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Vortex Dynamics
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Dynamics of vortices of filament type is introduced for the following three cases: deformation of a vortex
filament by self-induction, entanglement of two vortex filaments by self- and mutual inductions and reconnection
of two vortex filaments. The first two cases are treated by the use of vorticity equation without the viscous term,
while the third one requires a treatment with the effect of viscosity.
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1. What is Vortex?
The vortex is a swirling motion of fluid, where the an-

gular velocity of the motion is largest in its central region
and decreases with the distance from the center. The vor-
tex has been familiar to us since many years, and has been
often expressed as artworks such as “Study of water falling
into still water” by Leonardo da Vinci and “Panel with red
and white apricot flowers” by Korin Ogata (Japanese artist
in 18–19 c.). Recently, we often see satellite photos of ty-
phoon, which is a large scale vortex with large angular ve-
locity in the central part, called “eye of a typhoon”.

In most vortices including the typhoon the fluid velocity
u(r) vanishes at the center, increases linearly with the radius
r and then decreases, as is shown in Fig. 1. The angular ve-
locity u(r)/r is nearly uniform in the central region, which
corresponds to the eye of a typhoon. On the other hand,
the vorticity, which is defined below, vanishes out of this
central region. Of course, vortices appearing in the nature
receive various disturbances from the environment, and the
distributions shown in Fig. 1 are much distorted.

The vorticity ω(x) is obtained from a velocity vector
u(x) = (u, v, w) by the following differential operation:

ω(x) = rot u(x) = ∇ × u(x)

=
(

∂w

∂y
− ∂v

∂z
,
∂u

∂z
− ∂w

∂x
,
∂v

∂x
− ∂u

∂y

)
, (1)

where ∇ = (∂/∂x, ∂/∂y, ∂/∂z). The physical meaning of
the vorticity is a strength of rotation of a small fluid element
around its center.

The equation governing the vorticity can be derived from
the Navier-Stokes equation (a basic equation governing the
dynamics of viscous fluid), and the result is given below
(refer some textbooks for its derivation, such as Batchelor
(1967) and Imai (1973)).

∂ω

∂t
+ (u · ∇)ω − (ω · ∇)u = µ

ρ
�ω. (2)
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The second and the third terms in the left-hand side indicate,
respectively, convection of the vorticity by the flow field u
and increase of vorticity by stretching of vortex by u. The
right-hand side indicates the diffusion of the vorticity due
to the viscosity.

If the fluid is inviscid (non-viscous), there are some con-
served quantities in the vortex dynamics. In order to under-
stand the conserved quantities, the Stokes’ theorem given
below is necessary. Consider a closed smooth surface in
the 3D space with its edge denoted by C, then the following
equation is satisfied by a vector field u defined in this space:∫∫

(rot u) · nd S =
∮

C
u · d�, (3)

where n is a normal vector on the surface and d� is a
line element of the edge C. If rot u is replaced by ω, it
is rewritten as

� =
∫∫

ω · nd S =
∮

C
u · d�, (4)

where � is called a circulation and indicates a strength of
the part of vorticity distribution within the closed curve C,
as shown in Fig. 2. If the effect of viscosity is neglected, the
circulation is conserved, i.e. it does not change with time.

A vorticity distribution confined within a thin and long
column is sometimes called a vortex filament, and its part
with vorticity is called a core.

Other two conserved quantities are introduced. One is the
kinetic energy T of fluid motion including vortices, which
is given by the following equation (for precise, see chapter
7 of Batchelor (1967)):

T = ρ

2

∫
u2dV = ρ

∫
u · (x × ω)dV . (5)

The other is the helicity H , which is proposed by Moffatt
(1969) and defined by

H =
∫

u · ωdV . (6)
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Fig. 1. Typical distributions of the velocity u(r), the angular velocity
u(r)/r and the vorticity ω(r) in a vortex.

