and twelve-fold symmetries,
which are forbidden in the classic crystallography. How-
ever, a diffraction pattern with five-fold symmetry, namely
“quasicrystal” reported by Shechtman et al. (1984), has
promoted a paradigm shift in understanding solid struc-
tures. Consequently, Nobel Prize in Chemistry of 2011 was
awarded to Dan Shechtman for “the discovery of quasicrys-
tal”. In this section, it is described first why and how im-
portant the quasicrystal is, then a basic concept of structure
of quasicrystal is explained and finally some examples with
beautiful morphologies are given. Parts of description and
figures are reused from reference (Tsai and Cui, 2015).
1.1 Crystal and periodicity

The structures of crystals are realized with Bragg’s
law, where the atoms are arranged periodically in three-
dimensions. The Bragg’s law is shown in Eq. (1)

2d sin θ = nλ, (1)

where d and λ are the lattice spacing of a crystal and the
wavelength of radiation, respectively, θ is the incident angle
of radiation and n is an integer of arbitrary value. Since
λ is fixed, diffraction is generated when θ and d satisfy
the Bragg’s law. Equation (1) can be rewritten as sin θ =
nλ/2d. Here, d represents a distance between equidistance
lattice planes which is inversely proportional to sin θ ; this
formula implies that periodicity of atomic planes is required
for generating diffractions.

For an example, observation of crystal was performed
with a transmission electron microscopy operated with ac-
celerating voltage at 200 kV as shown in Fig. 1(a), λ would
have been around 0.003 nm which is much smaller than
d, hence sin θ ∼= θ . Then, Eq. (1) could be simplified
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to θ = nλ/2d. Note the relationship among λ, d and θ

shown in Fig. 1(a) satisfies Bragg’s law. Therefore, θ is ap-
proximately inversely proportional to d. On the other hand,
the camera constant L is the distance between the specimen
and screen, where diffraction patterns are projected, and is
a constant parameter of the microscopy. The length r is a
distance between the transmitted peak and diffraction peaks
on the screen, which is measurable from diffraction pattern.
Once r is obtained, one can easily determine d or θ . Note
that r is inversely proportional to d. With this in mind, let
us see a diffraction pattern generated from a square lattice
as shown in Fig. 1(b).

For example, let a sequence of a lattice spacing d gen-
erate a diffraction with distance r = d∗ on the diffraction
pattern, then the other sequence of lattice spacing D (=2d)
would generate a diffraction with r = D∗, where D∗ = d∗/2.
Although the diffraction is reciprocal to the corresponding
lattice spacing, both of them share the same property of pe-
riodicity. That is, the arrangement of diffractions gener-
ated by a crystal with periodic structure (real lattice) must
be periodic in the diffraction pattern (reciprocal lattice). In
the definition of Bragg’s law, occurrence of diffractions is
equivalent to periodicity and the “periodicity” is considered
to be another name of crystals in classical crystallography.
For a two-dimensional square lattice, the same periodic ar-
rangement of diffractions would be observed in the two-
dimensional reciprocal lattice along the vertical direction.
As a result, diffractions form a square arrangement in the
diffraction pattern analogous to its original lattice and a sim-
ilar correlation must be observed in any three-dimensional
lattice as well. An important feature inherent in this corre-
lation is that the shape in the real lattice is preserved in the
reciprocal lattice. Therefore, one would be able to recog-
nize in Fig. 1(b) that, if the real lattice is described by repe-
tition of a square, then one must be able to find a square to
describe the reciprocal lattice. The words “repetition” and
“translation” represent different meaning but they are com-
monly used to describe the “periodicity”. Therefore, for a
long time the “periodicity” has been another name of crystal
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Fig. 1. (a) Schematic description of formation of diffraction pattern in transmission electron microscopy (TEM). (b) Real square and triangular lattices
and their corresponding calculated diffraction patterns.

