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Percolation model is one of the most foundamental models holding important concept such as phase transition,
growth phenomena, universality, and also it provides clues for studies of transport coefficients of porous media,
forest fire, epidemics in an orchard, networks and so on. There are mainly two types of percolation models,
discrete percolation model and continuum percolation model. The former is based on a lattice structure, where
some exact solutions are found, while the latter on continuum space, where more experimental investigations are
expected.
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1. Introduction
Elements such as particles, bonds etc. are placed onto

lattice sites (or bonds) in a space one by one. If these el-
ements occupy the nearest neighboring positions, then they
form clusters. The cluster becomes larger and larger with
increase of the elements, and at some quantity of elements,
the cluster acquires a size extending from an end to oppo-
site end in a finite space or becomes infinitely large in an
infinite space. We call this phenomenon percolation (Es-
sam, 1980; Grimmett, 1989; Stauffer and Aharony, 1994;
Sahimi, 1994; Bunde and Havlin, 1996; Hunt, 2013) and
this model is called a the discrete percolation model. If the
element has electric conductivity, the whole media becomes
conductive at the instance of percolation. This phenomenon
shows critical behavior as shown in the text. Most impor-
tant indications are critical point (pc) and critical exponent
(ν). The former depends on the details of lattice when the
element occupies only lattice point or only bond between
the nearest neighboring two points. The latter quantity does
not depend on the species of lattice, but does on the space
dimension (universality).

Most of investigations of percolation model are per-
formed by computer simulation, but one of most simple
and powerful theoretical approaches may be the real space
renormalization group theory which provided the critical
points and the critical exponents, but is limited to 2 dimen-
sion (Reynolds et al., 1978). When we look at the pattern of
percolation at the critical point, it is easy to see the fractal
structure which provides the power law behaviors in sev-
eral quantities such as probability that a site belongs to fi-
nite size cluster, percolation probability, average cluster size
and so on. Recently the network problems are studied very
actively, but these problems are profoundly related with per-
colation (Barabasi and Alber, 1999).

There are many modified percolation models such as
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the directed percolation model (Hinrichsen, 2000), kinetic
growth model (Gould et al., 2005), forest fire mode (Hen-
ley, 1993), and invasion percolation model (Wilkinson and
Willemsen, 1983). In addition, a quantum percolation
model (de Gennes et al., 1959) is also investigated, but here
we don’t discuss these problems. Rather we stress on some
percolation models with exact solutions. In the 2D the crit-
ical points and the critical exponent are calculated for some
limited lattices. We are going to discuss some percolation
models with exact critical values in higher dimensions.

In the above discussion we suppose that the elements are
placed on the lattice point of regular lattices or the elements
are replaced by other elements. But there are other fami-
lies of percolation models where the elements are placed at
arbitrary points in the space. We call this category of per-
colation models continuum percolation model (Meester,
1996). The most important point of this continuum perco-
lation model is the critical exponents which are generally
different from those in the discrete model, which means an
existence of a different class of universality from that in the
discrete percolation model.

In nature there are many media for which the continuum
percolation model is adequate such as rocks, porous media,
farm field, flow in vessel and so on (Sahimi, 1994; Hunt,
2013). Investigation of the continuum percolation model
has many difficulties for the following reasons. (i) The sim-
ulation method does not work well, mainly because of dif-
ficulty in calculation of area or volume of overlapping ele-
ments. (ii) Also, natural samples are limited in variations
of concentration of elements. (iii) Few experimental inves-
tigations are given in the text.

In the next section the discrete percolation model and
some new percolation models with the exact value of char-
acteristic quantity will be discussed. In Section 3, we will
discuss the continuum percolation model.
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Table 1. The critical point of several lattices in 2D. ν is the ordination number (Sykes and Essam, 1964; Jacobsen, 2014).

Lattice ν pc of bond model pc of site model

Honeycomb 3 1 − 2 sin(π/18) ∼= 0.6527∗ 0.6970

Square 4 1/2∗ 0.5927

Kagome 4 0.5244 0.6527∗

Triangular 6 2 sin(π/18) ∼= 0.3473∗ 0.5∗

∗Means the exact critical point.