If some vortices with circulations �i are linked with each
other, as shown in Fig. 3, the helicity is given by

H =
∑
i �= j

αi j�i� j , (7)

where αi j is a constant called a winding number, which
indicates the degree of winding between the i-th and j-th
vortices. Examples of values of αi j are shown in Fig. 3.

2. Dynamics of a Single Vortex Filament
The basic formula for dynamics of curved vortex filament

is the Biot-Savart law to give a flow velocity induced by the
filament. This law is known as that giving an effect of elec-
tric current on the magnetic field. In the electromagnetism
a magnetic field dH produced at point Q by a part of an
electric current I at point P with length d� is given by the
following equation (see Fig. 4(a)):

dH = I

4π

d� × r

r3
. (8)

It is noted here that H is related to the current density i by
a law, i = rot H , which is similar to the definition of the
vorticity, ω = rot u. Since the current I is an integration of
the current density and an integration of vorticity gives the
circulation �, the law for the velocity u induced by a part of
vortex filament is also called a Bio-Savart law in the vortex
dynamics and is expressed as follows (see Fig. 4(b)):

du = �

4π

d� × r

r3
. (9)

Integration of the right-hand side of Eq. (9) along the vortex
filament gives the velocity at the position Q induced by the
whole filament. This formula is applied to both cases with
mutual and self-induction. In the case of the self-induction
the integration of Eq. (9) is applied to obtain velocity at
point Q which is located on the filament itself (see Fig.
4(c)).

The estimation of the effect of self-induction is first
obtained by Hama (1962), which is explained in a well-
formulated way by Batchelor (1967). Let the circulation
and the local curvature of a filament are denoted by � and
c, respectively. Then, this part of the filament moves to the
direction perpendicular to a contact plane of the filament at
this part with the following velocity:

u ∼= Ac, where A = �

4π
log

L

σ
, (10)

Fig. 2. Definitions of the circulation.

where L is a length of a part of the filament which con-
tributes to induce the velocity and σ is the radius of the fil-
ament core. The length L can not be defined precisely, and
its value might not be constant. However, since L/σ >> 1
and the quantity log L/σ will not change much, this factor
is often assumed constant. Equation (10) can be expressed
also as a vector form as follows, by introducing a coordinate
x(�, t) of a point on the filament:

∂x

∂t
= A

∂x

∂�
× ∂2x

∂�2
. (11)

Let us consider a vortex filament which is directed on the
average to the z-axis and deformed to a sinusoidal shape
with a wave number k and a small amplitude a. When the
amplitude is small enough, z can be replaced with �, and
it is easily confirmed that the following shape of filament
satisfies Eq. (11):

x = (a sin k� sin ωt, a sin k� cos ωt, �), (12)

where ω = k2 A. This filament rotates around the z-axis
with the angular velocity ω without change of shape.

When the amplitude a is larger, solution of Eq. (11) with
a wavy shape periodic in the z-direction is, in general, diffi-
cult to obtain analytically. A computer simulation was made
by Takaki (1975) for deformation of a vortex filament with
a periodic initial shape, x = (a sin kzs, 0, z), with a large
amplitude. Figure 5 is one of its results, which shows vari-
ations of Fourier components of the filament shape with
time-wise periodicity along with instantaneous shapes of
the filament. This result reminds us of the behavior of a lat-
tice of nonlinear springs computed by Fermi et al. (1955),
which shows a recurrence of initial state after complicated
deformations.

Another example of nonlinear behavior of a single vor-
tex filament is a helical shape of vortex filament obtained
by Betchov (1965). Here, it is expressed by the use of
new variables and another expression of Eq. (11), which
is also applied to other problems in the next section. First,
the length and time are normalized by L (a representative
scale of filament in the z-direction) and L2/A. Let us ex-
press the filament shape by the two functions, W (z, t) =
X (z, t)+ iY (z, t), Z(z, t), where (X, Y, Z) denotes the po-
sition of the fluid element within the filament which existed
initially (t = 0) at the height z. The initial condition is spec-
ified by giving a set of functions (W (z, 0), Z(z, 0)), where
Z(z, 0) = z. Then, the following equations for W (z, t) and
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Fig. 3. Examples of linking of two ring vortices (reproduced from a review by Takaki (1988)).

