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Growing Cell Patterns
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1. Introduction
Cell patterns are ubiquitous in nature. A typical exam-

ple of cell pattern is the soap froth, shown in Fig. 1. In
this context, a cell is the minimum bounded area, or bubble.
Many of these cells expand in space and their boundaries
form a network structure. Natural cell patterns exist over
a wide range of spatial scales; for example, biological cell
tissues (10−3 cm), magnetic domains (10−3 cm), polycrys-
tal grain structures (10−2 cm), soap froths (1 cm), colum-
nar basalt (10 cm), and so on, and the bubble structure of
the cosmos (1025 cm). Here, the numbers in parentheses
are the approximate linear sizes of the cells. The struc-
tures, growth mechanisms and dimensions of cell patterns
also vary widely. However, if viewed solely as cell patterns,
these diverse structures exhibit common features. (Weaire
and Rivier, 1984; Weaire and Hutzler, 1999)

2. Geometric Constraints
Cell patterns are fundamentally described by Euler’s ge-

ometric theorem, expressed as V − E + F = χ in two
dimensions and V − E + F − C = χ in three dimensions.
Here V , E , F and C denote the number of vertices, edges,
faces and cells, respectively, and χ is Euler’s characteristic
number. Note that in two dimensions, the terms cell and
face are equivalent. Although χ depends on the boundary
condition of the system, it is an integer of order 1; hence we
can set χ = 0 for large cellular systems.

In soap froth, each vertex is the joining point of three
edges in two dimensions and four edges in three dimen-
sions. These simplest structures are most commonly found
in nature because they are topologically stable. According
to Euler’s theorem, a cell is bounded by six edges (on the
average) in two dimensions, and by 12/(6 − 〈n〉) faces in
three dimensions, where 〈n〉 denotes the average number of
edges per face. Any cell pattern must satisfy these geomet-
rical requirements.

3. Self-Similar Growth
Under suitable conditions, cell patterns will coarsen or

grow. This section introduces some universal properties of
growing cell patterns, using the two-dimensional soap froth
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shown in Fig. 1 as an example. The internal pressure differ-
ence between neighboring bubbles induces airflow from the
higher pressure side to the lower pressure side through the
soap film. Consequently, the bubble at the higher pressure
side shrinks while that at the lower pressure side expands.
Assuming that the airflow rate is proportional to the cur-
vature of the interfacial membrane, the area of an n-sided
bubble, A(t), is given by the Neumann-Mullins equation

d A(t)

dt
= k(n − 6),

where k is a positive constant that depends on the properties
of interfacial membrane. This equation states that the rate
of change of bubble area depends only on the edge num-
ber, i.e. the bubble shrinks if enclosed by less than 6 edges
and expands otherwise. If a bubble edge becomes short, it
triggers varying connectivity with other edges, leading to
changes in the edge numbers of the bubble and its neigh-
bors. Bubbles with the minimum edge number (n = 3)
further shrink and eventually vanish. In this way, individ-
ual bubbles repeatedly shrink and expand by changing their
areas and edge-numbers. These dynamics lead to a gradual
coarsening of the whole system.

As smaller bubbles are removed from the system, the
average area per remaining bubble increases as a power
law in time, tα . The exponent α, which characterizes the
growth of the system, is a crucial parameter in research
of growing cell patterns. Theoretically, it is expected that
α = 1, although many experimental studies have reported
that α < 1. Despite the gradual coarsening of the system,
the entire cell pattern does not statistically change (see Fig.
1). In other words, the statistical properties of the pattern
are growth-invariant. If we consider a new length unit
R(t), defined by the square root of the average area per
cell

√
A(t), then the cell size distribution scales by R(t).

The long-term distributions of cell size and edge-number
are described by definite functions. Such a state, whose
universal properties are independent of the initial states, is
called a scaling state. Within the scaling regime, the cell
pattern grows in a statistically similar manner.

4. Shape Correlation
Many two-dimensional cell patterns obey the well-known

Aboav-Weaire law, which specifies the average edge num-
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(a) 0 h (b) 9 h (c) 27 h

Fig. 1. Growing soap froth in two dimensions. Experimental results obtained by Ogawa and Harada (2004, private communication).

Fig. 2. Elementary processes in a vertex network.

(a) t = 4.0 (b) t = 25.0 (c) t = 100.0

Fig. 3. Snapshots of vertex dynamics cell model simulation. Relaxation to stationary state (scaling state) from a random Voronoi state with 30,000 cells
at t = 0. Time t is dimensionless and periodic boundary conditions are assumed.

ber m(n) of neighboring cells of a n-sided cell by the rela-
tionship

m(n) = k1 + k2

n
.

Here, k1 and k2 are positive constants that depend on the
force range of inter-cellular interactions. In soap froths and
grain aggregates, k1 ∼ 5 and k2 ∼ 7.5. The Aboav-Weaire
Law expresses the shape correlation between cells. Cells
with many edges are surrounded by cells with few edges,
and vice versa. This law holds for a system in statistical
equilibrium after sufficient relaxation of local strains, which
describes the above-mentioned scaling state.