Fig. 2. Descriptions of (a) rotational symmetries compatible with lattice translation and (b) impossibility of tiling only by using pentagon.

until the discovery of QC (quasicrystal).
1.2 Restriction on symmetry by translation

Since a crystal structure is composed of a translation of
the lattice and point group of symmetry of the basis, only
a limited number of symmetries are allowed. Restriction
of symmetry due to translation is described in Fig. 2(a).
Consider a crystal containing lattice points of A, A′, A′′, B′

and B′′, and assume that distances from A to the other lattice
points are commonly a. If angles between lines formed by
lattice points are α, then nα = 360◦ = 2π , where n is an
integer which represents the order of rotational symmetry.
Let AB = b, then b = ma must be satisfied with integer
m in order to satisfy the translational symmetry. From a
relation b = 2a cos α, we have cos α = m/2. Since m must
be an integer, only a number of rotation angles are allowed
as shown in Table 1. Consequently, the allowed values
of n are 1, 2, 3, 4 and 6, and no any rotation symmetry
with n > 6 is allowed. According to this derivation, five-
fold symmetry and its multiplicity are not allowed in the
classical crystallography.

This can also be easily understood in terms of tiling
by using a regular pentagon as shown in Fig. 2(b), where
rhombus cavities would come out inevitably. In other
words, a basis or a motif with five-fold symmetry does not
have a possibility to fill two-dimensional plane or three-
dimensional space.
1.3 Establishment of quasicrystal

Electron diffraction pattern obtained from the Al-Cu-Fe
QC (Tsai, 2013) shown in Fig. 3(a), was in conflict with the
definition and the restriction of crystal. First, as shown with
guidelines, instead of periodic arrangement the arrange-
ment of diffraction spots inflates with τ scaling, where τ

is the golden mean (≈1.618). Secondly, various sizes of
pentagons formed by diffraction spots are observed on the
diffraction patterns, indicating that the structure contains
atomic arrangement with five-fold symmetry. Thirdly, the
diffraction spots are sharp enough to deny the possibility
that the quasicrystal is formed by some kinds of disorder
of crystalline phases. Consequently, stable QCs, reveal-
ing sharp diffractions verified in a sequence of alloys, es-
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Fig. 3. (a) Electron diffraction pattern and (b) high-resolution TEM image of the stable Al65Cu20Fe15 IQC taken along a fivefold axis.

Table 1. Rotational symmetries compatible with lattice translation.

m cos α = m/2 α n = 360◦/α
2 1 0, 2π 1

1 1/2 π/3 6

0 0 π/2 4

−1 −1/2 2π /3 3

−2 −1 π 2

tablished that the QCs belong to a new form of solid (In-
ternational Union of Crystallography, 1992). The highly
ordered structure as shown in Fig. 3(b) maintained over a
wide-range as large as the order of 1 mm. The Interna-
tional Union of Crystallography (IUCr) redefined the crys-
tal in 1991, and the new definition of crystal is “A crystal
means any solid having an essentially discrete diffraction
diagram”. In the new definition the QC, as will be described
later, is a crystal in high-dimensional space.

2. Structures of Quasicrystals
“Where are the atoms?” was put as the first question soon

after the discovery of QC (International Union of Crys-
tallography, 1992). It took few decades to establish the
methodology of structural analysis for QC and to meet the
available samples. Nowadays, a number of structural mod-
els with similar precisions to those of crystals are available.
Here, we first describe the basic concept to understand the
framework of structure of QC and then close up one real
examples of structure with accurate atomic decoration.
2.1 One-dimensional quasi-periodic structure and Fi-

bonacci sequence
One-dimensional quasilattice obtained by cut and pro-

jection method (de Bruijn, 1981) as shown in Fig. 4(a) is
the best example to describe “how does a high-dimensional

crystal convert to a quasicrystal?” First, let us put a square
lattice in two-dimensional space, and introduce a set of or-
thogonal axes, namely r || and r⊥, which are rotated by an
angle of θ from the original coordinate system of the square
lattice. They are called a physical and a complementary
axes, respectively, and have a role to indicate the directions
of projections.