(a) (b) (c)

Fig. 4. Biot-Savart law for (a) the magnetic field induced by the current I , and (b) the velocity field induced by the vortex filament. (c) Induction of the
velocity at point Q in the self-induction case.

Z(z, t) are obtained (Takaki, 1975):

PẆ = i(Z ′W ′′ − Z ′′W ′), P Ż = Im(W̄ ′W ′′),

where P =
(

d�

dz

)2

= [
(1 + W ′′W̄ ′)3/2

]
t=0 . (13)

This set of equation has an exact solution,

W = ε exp i(π z − τ), Z = z + ε2πτ,

where τ = π2t (1 + ε2π2)−3/2, (14)

which indicates a vortex filament with a helical shape mov-
ing steadily in the z-direction.

Deformation of a vortex filament which behaves as a
soliton is obtained by Hasimoto (1972). A rough sketch of
the filament shape of soliton mode is shown in Fig. 6 along
with a sketch of tornado observed actually. The deformation
of the filament moves vertically, while the fluid element
within it nearly conserves its height.

3. Entanglement of Two Vortex Filaments
Two vortex filaments are sometimes arranged parallel

to each other both in the nature (for example, two nearby
tornados) and in experiments. If they have the same sense
of rotation they go around each other owing to the velocity
induced by the other. When the vortices are not straight but
curved, they make a complicated interaction so that they are
deformed to a herical shape and tangle with each other. This
phenomenon was observed in an experiment by Chandrsuda
et al. (1978). A theoretical treatment of this phenomenon
is made by Takaki and Hussain (1984a, b), who derived
a governing equation for dynamics of the vortex filaments
and obtained a solution with regular herical shape. In the
following the process of deriving the governing equation is
explained briefly.

F1

F3

F5

Fig. 5. Computer simulation of deformation of a vortex filament with
an initial trigonometric shape. F1, F3 and F5 indicate the basic, the 3rd
and the 5th Fourier components of the filament shapes, which are shown
below (reproduced from Takaki (1975)).

In order to make a simple analysis it is assumed that the
two vortex filaments are deformed to the same shape and
arranged axisymetrically with respect to the central axis (z-
axis), as shown in Fig. 7. These vortices are assumed to
have the same sense of rotation with circulation �. The ob-
ject of analysis is to derive an equation governing the veloc-
ity u(x, t) of the fluid element at the position x = (x, y, z)
on the right filament, which is made of two contributions;
one from the local curvature of the right vortex at x (self-
induction), and the other from induced velocity by the part
of the left vortex near to the point x (mutual induction). The
variables in the left vortex are shown with hats. Then, the
velocity u is given by the following equation:

u = A
∂x

∂�
× ∂2x

∂�2
− �

4π

∫
s × d̂�

s3
, (15)

where A is given in Eq. (10) and s = x − x̂.



S28 R. Takaki

(a) (b)

Fig. 6. Soliton-like deformation of a vortex fialment. (a) Rough sketch
of filament shape obtained by Hasimoto (1972), (b) sketch of the photo
of a tornado taken in Oklahoma state, USA in 1978 (reproduced form
Takaki (1988)).

Furthermore, it is assumed that the filaments are nearly
straight in the z-direction and the curvature c of the fila-
ments is small enough to neglect terms with higher order of
ε , where

∂x

∂�
,
∂y

∂�
= O(ε),

∂z

∂�
= O(1),

∂2x

∂�2
,
∂2 y

∂�2
= O(ε2),

and that the mutual distance of the vortices |x − x̂| is
much larger than the core size σ of the vortices and much
smaller than the range (−L̂, L̂) of integration in Eq. (15),
i.e. σ << |x − x̂| << L̂ .