Table 2. The critical point of several lattices in the 3D. ν is the ordination number (Lorenz and Ziff, 1998a, b; Skvor and Nezbeda, 2009; Wang et al.,
2013).

Lattice ν pc of bond model Pc of site model

Simple cubic 6 0.2488 0.3116

Body centered cubic 8 0.1803 0.2465

Face centered cubic 12 0.1202 0.1993

2. Discrete Percolation Model
In nature, at first there is a space, and when the space

is completely filled by the elements, we call it as pure
materials. If the element is a conducting lot, disk, or sphere,
a cluster may appear and grow in the space as the number
of elements increases. If the cluster spreads from one end
to other end in the space, we call it percolation. When the
element added is conductive, the bulk material in the space
becomes conductive and the conductance increases with the
number of elements. To the contrary, we can imagine that
the initial state is conductive and insulating elements are
added. In this case, as the insulator increases in number, the
conductance decreases and it vanishes at the critical point.
Here, the behavior how to decrease is also interesting. This
is a kind of critical phenomena like that in ferromagnetism,
where a typical model is the Ising Model (Bhattacharjee and
Khare, 1995).

Percolation phenomena were studied in polymer science
at first by Flory (1941), where rigid polymer cluster grows
in liquid. In 1956, Broatbent and Hammersley introduced
the mathematical concept of percolation discussing fluid
flow in porous medium (Broatbent and Hammersley, 1957).
They considered a regular lattice structure with random ar-
rangement of open tube or closed tube at the bond of lattice.
The fluid can flow in the open tube at the bond, then we call
it open bond simply. On the other hand, the fluid cannot
flow at the closed bond. Hereafter, we call this model as
the bond percolation model.

Instead of open or closed bonds in a regular lattice, we
can introduce a plug at the vertex in the lattice with all open
bonds. When we image formation of an infinitely large
cluster of polymer molecules, each molecule, which we call
simply a particle, can occupy a vertex site. If two particles
occupy the nearest neighbor vertices, these two particles are
combined. When more particles are added at vertices, larger
ensemble of particles may appear. We call this a cluster and
this model the site percolation model. These site and bond
percolation models have become the standard models.

2.1 The critical point of bond and site percolation
models

As explained above, in initial state all bonds on a regular
lattice are closed bonds. If νN p/2 bonds among all bonds
are replaced by open bonds, where N , ν, p are the total
vertex number, the ordination number of the lattice and
the ratio of open bond to all bonds, respectively. A few
smaller clusters appear and the size of cluster increases
with p. As a regular 2D lattice there are the square, the
triangular, the honeycomb and the Kagome lattice, while
there are the simple cubic, the body-centered cubic and
the face centered cubic lattice in 3D. At some value of p,
the cluster becomes end-to-end cluster, where the cluster
reaches both ends (from top to bottom, or from right to
left). Or if the lattice is an infinitely large one, the cluster
becomes infinitely large.

The threshold of the percolation model was initially cal-
culated by simulation. The threshold value depends on the
species of lattice and its dimension as shown in Tables 1 and
2.

In 2D, we have several exact values, one of those will be
explained in the following subsection. As seen in Tables 1
and 2, if the ordination number ν increases, the critical point
decreases both in the discrete and the continuum percolation
models. On the other hand, the critical exponent ν of the
correlation length is 4/3 for 2D and 0.9 for 3D, which are
independent of lattice species and dependent only on the
space dimensions.
2.2 Real space renormalization group theory

The renormalization group theory was originally pro-
gressed in the elementary particle physics. The first appli-
cation to the solid state physics was done by Wilson (1971),
Amit (1984).

In 1975, Harris et al. applied this method to percolation
in the Fourier space (Harris, 1974). He discussed the same
problem in the real space (Harris et al., 1975). Here we
introduce the latter method because of its intuitive property.