Here, we introduce a strip with a width of a unit square
(W ) parallel to r ||, along r⊥. This strip is called “window”
for projection, which contains a number of lattice points
of the square lattice. The next step is to project the lattice
points inside the window on to r || as is shown in Fig. 4.
Then, an arrangement of two different line segments with
lengths L and S is obtained, as a result of the projections
of two different sides of the unit square lattice. If the tan α

is an irrational number, such as the case in Fig. 4(a) where
α = tan−1(1/τ) ≈ 31.716◦, a one-dimensional quasiperi-
odic tiling with long (L) and short (S) line segments is
formed. Note that, if a window with smaller (larger) W
is used, points of projection will be less (more) dense and L
and S line segments will be larger (smaller). Note that the
value of W only changes the density of projection points or
the lengths of L and S, so long as the slope is the same, and
one gets the same quasiperiodic array and the same length
ratio, S/L (=1/τ ). This is a property of self-similarity and
the factor of self-similarity of the quasi-periodic array is ir-
rational. If the slope of W , i.e. m (=S/L), approaches to
a rational number, for example to m = 2/3 as shown in
Fig. 4(b), the projection points will form a periodic array
with interval of 2S + 3L , which is much longer than the
periodicity length of the original cubic lattice. In terms of
crystallography, the quasiperiodic array is looked upon as
a one-dimensional quasicrystal (Fig. 4(a)), while the peri-
odic array derived by projection is an approximant crystal
(Fig. 4(b)). By choosing continued-fractions approximant
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Fig. 4. Projection of a two-dimensional lattice onto a one-dimensional space with (a) an irrational slope (1/τ ) and (b) a rational slope (2/3) to obtain a
one-dimensional QC and its approximant, respectively.

to τ (m = 1/1, 1/2, 2/3, 3/5 . . . ) for m, one creates struc-
tures with larger periods which approximate the quasiperi-
odic tiling better and better, where Fig. 4(b) shows one ex-
ample of the fractions. Differences between two sequences
are indicated with arrowheads where L-S observed in quasi-
periodic tiling is replaced by S-L in the approximant (Elser
and Henley, 1985). Note that a period of the approximant
is made of L SL L S. The difference between the two se-
quences is due to a flipping between L and S, and in terms
of QC this flipping is called “phason flipping” which is a
sort of defect in QC. The flipping between L and S is caused
by a slight change of m.

Since the one-dimensional quasi-periodic structure can
be derived from two-dimensional periodic structure as
shown in Fig. 4, QC is looked upon as a crystal in high-
dimensional space. On the other hand, the one-dimensional
quasi-periodic sequence can be obtained by a substitution
rule: L → L S and S → L , which can be expressed as

(
L
S

)
→

(
1 1
1 0

) (
L
S

)
. (2)

If all neighboring atoms are separated by either L or S with
L/S = τ , under the substitution, a sequence of intervals
is transformed to another sequence (with intervals τ times
larger than the original sequence). If we start from L , a
series of sequences can be obtained, as follows:

L
L S

L SL
L SL L S

L SL L SL SL
L SL L SL L SL L S

· · · .

(3)

Each series in this sequence is a combination of the former
two series, and can be expressed as Fn = Fn−1 + Fn−2,
where limn→∞ Fn−1/Fn = 1/τ . Number of total L and

S for each series will be 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,
. . . , which constitute the Fibonacci sequence. Note that a
series of ratio of numbers such as 1/2, 2/3, 3/5, 5/8 . . . are
corresponding to m used to obtain a series of approximant
crystals.
2.2 Two-dimensional quasi-periodic structure and

Penrose pattern
There are a number of two-dimensional quasi-periodic

structures owning different symmetries, such as eight-fold
(octagonal), ten-fold (decagonal) and twelve-fold (dodec-
ahedral) symmetries (Tsai, 1999). In reality, QCs with
decagonal lattice (decagonal quasicrystal, DQC) are well
studied and are stable; here we only close up the decago-
nal lattice. The typical decagonal lattice is described by the
well-known Penrose pattern shown in Fig. 5(a). Penrose
pattern is constructed by tiling two-dimensional plane tiles
with two different rhombic tiles, namely a “fat” tile with
an angle π/5 and a “skinny” one with an angle π/10. A
perfect Penrose pattern is formed only when tiling is made
along the so-called “matching rules” which are formulated
based on markings of the edges of tiles. Each rhombus has
single or double arrows along the edges; rhombi of the same
type have identical arrow markings. To make a Penrose
tiling, one should fit these rhombic tiles together according
to the matching rule: two rhombic tiles can be placed side
by side only if fitted edges have the same type and direction
of the arrows. This leads to the quasi-periodicity of tiling.
Each vertex in an infinite Penrose tiling is surrounded by
one of eight combinations of tiles (Henley, 1986). In the
mean time, in an infinite Penrose tiling, ratio between num-
ber of fat tiles (NF) and that of skinny tiles (NS) approaches
to τ . Any vertex with surrounding tiles out of these eight
combinations will be a defect, and the ratio of NF/NS will
deviate from τ .

