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Interfacial Instability and Pattern Formation
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1. Introduction
Physics of pattern formation is to study mainly the ori-

gin of structures and dynamics emerged in non-equilibrium
open systems which are defined as a system subjected to
steady heat current or material flows so that the state of
the system is far from equilibrium. For example, a fluid
confined between two parallel horizontal plates and heated
below causes convective flows when the temperature dif-
ference between the two plates exceeds a certain thresh-
old. This phenomenon is known as the Rayleigh-Benard
convection. Roll pattern of this convection, grid pattern
in electro-hydrodynamic convection of liquid crystals, con-
centric wave and spiral wave in chemically reacting sys-
tems, and needle-like and dendritic crystal growth are the
examples of non-equilibrium patterns. In fact, Physics out
of equilibrium has been developed towards understanding
these experiments for these four decades (Cross and Green-
side, 2009).

2. Dynamics of Interface
When two different states (such as solid and liquid) co-

exist, a spatial structure is constituted in a homogeneous
system. An interface is a boundary separating the areas
occupied by these two states. Since the location of a flat
interface is arbitrary in an extended system having a trans-
lational invariance, interface deformation with long wave
length is a relevant relaxation mode which governs the slow
dynamics of the system. This is one of the reasons why
we are concerned with the interface dynamics as a powerful
method for pattern formation problems. Not only the time
scale but also the spatial scale associated with an interface
should be separated enough from other degrees of freedom
such as the velocity field in the convection and the concen-
tration fields in chemical reactions. That is, the interface is
infinitesimally thin and should be regarded as a geometri-
cal boundary without any internal structures. A systematic
theory to reduce the degrees of freedom by relying on this
kind of scale difference has been developed mathematically
(Nishiura, 2003; Pismen, 2006).
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Fig. 1. Elastic-like collisions of interfaces in a reaction-diffusion system
(Ohta and Kiyose, 1996). Because of the Neumann boundary condition,
a collision with the interface at the mirror position also occurs at the
system boundaries.

Instabilities of a flat interface enrich nonequilibrium spa-
tial patterns. One of the most well known examples is the
Mullins-Sekerka instability in crystal growth. An interface
separating solid and liquid tends to be flat to diminish the
interfacial energy. However, latent heat is produced in a
growing crystal surrounded by a supercooled liquid. If a
bump of solid is formed, the diffusion of the latent heat
is more efficient in the bump region so that the local tem-
perature decreases there and crystallization is accelerated.
When this effect dominates the increase of the interfacial
energy due to the bump, a flat interface becomes unsta-
ble. A mathematically equivalent interfacial instability is
the one at a boundary between two fluids in two parallel
glass plates where less viscous fluid pushes more viscous
fluid. It is also possible that the Marangoni effect in which
the interfacial energy depends on local concentration and/or
local temperature causes an interfacial instability. In fact, a
hexagonal convective pattern in Benard convention, which
appears for a free upper boundary is due to the Marangoni
effect.
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Fig. 2. Self-replication of localized domains (Lee et al., 1994). Upper column: snapshots of domains obtained by experiments of the ferro-
cyanide-iodate-sulphite reaction. Lower column: snapshots of domains obtained by computer simulations of the reaction-diffusion system. The
location of interfaces is indicated by the grey lines. This figure is reproduced with permission from Nature Publishing Group.

3. Recent Theories
In 1951, the theory was introduced for spiral growth of

crystal surface where a dislocation core is a nucleation cen-
ter of steps (Burton et al., 1951). This is one of the earli-
est studies of non-equilibrium phenomena where interface
motions are involved. Later, in the second half of 1970s,
the interface dynamics was formulated for domain growth
in order-disorder transitions and phase separations in alloys
(see Nishiura (2003)). As a most recent research in this
direction, theories of molecular membranes have been in-
troduced to describe mesoscopic structural formation and
its kinetics in soft matter (Taniguchi et al., 2011). Pattern
selection in crystal growth is one of the examples where the
interface dynamics was mostly successful. The shape and
the growth velocity of a tip of dendritic crystal are deter-
mined uniquely in experiments when the external condition
such as the temperature and the degree of super-saturation
is fixed. The mechanism of tip growth was, however, un-
known theoretically for a long time. In the second half of
1980s, it was clarified that small anisotropy of the surface
tension acts as a manner of singular perturbation (Pecle,
1988) to select the shape and the velocity at the tip.

4. Computer Simulations
The interaction between interfaces plays a fundamen-

tal role to the dynamics of ordered structures far from
equilibrium. Since a non-equilibrium system is a dissi-
pative dynamical system, it was believed for many years
that a pair of interfaces (or waves) annihilate upon col-
lision as observed experimentally in concentration waves
of Belousov-Zhabotinsky reaction. However, recent stud-
ies by computer simulations of reaction-diffusion equations
and complex Ginzburg-Landau equations have revealed that
the dynamics of interfaces and spatially localized struc-
tures (called pulses) can be complex much more than ex-
pected. There are many findings that interfaces and pulses
in one and two dimensions behave, upon collision, as an
elastic object or preserve their shape like a soliton in inte-
grable conserved systems (Petrov et al., 1994; Krischer and
Mikhailov, 1994). Figure 1 shows a space-time evolution

of a concentration obtained by numerical simulations of a
reaction-diffusion system. It is evident that a pair of inter-
faces undergoes repeatedly elastic-like collisions. However,
it has been clarified by an interface dynamics that a super-
critical bifurcation from a motionless state to a propagating
state (either to the right or to the left depending on the initial
conditions) of an interface, in other words, breaking of mir-
ror symmetry is essential for this collision dynamics (Ohta
and Kiyose, 1996).

Another interesting dynamic pattern formation is self-
replication of a pulse. One pulse splits into two pulses and
after growing to a certain size, they replicate again spon-
taneously. This phenomenon was discovered in computer
simulations of reaction-diffusion equations (Petrov et al.,
1994) and later, a similar domain splitting was found in ex-
periments of the ferrocyanide-iodate-sulphite reaction (Lee
et al., 1994). In Fig. 2, the self-replication of domains ob-
tained by laboratory experiments is compared with that by
numerical simulations in two dimensions.

The soliton-like behavior and self-replication of pulses
indicate that one has to take into account generally the
internal degrees of freedom of a pulse as well as the position
and the velocity of the center of mass. To formulate the
interface dynamics including these relevant variables is one
of the important future problems.

It is mentioned here that, after the Japanese version
was published, an important progress has been made for
the interface dynamics of the Kardar-Parisi-Zhang equation
both theoretically and experimentally (Takeuchi and Sano,
2010).
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