Let us consider the site percolation model of the square
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Fig. 1. 2 × 2 sites (dots) of the square lattice is renormalized into a
renormalized site (X).

Fig. 2. The solid line shows the real square lattice and the dashed line the
dual one.

lattice, and we choose 2 × 2 sites (small black circles) and
its renormalized site (denoted by X) as shown in Fig. 1.
The renormalized site is occupied by renormalized particle
if more than one site are occupied. On the other hand,
if less than two sites are occupied, the renormalized site
is unoccupied. In the case that two sites are occupied,
we share two cases between occupation and un-occupation
by renormalization (Stauffer and Aharony, 1994). p′ is
renormalized concentration of particles is expressed as

p′ = p4 + 4p3q + 2p2q2,

where q = 1 − p. At the threshold point we can expect
p′ = p = pc. Therefore, we obtain

pc = 0.6180,

which is very near to the value pc = 0.592746.
For p ∼= pc, the correlation length is expressed as ξ ≈

(p − pc)
−ν . If the renomalization process is applied once,

the bond length is renormalized by the factor 2 and the
correlation length is also renormalized as ξ = bξ ′ ≈ b(p′ −
pc)

−ν ≈ (p − pc)
−ν , where b = 2. Therefore

ν = log b

limp→pc log
p′ − pc

p − pc

= log b

log
dp′

dp

.

If we use the critical value pc = 0.6180, we obtain ν =
1.63, which is very near to the exact value ν = 4/3.

Fig. 3. The solid line shows the triangle lattice and the dashed the
honeycomb lattice.

Fig. 4. The solid line shows the real Kagome lattice and the dashed line
the dual, which is the diced lattice.

In the same way, we can consider the bond problem as
is done by Stauffer and Aharony (1994). We adopt 2 × 2
bonds as shown in Fig. 1. We consider only the horizontal
renomalized bond, then we obtain

p′ = p5 + 5p4q + 8p3q2 + 2p2q3.

The details of each term in the above equation are given in
Stauffer and Aharony (1994). From this equation, we obtain

pc = 1/2 and ν = 1.428, where b = 2.

The threshold value is the same as the exact one and the
correlation exponent is also very near to the exact one.

There exist several trials to extend 2D real space renor-
malization group theory to the 3D, however, the results were
not good enough and a better technique is expected. Monte
Carlo renormalization method is along this direction.
2.3 An exact method

2.3.1 Dual transformation An argument was given
by Krammers and Wannier to obtain the critical temperature
of the Ising model (Kramers and Wannier, 1941) and Harris
applied it to the percolation model (Harris, 1960). The
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Fig. 5. The unit cell of a 4D hyper-cubic lattice is shown by the solid
lines. The big dot is a common center of two squares. One of them
is the square (0, 1, 1, 0) − (0, 1, 1, 1) − (1, 1, 1, 1) − (1, 1, 1, 0) in the
original lattice. The other one is denoted by dotted lines in the dual
lattice. These two squares are orthogonal each other.

partition function of Ising model with N spins is

Z

(
2J

kT

)
=

∑
{µ}

exp
∑
i, j

{
Jµiµ j

kT

}

= coshN

{
J

kT

} ∑
{µ}

∏
i, j

[
1 + tanh

{
Jµiµ j

kT

}]
.

Here, if we make a bond of the dual lattice correspond
to a term “tanh{Jµiµ j/kT }” and no bond to “1” in the
above equation and sum over all the spin arrangement (µ =
±1), we can easily understand that only closed circuits
made of the bonds contribute to the partition function. This
closed circuit means an important equivalence between the
spin arrangement of the original lattice so that a new spin
arrangement of σ = −1 corresponds inside the closed
circuit and that of σ = +1 to outside of the closed circuit,
where these new spins are located at the center of each
square of the original lattice. We call a set of this new
site for new spin a dual lattice which is discussed below.
Furthermore we put

e− J ′
kT ′ = tanh

J

kT
,

then we can rewrite the above partition function as

Z

(
2J

kT

)
=

(
sinh

2J

kT

)N/2

Z

(
2J ′

kT

)
.