Penrose pattern could be obtained by cut and projec-
tion method of a five-dimensional cubic lattice onto a two-
dimensional space, similar to the case of two-dimensional
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Fig. 5. (a) Description of Penrose tiling made with two rhombi, (b) five basis vectors used to index Penrose lattice, (c) description of phason flip: lattice
position exchange between A and B changes the arrangement of tiles, (d) inflation in Penrose tiling.

square lattice shown in Fig. 4. In the Penrose case, instead
of a strip shown in Fig. 4, a number of polygons, namely,
windows of pentagons (also called occupation domains) are
used. Vertex of Penrose patterns forms a two-dimensional
QC, which could be assigned with five vectors, e1, e2, e3, e4

and e5 as shown in Fig. 5(b) with an angle of intersection of
π/5. Since e1 +e2 +e3 +e4 = −e5, four vectors are enough
for assignment. On the other hand, every spot in its diffrac-
tion pattern can be indexed with a combination of the vec-
tors (cos(2π j/5), sin(2π j/5))/a (Yamamoto, 1996), where
a is the edge length of Penrose pattern and j = 1, . . . , 5.

A typical “flipping of tiles” as shown in Fig. 5(c) is also
considered as a mismatching in Penrose tiling, and this
could be made through a projection with shift or a change in
size of the window W . These two hexagons have the same
contour and are made of two skinny and one fat tiles, but
their arrangements are different. As a problem of tiling the
“flipping of tiles” makes a significant difference. However,
if we assume seven vertices are all occupied by atoms, this
flipping is simply a slight shift of atomic position from A to
B (or B to A) inside of hexagons. This is a “phason flipping”
in a two-dimensional QC, which has been observed in real
QC samples.

There is a self-similarity of Penrose pattern as shown in
Fig. 5(d). By dividing the two edges of original tiles with
length ratio of 1 : τ , one may obtain identical tiles with a
scale 1/τ of the original ones. Let F , S, f and s represent
the numbers of large fat, large skinny, small fat and small
skinny tiles, respectively, then we have F = 2 f + s and
S = f + s, which can be expressed also as

(
F
S

)
→

(
2 1
1 1

) (
f
s

)
. (4)

With this relationship, we may make a deflation or an infla-
tion operation of Penrose pattern with a scaling of τ .

In the Penrose pattern, a large number of vertices reveal
local fivefold symmetry, and there is no periodicity of lattice
spacing along any direction. Calculated diffraction pattern
of Penrose pattern reveals a ten-fold symmetry and a quasi-
periodic arrangement of diffractions inflated with τ scaling,
which resembles very much to that observed by Shechtman
et al. (1984). Obviously, the Penrose pattern is a key to un-
derstand structure of QC, and normally is used as a template
for modeling structure of two-dimensional QC by decorat-
ing rhombic tiles with atoms. Penrose pattern itself is a
decagonal structure with a ten-fold axes, and provides the
simplest way to describe the DQC as a template.
2.3 Three-dimensional quasi-periodic structure

There is only one three-dimensional quasi-periodic struc-
ture: a QC with icosahedral symmetry or an icosahedral
quasicrystal (IQC), whose electron diffraction patterns and
morphology are shown in Fig. 6, which is analogical to the
structure of QC observed in the Al-Mn alloy. The simplest
set of unit cells for three-dimensional quasi-periodic struc-
ture consists of the acute and obtuse rhombohedra shown
in Fig. 7(a). In the left (right) rhombohedron in Fig. 7(a)
three vertices of rhombus with acute (obtuse) angle gather
at two vertices of the rhombohedron. These two unit cells
play the same roles, respectively, as the skinny and the
fat tiles in the Penrose tiling. All the faces are identical
rhombuses, which are the Golden rhombus with length ra-
tio τ of two diagonals. One can match these two cells
face to face so that rhombohedra can only fill space quasi-
periodically. In an infinite packing of these unit cells in
three-dimension, it consists of that acute and obtuse rhom-
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Fig. 6. Electron diffraction patterns taken along five-fold, three-fold and two-fold axes (left) and a SEM image (right) of stable Al65Cu20Fe15 IQC.