Next, we normalize the length and time by L and
4π L2/�, respectedly, and introduce new expressions of x
and x̂ in terms of a complex function W (z, t), defined by
W (z, t) = x(z, t) + iy(z, t), so that

x = (W (z, t), z), x̂ = (−W (z, t), z), (16)

where the variables � and �̂ are replaced by z, which is
allowed because the vortices are almost directed to the z-
axis. Then, the equation for W (z, t) is derived from Eq.
(15), as follows (see Takaki and Hussain (1984a)):

∂W

∂t
= A∗iW ′′

+ i

W̄

(
1 − 1

2
W ′W̄ ′ + (ReW W̄ ′)2

W W̄
− Re(W W̄ ′′)

)

+ ImW W̄ ′

W W̄
W ′ + O(ε4), (17)

where A∗ = ln(Ls0/L̂σ) and s0 is a length with the same
order of magnitude as |s|. Since s0 >> σ , we can expect
that A∗ > 0.

As a particular solution of Eq. (17) we assume a helical
shape W = R exp i(kz − ωt), where R, k and ω are real
constant. Substituting this into Eq. (17), we have

ω =
(

A∗ + 1

2

)
k2 − 1

R2
, hence

ω

k
=

(
A∗ + 1

2

)
k − 1

k R2
.

(18)

The quantity ω/k is the phase velocity of the wave, which
the side view of the helical filament shows. Since the length
is normalized by L , the amplitude R is much smaller than

Fig. 7. Pair of two vortex filaments deformed to the same shape and
arranged axisymmetrically.

Fig. 8. Helical shape of filaments, which moves downwards.

unity, and the wave progresses downwards, as shown in Fig.
8. Of course, the downward wave motion does not nec-
essarily mean that the material within the filament moves
downwards.

Another interesting particular solution of Eq. (17) is a
case where the two vortex filaments are straight and paral-
lel to each other in far region (z → ±∞), and they tangle
several times within a finite region. A nonlinear wave anal-
ysis of this case is made by Ohtsuka et al. (2003).

4. Reconnection of Two Vortex Filaments
In the previous sections dynamics of vortex filaments has

been discussed for the cases, where the fluid is assumed
to be inviscid and the effect of filament thickness is not
considered. However, vortices sometimes show a unique
behavior of so-called reconnection, where they touch each
other and cut themselves at the touching points and make
connections to the other filaments.

This phenomenon was first reported by Crow (1970) for
the reconnection of trailing vortices behind an airplane, as
shown in Fig. 9(a). A similar reconnection process had been
observed by Hama (1962) for a vortex filament produced in
the boundary layer (see Fig. 9(b)). Since then, the recon-
nection of vortex rings were observed by many scientists,
such as Kambe and Takao (1971), Fohl and Turner (1975)
and Oshima and Asaka (1977) (see Fig. 9(c)).

Computer simulations of the reconnection process were
made by a lot of scientists, examples in the early stage of
studies being those by Chamberlain and Liu (1985) and Me-
lander and Hussain (1988). A precise review of the problem
of vortex reconnection is given by Kida (1994). However,
the mechanism of reconnection has not been investigated
theoretically, except for that by the present author and his
collaborator (Takaki and Hussain, 1985, 1988). In the fol-
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(a) 

(b) (c)  0.22 s     0.54 s             0.73 s  

Fig. 9. Observations of vortex reconnection. (a) Trailing vortices behind an airplane by Crow (1970). (b) A small triangular ring vortex produced in a
boundary layer by Hama (1962). (c) Two ring vortices produced by Oshima and Asaka (1977), where times after ejection of smoke are shown above
((a), (c): sketches by R. Takaki made from respective papers, (b) is reproduced from Hama (1962)).

(a)

(b) (c) (d)

Fig. 10. A simple model of reconnection process. (a) Lift up motion of close parts (hatched regions) and push down motion of reconnected parts. (b)
Initial state in a short interval of reconnection, (c) superposition of two ring vortices, (d) final state of the reconnected filaments and the remaining
ring vortex (simplified sketches of those in Takaki (2002)).

lowing an outline of this theory is explained along with an
experimental verification of this theory based on a review
article by Takaki (2002).