If the original lattice is the square lattice, then the dual
lattice is also the square lattice. Therefore, if they have
critical temperatures, they must be the same, and we have
2J/kT = 0.2441.

As an example of the percolation model, we treat the
square lattice. At the center of each cell, we assume another
site (we call it as a dual site (or vertex)). Combining all
dual sites with dual bonds, we find another square lattice
(dual lattice) as shown in Fig. 2. In this case, we obtain the
same square lattice as a dual lattice (self dual). Applying
the same technique to the triangular lattice, we obtain the
honeycomb lattice. And we obtain triangular lattice from

Fig. 6. 2D Swiss-cheese model. Many holes are punched out on aluminum
foil. This picture shows a situation a little before beginning of percola-
tion from the left side to the right, where the conductivity from the top
to the bottom vanishes.

the honeycomb lattice (Fig. 3). The diced lattice and the
Kagome lattice are mutually dual (Fig. 4).

This dual relation was used to percolation model in the
square lattice which is the self-dual as seen in Fig. 2. Ini-
tially we assume that the real lattice is fully occupied with
bonds and when we remove a bond randomly from the real
square lattice, say,

(i, j) − (i, j + 1), or (i, j) − (i + 1, j)

then immediately we place a dual bond

(i + 1/2, j + 1/2) − (i − 1/2, j + 1/2) or

(i + 1/2, j + 1/2) − (i + 1/2, j − 1/2),

respectively. Therefore, the total number of bonds in both
the real and the dual square lattices are 2N . If we introduce
p and p′ as the concentrations of the real and the dual
lattices, respectively, we have

p + p′ = 1.

Here, the removed and replaced bonds are orthogonal each
other and the replaced bond is determined without ambigu-
ity. If the percolation model of the square has a phase tran-
sition at a concentration value, the other dual lattice must
have the similar transition at the same value, therefore pc

and p′
c should be the same. Therefore,

pc = p′
c = 1

2
.

Further mathematically exact treatment was given by
Kesten (1980).

2.3.2 Application of dual transformation to 3D
space In this section we will apply the dual transforma-
tion to cubic lattice in 3D. We choose dual site at the center
of each cubic cell in the real 3D space. These dual sites form
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Table 3. The critical exponent of several transport coefficients of the continuum percolation models. S.C. and I.S.C. are Swiss-cheese model and Inverse
Swiss-cheese model, respectively. The figures with asterisk are different from those of the discrete percolation model (Feng et al., 1987).

2D S.C. 2D I.S. C 3D S.C. 3D I.S. C

Conductivity 1.3 1.3 2.4∗ 1.9

Elasticity 5.1∗ 1.3 4.4∗ 2.4∗

Permeability 5.1∗ 1.3 6.2∗ 4.2∗

the same cubic lattice in the dual space. In this lattice a cor-
responding element to a bond in the real space is a square
(or parquet) in the dual lattice. First we assume that the
dual cubic lattice is occupied by parquets. When we choose
a bond in the real cubic lattice, say, (i, j, k) − (i + 1, j, k),
the center of this bond is located at (i + 1

2 , j, k). The corre-
sponding parquet in the dual space (i+ 1

2 , j+ 1
2 , k+ 1

2 )−(i+
1
2 , j − 1

2 , k+ 1
2 )−(i + 1

2 , j − 1
2 , k− 1

2 )−(i + 1
2 , j + 1

2 , k− 1
2 ),

is deleted. This process will be repeated untill an infinite
chain is accomplished in the real space. Then, if we inject
the water from the top to bottom along the infinite chain in
real space, then we find the water flow in the dual lattice,
although at initial there is no such infinite chain of hole,
which means disappearance of infinite surface. The infinite
surface prohibited at initial the flow from top to bottom in
the dual space.