Fig. 7. (a) Acute rhombus (AR) and obtuse rhombus (OR) constructed by a so-called golden rhombus, whose diagonal ratio is τ , (b) a rhombic
triacontahedron constructed by ten AR and ten OR, and a stellated dodecahedron constructed by twenty AR, (c) six basis vectors used to index lattice
of IQC, described by an icosahedron.

bohedra can be packed to form a rhombic triacontahedron
(RTH), and twenty acute rhombohedra can be packed to
form a stellated dodecahedron. Both polyhedrons reveal an
icosahedral symmetry, which gives an image that how the
unit cells can be packed to fill space. By using polyhedrons
as unit cells with atomic decoration, it is easy to image the
symmetry of structure, which also reduces constraints of
matching rules.

Similar to the case of Penrose patterns, a three-

dimensional quasi-periodic structure can be obtained by
cut-and-projection method of a six-dimensional cubic lat-
tice onto a three-dimensional space. The typical W (win-
dow) for the projection is a rhombic triacontahedron shape
with edge length 1/τ 2 times that of projected structure
(Henley, 1986). In the six-dimensional construction the
analogy of W in Fig. 4 is a product of a three-plane and
a suitable three-dimensional cross section. The L and S
line segments correspond to acute and obtuse rhombohe-
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Fig. 8. (a) A rhombic triacontahedral (RTH) unit with atomic decoration used to construct (b) 1/1 and (c) 2/1 approximants in Cd-Yb system, where the
structure of 1/1 approximant can be described by the RTH and structure of 2/1 approximant needs (d) Yb and Al decorated AR unit in addition to the
RTH. There are only two linkages between two adjacent RTH are allowed: (e) b-linkage link by sharing a rhombus unit and (f) c-linkage connected
by overlapping an OR (Takakura et al., 2007).

dra, respectively. If the vectors used to describe W are a
series of (m, 1, 0) vectors, then the three-dimensional quasi-
periodic structure results when m → τ . By taking the ratio-
nal approximants m = 0/1, 1/1, 1/2, 2/3 . . . , one obtains
a sequence of cubic structures with larger and larger lattice
constants. Two 1/1 approximants have been verified in α-
AlMnSi (Elser and Henley, 1985) and (Al,Zn)49Mg32 (Hen-
ley and Elser, 1986) compounds, which are bcc packing of
icosahedral clusters with different shell structures for two
systems. By performing quenching (a rapid cooling), IQCs
were formed in these two alloys, hence two compounds are
corresponding approximants to two IQCs. For the same
of simplicity, it could be said that both IQC and approxi-
mant consist of icosahedral clusters, whose arrangement is
quasi-periodic for the former and periodic for the later, re-
spectively. Therefore, the approximants contain very useful
information in the three-dimensional case for building ini-
tial structural model of IQCs. Lattice points of IQC are
normally assigned with six vectors expressed on an icosa-
hedron, namely e1, e2, e3, e4, e5 and e6 as shown in Fig.
7(c). A possible basis for the diffraction spots of an IQC is
given by the following six vectors (Elser, 1985).

a∗
i = 1

a
(1, τ, 0),

1

a
(−1, τ, 0),

1

a
(0, 1, τ ),

1

a
(τ, 0, 1),

1

a
(τ, 0, −1),

1

a
(0, 1, −τ) (5)