The reconnection begins with an approaching of parts of
two vortex filaments with the same magnitude of circula-
tion but with an opposite sense of rotation. As shown in
Fig. 10(a), these parts (hatched regions) are lifted up by the
mutual induction of velocity, and then they are pushed to-
gether by their self-induction motions. Thus, these interact-
ing parts make a strong interaction with each other. After
the reconnection they are pushed down also by the mutual
induction, and get apart by the self-induction. Therefore,
the reconnection occurs when these parts attain the high-

est positions, and it can be assumed that these parts do not
change their positions during a short interval of reconnec-
tion. The starting state in this interval is shown in Fig. 10(b).

Here, the reconnection is looked upon as a superposition
of a ring vortex on the interacting parts of both filaments, so
that the vorticities at the superposed regions are cancelled
out and new vorticities are born at the space between the
two filaments. Since this ring vortex has a momentum in
the vertical direction, we must superpose one more ring
vortex with opposite direction of vortcity, as shown in Fig.
10(c), so that conservation of momentum is assured. Thus,
superposing this pair of ring vortices, we have the final
state in the short interval as shown in Fig. 10(d), which is



S30 R. Takaki

composed of the reconnected filaments and a ring vortex
with upward momentum.

So far is a qualitative understanding of the reconnection
process. We must go further to apply the vorticity equation
(2) for a viscous incompressible fluid. It can be confirmed
easily that we need the viscosity terms in this equation
for analysis of reconnection in the following way. Let us
consider the distribution of ωx on a plane P spanned by the
y- and z-axes. It satisfies the x-component of the vorticity
equation, i.e.

∂ωx

∂t
+ (u · ∇)ωx − (ω · ∇)u = µ

ρ
�ωx .

Note that ωx and the x-component of the velocity u vanish
on this plane. Then, this equation shows that ωx on the
plane P continues to vanish, if the viscosity term (right-hand
side) is neglected. On the other hand, ωx after reconnection
should have finite value on the plane P. This finite value is
produced through the viscous effect, i.e. through diffusion
from both sides of the plane P with non-zero distribution of
ωx .

Now, since precise analyses of velocity and vorticity
fields are difficult, we assume simple polynomial expan-
sions up to the second order of coordinates for components
of u = (u, v, w), ω = (ωx , ωy, ωz) and �ω in the initial
and final states (Figs. 10(b) and (d)) based on their spatial
symmetries, i.e. whether they are even or odd functions of
coordinates. For example, the u is an odd function of x and
an even function of y, hence it is expressed as −mx+kxz up
to the second order. On the other hand, v in the initial state
is very weak and assumed to vanish. As for w, it is even
function of x and expressed as w0 + mz − lx2/2 + kz2/2.
Coefficients in these expressions are adjusted so that they
satisfy the continuity equation for incompressible fluid, i.e.
div u = 0. The expressions of velocity components in the
final state are assumed in the same way.

Velocity components u and v of the superposed ring vor-
tex are given simple expressions, by assuming that they are
composed of even or odd functions of x and y. Since the
ring vortex has an axisymmetric distribution of w around
z-axis, w in it should depend on x and y through x2 + y2.
Hence, by superposing the two expressions for the filaments
and the ring, w is expressed as −n − 2mz − kz2/2 + l(x2 +
y2)/2. In addition, strength of this ring vortex is assumed to
grow from 0 and asymptote to a finite value, hence the ex-
pressions for the ring vortex and the filaments have a com-
mon factor T (t), which satisfies T (t) → 0 for t → −∞
and T (t) → 1 for t → ∞.

After all, the superposition of the initial state and their
components are expressed as follows:

u = −m(1 − T (t))x + k(1 − T (t))xz,

v = mT (t)y + kT (t)yz,

w = w0 − δT (t) + m(1 − 2T (t))z

− l(1 − T (t))x2

2
+ lT (t)y2

2
+ k(1 − 2T (t))z2

2
,

(19)

Fig. 11. Solution of T (t), showing the process of reconnection.