5. Computer Simulations
The self-similar growth of cell patterns has been inves-

tigated in numerous computer simulations. The scaling

state of self-similar growth is a stationary state, which can
be elucidated only by simulating systems with sufficiently
large number of cells for sufficiently long time. The scal-
ing state is regarded as an intrinsic state of the system,
independent of both initial state and boundary conditions.
This section introduces a model that effectively simulates
the self-similar behavior of cell systems; namely, the ver-
tex dynamics cell model (Nagai et al., 1988; Kawasaki et
al., 1989). The model illustrates the essences extracted by
coarse-graining of real cell systems. The two-dimensional
version is discussed here; the three-dimensional version is
detailed in Nagai et al. (1990) for soap froths and grain ag-
gregates and in Honda et al. (2004) for biological cell sys-
tems.

Growing cell patterns are characterized by the dynamics
of their cell boundary networks. To express these dynam-
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Fig. 4. Magnification of the left-bottom part of Fig. 3(a). The average cell
size in this figure is identical to that of Fig. 3(c).

ics, we describe the system as an assembly of intersection
points of cell boundaries (i.e. vertices). In this model, each
vertex is bound to three neighboring vertices with straight
cell boundaries, forming a vertex network. The vertices are
assumed to move such that the total energy U of the cell
boundaries always decreases. In two dimensions, the spa-
tiotemporal dynamics satisfy

ηi
dri

dt
= −∇iU (r1, r2, · · ·),

where ri denotes the position vector of the i-th vertex, ηi is
the friction coefficient and t denotes time. The above equa-
tion relates the frictional force (left-hand side) to the poten-
tial force that reduces the total potential energy U (right-
hand side). Furthermore, the topological dynamics of the
vertex network are described by two elementary processes,
recombination T1 and triple condensation T2. In T1, two
vertices approaching within a small distance � recombine
as shown in Fig. 2(a). In T2, three vertices approaching
within a small distance � coalesce into a single new vertex
as shown in Fig. 2(b). Here, � is the smallest length in the
coarse-grained model. The vertex dynamics cell model thus
describes growing cell patterns by an equation of motion for
the vertices and a pair of elementary processes. The model
is quite general and applicable to many systems. Below, we
apply the model to soap froth or grain aggregates.

In soap froths and grain aggregates, the total energy of
cell boundaries can be expressed as U = ∑

〈i j〉 σi j |ri − r j |,
where the sum is taken over cell boundary 〈i j〉 and σi j de-
notes the interfacial linear energy density of 〈i j〉. This ap-
proach is valid because the potential energy induced by in-
homogeneity is proportional to the length of the cell bound-
ary. Thus, the potential force acting on a vertex depends
on the directions of the three cell boundaries raying from it,
but not their lengths. In soap foam and isotropic grain sys-
tems, the interfacial linear energy density σi j is independent
of the boundary 〈i j〉 and can be simply expressed as σ . The
friction coefficient ηi is considered to be proportional to the
total length of the three cell boundaries meeting at vertex i
and is thereby written as ηi = η0

∑(i)
j |ri − r j |/2, where

η0 is a positive constant and the sum is taken over the three
neighbors j of i connected by their cell boundaries. We per-
formed computer simulations of such isotropic cell systems,
and present the results below.

The initial state was a random pattern of 30,000 Voronoi
cells. As the time elapsed, this system continued to coarsen
by repeating the two elementary processes T1 and T2.

Fig. 5. Edge number distribution of cells. Relaxation to an asymptotic
function F∗(n) from an initial distribution of 50,000 random voronoi
cells.

Through a series of intermediate states, the initial Voronoi
pattern faded from memory and the system gradually ap-
proached a stationary state. Snapshots of the simulation at
various times are presented in Fig. 3. The system and its
evolution to steady state closely resemble Fig. 1. Paralleling
the pattern dynamics, the average cell area A(t) gradually
became power-law in time (i.e. tended to tα with α = 1).
Figure 4 shows the pattern obtained by magnifying Fig. 3(a)
by a factor of 4.57. This factor is the ratio of the average lin-
ear cell size at t = 100, R(100), to R(4) at t = 4. That is,
the average linear cell size in Fig. 4 is identical to that in Fig.
3(c). Note that no recognizable difference exists between
these two figures. Similarly, magnifying Fig. 3(b) yields a
pattern that is hardly distinguishable from Fig. 3(c).

The self-similarity of the above-mentioned cell system
can be quantified by the area distribution function of cells
scaled by the average cell area, or by the edge-number dis-
tribution function of cells. Figure 5 plots the distribution
function F(n, t) of n-sided cells at time t . This figure con-
firms that the initial random Voronoi pattern approaches a
definite state described by a corresponding function F∗(n).
This trend is exactly the self-similar growth of a cell system.
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