where i = 1, . . . , 6.
So far, there is only one IQC, namely i-Cd5.7Yb (Tsai

et al., 2000), whose structure has been completely solved
(Takakura et al., 2007). A cubic phase Cd6Yb with a space
group of Im-3 (I : body centered lattice, m: reflection plane,
-3: 3-fold axes with an inversion) and lattice parameter
a = 0.156 nm exists in the Cd-Yb phase diagram (Palen-
zona, 1971). The structure of Cd6Yb has been determined
and it was demonstrated to be a 1/1 approximant to the IQC
phase. A phase Cd5.7Yb adjacent to the Cd6Yb phase in the
phase diagram is an IQC. The shell structure of the icosa-
hedral cluster deduced from Cd6Yb is shown in Fig. 8(a),
whose structure is explained as follows. The first shell is
created by four Cd atoms around the cluster center, the sec-
ond shell consists of 20 Cd atoms forming a dodecahedron,
the third shell is an icosahedron made of 12 Yb atoms, the
fourth shell is a Cd icosidodecahedron obtained by plac-
ing 30 Cd atoms on the edges of the Yb icosahedron, and
the fifth shell is a RTH (rhombic triacontahedron) in which
Cd atoms are located on 32 vertices and 60 edge centers.
Recently, a detailed structure for i-Cd5.7Yb has been deter-
mined by single-grain X-ray diffraction, where the icosa-
hedral cluster, which contains five atomic shells (Fig. 8(a))
and is a RTH cluster, was demonstrated to be identical to
that of the Cd6Yb approximant. It is important to indicate
that each kind of atom occupy definite position in the RTH
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(a)( ) (b)( )

Fig. 9. Structural description of i-Cd5.7Yb with RTH unit. (a) A dense plane of RTH units is seen along a fivefold axis. (b) A small ball represents a
RTH unit used to construct an icosidodecaherl cluster, by which a larger icosidodecahedral clustercan be built up. Ratio of edge length between large
and small icosidodecahedra is τ 3 (Takakura et al., 2007).

Fig. 10. A SEM image of melt-quenched A94Mn6 alloy after etching treatment. IQC reveals a stellated dodecahedral form.

cluster, where Yb (only on icosahedral shell) and Cd oc-
cupy different atomic sites. This is a great advantage for
structural analysis.

The structure of 1/1 approximant is a bcc packing of
RTH clusters as shown in Fig. 8(b). Furthermore, struc-
ture of a 2/1 approximant (Fig. 8(c)) was solved to consist
of the same RTH as 1/1 approximant but it needs an ad-
ditional unit (Gómez and Lidin, 2001), namely, an acute
rhombohedron (Fig. 8(d)) with suitable atomic decoration
to fill the cavity. In both approximants the RTH clusters
are linked to each other (Fig. 8(e)) along two-fold (b-bond)
directions by sharing a rhombus face and three-fold direc-
tion (c-bond) with interpenetration of an obtuse rhombohe-
dron as shown in Fig. 8(f). Consequently, three fundamen-

tal building units: a RTH cluster (a), an acute (d) and an
obtuse rhombohedron (f) are supposed to be necessary for
constructing the IQC structure.

Combined with knowledge of linkage rules and building
units, a precise structural model for Cd-Yb IQC (i-Cd-Yb)
was proposed as shown in Fig. 9, which describes the struc-
ture of i-Cd-Yb in terms of inflation and hierarchical pack-
ing of clusters. Here, the term “inflation” means the prop-
erty that a subset of special points from the original struc-
ture has an arrangement identical to the original one when
the subset is increased in scale by a particular scale, which
is τ 3 in this case. Figure 9 shows the RTH center positions
(grey circles) and their connection on a plane with five-fold
symmetry. Starting from the center, it can be shown that a
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Fig. 11. A SEM image for an isolated single IQC with a rhombic triacontahedral morphology in Al-Li-Cu alloy (Kortan et al., 1989).

Fig. 12. A Single grain of Zn-Mg-Dy IQC prepared by solution growth process.

cluster of RTH units (icosidodecahedron) is formed. The
cluster of RTH is at the center of a large “cluster of clus-
ter”, which is also icosidodecahedron but τ 3 times increase
in scale. A prominent feature of the model is that almost all
the IQC structure is described in terms of interpenetrating
RTH clusters, where 93.8% of the atoms belong to the RTH
clusters (Takakura et al., 2007). On the other hand, full
structure of the 1/1 approximant is described by the RTH
clusters, where 100% of atoms belong to the RTH clusters.
These two structures both described by the RTH clusters
but standing at two opposing extremes, have a difference in
composition only by about 2 at.% (atomic %), and a dif-
ference in atomic decoration by about 6% of atoms. In the
aspect of cluster formation, structures of IQC and approxi-
mants seem to be understood in a simple manner. One inter-
esting feature is that all approximants exist as stable phases
in nature, which can be mathematically derived by cut and
projection scheme.