ωx = (k + l)T (t)y − nT (t)yz,

ωy = (k + l)(1 − T (t))x − n(1 − T (t))xz,

ωz = 0, �ωx = gx T (t)y,

�ωy = gy(1 − T (t))x, �ωz = 0, (20)

where expansions of �ωx and �ωy are made up to the first
order by assuming that they have the same forms as ωx and
ωy .

Substituting the above expressions into the vorticity
equation (2) and taking terms up to the first order of co-
ordinates, we have the following equation for T (t):

dT

dt
= T

t∗ − T 2

t∗ , where t∗ = δn

k + 1
= µ

ρ
(gx − gy) − 2m.

(21)

Solution of this equation satisfying the boundary conditions
for t → ±∞ is given below.

T (t) = et/t∗

1 + et/t∗ , (22)

whose behavior is shown in Fig. 11.
This result is convincing since T (t) grows and makes the

reconnection smoothly. The time t∗ needed for reconnec-
tion decreases for smaller viscosity.

Here, it should be noted that the coefficients, l, m, n, etc.,
are left undetermined; their values should be determined so
that the velocity and the vorticity distributions in the recon-
necting region match to those in outer flow. For that pur-
pose a polynomial expansion up to higher orders is neces-
sary, which is not yet done because a highly complicated
manupilation are required.

The present author and his colaborator made an experi-
ment and a computer simulation to confirm the theoretical
result (Takaki and Kakizaki, 1992). Figure 12(a) shows the
side view of experimental apparatus, where two ring vorti-
cies were ejected by the use of speaker connected to com-
puter and the velocity distribution was measured by LDV
(Laser Doppler Velocimeter). Sketches of vortex shapes are
shown in Fig. 12(b). The ejected two rings made the first re-
connection to produce a distorted ring, which made the sec-
ond reconnection to produce two rings. They measured vor-
ticity distribution during the reconnection proccess, which
agreed considerably with the visualization (Fig. 12(b)) and
the theoretical result (Eqs. (20)–(22)).

After the theoretical work introduced above no progress
has been made in theoretical understanding of the reconnec-
tion process. It remains to be one of the largest mysteries in
fluid dynamics.



Vortex Dynamics S31

(a) (b)

Fig. 12. (a) Experimental apparatus to observe reconnection process. (b) Observed reconnections of two ring vortices moving from lower to upper
(sketch from photos) ((b) is reproduced from Takaki (2002)).

Fig. 13. Reconnection of magnetic lines as the plasma region goes away from the sun (reproduced from Takaki (2002)).

5. Dynamics of Line Singularities in Other Materials
Reconnection processes have been observed in systems

of other materials, as is mentioned in a review by Takaki
(2002). Here, two cases are introduced briefly; the recon-
nection of magnetic lines in a plasma and the reconnection
of microscopic vortex filaments in superfluid helium. A
representative system with reconnection of magnetic lines
would be a solar wind, which is a large scale plasma includ-
ing magnetic lines. Figure 13 shows a process of ejection
of a solar wind, where the magnetic lines connected to the
sun is reconnected in order that the wind can go away from
the sun. A hydromagnetic analysis of this phenomenon is
made by Yeh and Axford (1970).

What is interesting here is that the functional expressions
of velocity and the magnetic fields in the Yeh and Axford’s
analysis are similar to those of velocity and the vorticity in
our reconection analysis. It is noted here that there are two
ways of analogy between the vorticity field and the mag-
netic field. One is based on the similarity of formulae ω =
rot u and i = rot H , where the velocity u corresponds to
the magnetic field H , and the vorticity ω to the current den-
sity i. In this analogy, the reconnetion of vortex filaments
does not directly correspond to that of magnetic lines. An-
other analogy is based on the similarity of governing equa-
tions of both fields, where the vorticity is governed by Eq.
(2), while the magnetic field in plasma is governed by the

(a) (b)

Fig. 14. Quantized vortex in superfluid helium. (a) Displacements of
helium atoms along a closed path. (b) Distribution of helium density
within a quantum vortex filament as a solution of Schroedinger equa-
tion, where L0 = �/

√
2V0ρ0 = O(0.1 nm).

following equation:

∂H

∂t
+ (u∇)H − (H∇)u = η�H, (23)

where η is the magnetic diffusivity defined by η = 1/(σµ0)

(σ is the electric conductivity of the plasma and µ0 is
the magnetic permeability). This equation is derived by
combining the Maxwell’s equation and the fluid dynamical
equation along with Ohm’s law.