At the same time, the water flow starts from the top to
the bottom in the original cubic lattice, the tube for water in
the dual cubic lattice is formed along the infinite chain of
bonds in the original lattice. Therefore, the threshold value
in the cubic lattice with distribution of square is 0.7512
· · ·. Unfortunately we don’t know the exact value of the
threshold value in any 3D lattices. 0.2488 . . . is obtained
from the numeric method, therefore 0.7512 . . . is also not
exact one.

In the case of site percolation problem, if the nearest
neighboring two sites are occupied, we assume that these
two sites are combined forming a bond. In a similar man-
ner, if four sites at the four corners of a parquet are occu-
pied, let us assume they form plane which prohibits water
flow. As particles are distributed onto the cubic lattice, ini-
tially we find single particles, and then two-particle clus-
ters, and so on. They grow with particle concentration. At
pc1 = 0.2173 . . ., we find an infinite chain. Furthermore as
the concentration of particles increases, we will find many
parquets. At pc2 = 1 − 0.217 . . ., ensemble of parquets
form an infinitely wide film in the cubic lattice. Finally we
can say that there are two phase transitions in the cubic lat-
tice, if we permit formation a bond by two particles and a
parquet by four particles (Miyazima, 2005a).

2.3.3 Application of dual transformation to 4D
space—An exact threshold value in 4D space— In the
similar manner, we consider a dual lattice of a 4D hyper-
cubic lattice. It is easy to see that the dual lattice of a 4-
dimension hyper-cubic lattice is also a 4D hyper-cubic lat-
tice. We choose an arbitrary square in the original hyper-
cubic lattice with lattice sites expressed as (i, j, k, l)− (i +
1, j, k, l)− (i, j +1, k, l)− (i +1, j +1, k, l), for example,
and also other 5 different squares with different directions,
where i, j, k, l, are integer. Then, the center of this square

is located at (i + 1
2 , j + 1

2 , k, l) and the corresponding square
in the dual 4D hyper-cubic lattice is (i + 1

2 , j + 1
2 , k + 1

2 , l +
1
2 ) − (i + 1

2 , j + 1
2 , k + 1

2 , l − 1
2 ) − (i + 1

2 , j + 1
2 , k −

1
2 , l + 1

2 ) − (i + 1
2 , j + 1

2 , k − 1
2 , l − 1

2 ). If we choose
a parquet as an example, i.e. (0, 1, 1, 0) − (0, 1, 1, 1) −
(1, 1, 1, 1)−(1, 1, 1, 0), is in the x −ξ plane, where ξ is the
fourth axis, then the corresponding parquet in the dual lat-
tice, ( 1

2 , 1
2 , 3

2 , 1
2 )−( 1

2 , 3
2 , 3

2 , 1
2 )−( 1

2 , 3
2 , − 1

2 , 1
2 )−( 1

2 , 1
2 , 1

2 , 1
2 ),

is in the y − z plane. These two squares are orthogonal each
other and the square in the dual lattice is definitely deter-
mined.

Here, the dual lattice is a 4D hyper-cubic which is equiv-
alent to the original lattice. Therefore, if the latter has a crit-
ical value, then the former also has the critical point at the
same concentration as in the original lattice. As the same
manner as before, we assume a dual 4D hyper-cubic lattice
filled with squares. If we delete a square in the dual lattice,
we place a corresponding square onto the original lattice.
At critical concentration of square of the original lattice, we
can expect an infinite surface. At the same time, an infinite
surface in the orthogonal direction disappears in the dual
4D hyper-cubic lattice.

Since the original lattice and the dual lattice are equiva-
lent, they should have the same threshold value at Pc = 0.5.
This result is easily extended to all even 2nD space, where
we distribute a unit with half dimension n. For example, in
the case of 6D space, the unit is 3D, i.e. a cube (Miyazima,
2005b).

3. Continuum Percolation Model
The percolation model is divided into two types, one is

the discrete percolation model discussed in the previous
paragraph. The other is the continuum percolation model
where components are placed on arbitrary position in the
space. In nature, however, most of cases, such as rocks with
conducting parts dispersed in insulating part, or vice versa,
should be analyzed by adopting the continuum percolation
model, where the components occupy arbitrary positions in
the 3D space.