3. Morphologies of Quasicrystals
The complete structural solution of i-Cd-Yb, is helpful

for understanding growth mechanism of QCs. Studies on
surface structure of QCs also provided a lot of crucial infor-
mation for understanding growth morphology and stability.
Indeed, understanding stability and morphologies of QCs
surfaces is intimately related to getting insight into growth
process of QCs.
3.1 Stellated polyhedron

In most of early experiments, QCs synthesized by rapid
solidification revealed highly dendritic morphologies. In
short, visible pentagon dodecahedra around 0.01 mm in size
were observed in melt-quenched AlMnSi (Csanady et al.,
1990). For alloys containing lower contents of Mn (be-
low 8 at.%), a stellated polyhedron as shown in Fig. 10
showed up. This resembles to one of polyhedron in three-
dimensional quasi-periodic lattice as shown in Fig. 7(b),
which is composed of twenty acute rhombohedra and ex-
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hibits icosahedral symmetry. These beautiful stellated poly-
hedral morphologies are only observed in low-Mn-contents
Al alloys, because formation of a small number of nuclei in
the melt upon solidification which allowed equiaxial growth
of IQC grains. In view of morphologies, it seems that pref-
erential growth direction is oriented to the three-fold direc-
tion.
3.2 Rhombic triacontahedron

One of most beautiful morphologies was observed
in conventional solidification state of i-Al-Li-Cu
(Al5.5Li3Cu), which exhibits a form of rhombic tria-
contahedron (Dubost et al., 1986; Kortan et al., 1989) as
shown in Fig. 11. This is another polyhedron existing in
three-dimensional quasi-periodic lattice, which is consisted
of ten acute rhombohedra and ten obtuse rhombohedra.
Since this IQC is unstable in air due to the selected
oxidation of Li, very few detailed investigations were done.
3.3 Pentagonal dodecahedron

This is the morphology most often observed in IQCs.
As mentioned previously, distorted dodecahedral grains of
about 0.01 mm were observed in melt-quenched Al-Mn al-
loys. Later, clear morphologies were observed in conven-
tionally solidified Al-Cu-Fe and Ga-Mg-Zn alloys. The
similar morphologies with grain sizes of about 1 mm were
also observed in most stable IQCs such as i-Al-Cu-Ru, i-
Al-Pd-Re, i-Zn-Mg-RE and i-Ag-In-Yb. As mentioned
previously, all stable IQCs, except i-Cd-Yb and i-Ag-In-
Yb, form through reactions between a liquid and a inter-
metallic phases upon solidification. Object shown in Fig.
12 is a single grain of Zn-Mg-Dy IQC with perfect pen-
tagonal dodecahedral morphology grown by the solution
growth method. Recently, single grains grown by this pro-
cess could acquire sizes of 2∼10 mm. According to the
their morphologies, it is clear that the IQCs in this case are
not dendritic growth. Instead, observation of larger and flat
pentagonal planes indicates planar growth of IQCs along
six five-fold axes in slow cooling.

Surface studies on the i-Ag-In-Yb and i-Al-Pd-Mn
showed that five-fold planes have a flat structure, which is
exact enough for obtaining atomic resolution (Sharma et al.,
2007). This is an evidence that the five-fold planes are rel-

atively stable, which have terminated at planes containing
relatively high concentrations of Yb (40 at.%) for i-Ag-In-
Yb (16 at.% Yb) and of Al (∼80 at.%) for i-Al-Pd-Mn (70
at.% Al), compared to their bulk compositions. According
to structure models, atomic densities ρ are highest on two-
fold planes (ρ2 > ρ5 > ρ3) in these two IQCs. Namely,
Yb and Al with relatively low surface energies (Vitos et al.,
1998) with respect to the rest two constituent elements have
concentrated at five-fold planes owing to their sufficiently
lower surface energy. Especially, during the crystal growth
produced by solution growth process, the lower surface en-
ergies of Yb and Al would reduce solid-liquid interfacial en-
ergies, and consequently the pentagonal dodecahedron with
five-fold surfaces are formed. Finally, it would be interest-
ing to note that the surface preparation contains valuable
information of morphology of QCs.
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