As in the vorticity field, the second and the third terms
of the left-hand side of Eq. (23) stand for the convection of
magnetic lines by fluid motion and the thinning of bundle of



S32 R. Takaki

magnetic lines by stretching, respectively. The right-hand
side stands for the diffusion of magnetic lines by electric
conductivity. Comparing Eqs. (2) and (23), we can con-
vince ourselves that the magnetic lines correspond to vortex
filaments so long as their dynamics are concerned.

Existence of vortex filament in the superfluid was sug-
gested by Feynman (1955) based on the following logics.
Suppose that positions and velocities of atoms in superfluid
helium are denoted by rα and vα , respectively, as shown
in Fig. 14, and the wave function of atoms is given with
an analogy of the wave function of single particle with mo-
mentm p, i.e. exp(ip · x/�), as follows:

� = exp
(

i
∑

mvα · rα/�

)
�0, (24)

where m is the mass of helium atom and �0 is the wave
function of the static state.

When atoms have moved along a closed path to the po-
sition of the next atom as shown by arrows, the wave func-
tion changes from that in Eq. (24) by a factor exp(i

∑
mvα ·

�rα/�). Since these movements do not change the state of
atoms, the quantity in the parenthesis of this factor must be
a multiple of 2π i , hence we have

∑
vα ·�rα = 2π�n/m =

(h/m) · n, where n is an integer. The sum
∑

vα · �rα is
a circulation along the closed path (see Eq. (4)), and is de-
noted by � . Thus, the vortex filament in superfluid has a
quantized circulation, as expressed by � = (h/m) · n. The
magnitude of the h/m is about 0.94 × 10−3 cm2/s and has
a macroscopic order. It is known that the smallest value of
circulation corresponds to n = 1, and existence of a vortex
filament with this value of circulation is confirmed, which
is called a quantum vortex filament. If a circulation along a
closed path has a value with n > 1, the closed path includes
more than one quantum vortex filaments within it.

Since the superfluid has no viscosity, the quantum vortex
filament has no mechanism to increase its core size, and
keeps its size with order of inter-molecular distance. Or,
one should say that the quantum vortex filalament does not
have a core of usual sense with constant angular velocity or
vorticity (see Fig. 1). If the fluid is moving with velocity
u along a circular path with radius r , its circulation is � =
2πru, and if the circulation is constant we have the relation
u = �/2πr for r down to the scale of inter-atomic distance.

On the other hand, a circular motion of this high speed
(∼106 m/s) within the region of inter-molecular scale will
produce a very low pressure at the center of vortex fila-
ment, hence the density of atoms should be very low there.
An analysis based on a hydrodynamical expression of the
Schroedinger equation gives the radius L0 = �/

√
2V0ρ0 of

this low density region of about 0.1 nm, where V0 stands for
the repulsive potential between helium molecues and ρ0 is
the density of superfluid far from the vortex filament. Thus,
the core of the quantum vortex filament is not a region with
vorticity but a hollow region, where the density of atoms is
low.

Existence of the vortex reconnection in superfluid is al-
ready confirmed by Schwarz (1985) and Koplik and Levine
(1993) by numerical simulation based on the Schroeding
equation. Now, the present author would like to suggest
that a superposition of ring vortices on nearly parallel line

vortices might give a simple model for theoretical analysis
of reconnection of quantized vortex filament, where these
vortices do not have vortical cores but low density cores
without vorticity.

Finally, the present author would like to suggest that
vortex dynamics is related to many fields in physics, and
that it provides a common method for theoretical studies of
problems in these fields.
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