Even if we adopt a discrete percolation model with very
fine lattice, we cannot obtain critical exponents which are
obtained by experiments and observations. One of the sim-
plest models with this direction is Swiss-cheese model,
where in the 2D case we open many holes at arbitrary
positions in a conducting thin film (see Fig. 6). A mod-
ification of the Swiss-cheese model is an inverse Swiss-
cheese model, where many conductive circles (or spheres)
are placed on insulating plate (or into bulk). Mostly elec-
tricity, elasticity and permeability are discussed by observa-
tion of rocks, and theoretical and experimental studies.
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Fig. 7. The elasticity of aluminum foil is measured as increase of the
number of holes.

3.1 Theoretical work
The characteristic points of Swiss-cheese model are
1. The center of circles, spheres and so on, can occupy

arbitrary point in the space.
2. Overlapping area between circles in 2D space or over-

lapping volume of spheres in 3D can change continuously
from zero.

3. The number of the neighboring elements can change.
Most important property can be found in the critical ex-
ponents of the transport coefficients, especially in the 3D
space. Estimated values of the critical exponent coefficients
such as the electric conductivity, the elasticity and the per-
meability are given in the Table 3 (Feng et al., 1987).

3.1.1 Conductivity and elasticity of 2D Swiss-cheese
model The critical exponents 1.1 for conductivity for a
foil of Al and 1.2 for a foil of Cu, and for elasticity 3.3
(Al) and 3.7 (Cu) were obtained in the experiment shown
in Fig. 7, where many holes are punched out in a sheet of
Al and Cu, respectively. The exponents for the conductivity
show good agreement with estimated values in Table 3, but
this exponent is the same as in the discrete model. The
exponents for the elasticity lie between the discrete one and
expected continuum one in Table 3 (Benguigui, 1984).

3.1.2 3D experiment It is difficult to build up appa-
ratus for 3D experiment of the Swiss-cheese model for con-
ductivity, elasticity and permeability. However, experimen-
tal apparatus for the Inverse Swiss-cheese model is easier
and was approximately built up by Miyazima et al., two of
them are shown in Figs. 8 and 9 (Miyazima et al., 1991,
1992; Okazaki et al., 1996).

We pushed many rubber balls into pure water in the
acrylic tube as shown in Fig. 8 and measured the electric
current from the top to the bottom through the water. If we
press the rubber balls by a piston, the gap among the balls
decreases together with current. If we measure the flow rate
of water, we can obtain the permeability. The exponents
of the conductivity and the permeability were 2.4 and 4.4,
respectively, which show very good agreements with the ex-
pected values in Table 3.

Figure 9 shows the experiment for elasticity. First, we
put enamel wire into acrylic tube which has a very small
elasticity. Between the enamel wire we inserted rubber balls
softly. Initially the rubber balls had no contact each other.
When we push the system from the top slowly, then the
rubber balls began to contact and at some instant the rubber
ball system began to have elasticity between the top and
the bottom. In this way we obtained the critical exponent
of elasticity 5.4 which agrees reasonably with expectation,

Fig. 8. Measurement of electric current in the pure water, where a large
amount of rubber balls were inserted and the water flow through the
space of rubber balls was measured.

Fig. 9. Measurement of elasticity of ensemble of rubber balls. The thin
thread in the figure indicates an enamel wire which has much smaller
elasticity than rubber.

where the exponent of the discrete percolation model is 3.7
(Maruyama et al., 1993).

4. Concluding Remarks
The percolation model is the simplest one among mod-

els appearing in physics. It is, however, a very important
model for a quantitative description of various phenomena
which appear in nature. The covering area of the percola-
tion model is not only materials but also social, economic,
biological problems and so on. Especially the universality
is very important concept for estimating what the crucial
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properties is in various phenomena. But, we know only few
properties in the percolation model. We have to investigate
the percolation model from the both standpoints, actual ap-
plicability and theoretical interest.
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