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Behavior of Vortex Rings

Osamu Sano

Professor Emeritus, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8538, Japan
E-mail address: sano@cc.tuat.ac.jp

(Received August 31, 2014; Accepted January 22, 2015)

Key words: Vorticity, Circulation, Vortex Filament, Vortex Ring, Biot-Savart’s Law

1. Vorticity and Circulation
The fluid motion associated with circulatory motion

around a common centerline, or a flow with closed stream-
lines is generally called a “vortex”, an eddy, a whirlpool,
etc. Tornados and hurricanes are also vortices in larger
scale. It has such a characteristic form that it is widely used
as a symbolic design in arts and literatures describing never-
ending motion of fluid, spatiotemporal circulatory motion
in social life, etc. (Lugt, 1983).

When a small object is placed in the “vortex”, however,
two types of fluid motion associated with the circulatory
motion are observed, i.e., (i) one type shows a translational
motion of that object along a circular orbit without spin-
ning and (ii) the other is the motion accompanied by spin-
ning motion of that object. The fluid motion associated
with spinning motion is described by “vorticity” ω, which
is mathematically defined by rotv or curlv (v being the ve-
locity field). In the Cartesian coordinate system (x, y, z)
with the velocity component v = (u, v, w), the vorticity
ω = (ωx , ωy, ωz) is defined as
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The latter type (ii) has vorticity and the flow is called ro-
tational, whereas the former type (i) has no vorticity and
is called irrotational. In terms of the vorticity, a flow with
straight streamlines of spatially nonuniform speed (a shear
flow) has vorticity and is rotational, even though the stream
is not circulating.

A line drawn in a fluid whose element is everywhere tan-
gent to the vorticity vector is called a “vortex line”. A “vor-
tex tube” is a tubular surface consisting of the collection
of vortex lines which pass through a small closed curve.
The limiting case of a vortex tube, in which the cross sec-
tion of the closed curve is infinitesimal, is called a “vor-
tex filament”. In contrast to the mathematical definition of
the vortex line, a vortex filament is an idealization of the
physical property of spinning fluid region with infinitesi-
mal cross section dS, in which the magnitude of the vortex
� = ω·dS characterizes its strength. When a bundle of vor-
tex filaments are distributed over the region S in the fluid,
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the integral of the vorticity ω over that region characterizes
the total vortex strength:

� =
∫

S
ω · dS =

∫
S
(rot v) · dS =

∫
C
v · dl. (1)

Here, C is the closed curve that surrounds the area S in
anti-clockwise direction with respect to ω (dl being the line
element on that curve), and the Stokes theorem is used. The
last expression of Eq. (1) is known as a “circulation” (Lamb,
1932; Batchelor, 1967).

2. Vortex Ring
In an inviscid fluid, the circulation � along a curve C

is conserved (Kelvin’s circulation theorem). This theorem
does not strictly apply in real fluids because of the viscos-
ity, e.g., vorticity is generated near the solid wall where a
strong shear flow is present, while a concentrated vorticity
decays its magnitude with time and diffuses into ambient
fluid. It is, however, approximately satisfied, once the lo-
calized vorticity region is convected into the fluid region.
Thus the vortex tube of cross section S with uniform vor-
ticity ω (magnitude of ω perpendicular to the cross section)
has a constant circulation � = ωS, so that the thinner part of
the vortex tube has larger vorticity, and vice versa. This ex-
plains the strong swirl of the tornados near the ground. Due
to the conservation of circulation, a vortex filament cannot
disappear in the fluid (a consequence known as Helmholtz’s
vortex theorem). It must either extend to the boundary of
the fluid region or self-connected to form a closed curve.
The latter type of fluid motion is called a “vortex ring”.

3. Formation of a Vortex Ring
Vortices are formed by frictional or viscous effects in

a fluid near solid surfaces. If the fluid is ejected from
the tube at an appropriate way (Maxworthy, 1972; Shariff
and Leonard, 1992), the vorticity generated on the inner
surface of the tube wall separates at the opening, rolls up
and convected into the fluid region to form a vortex ring.
In the air, a vortex ring can be created by tapping a closed
box with a circular orifice in the other side. Some living
creatures, like dolphins and squids, are reported to make
vortex rings. In any case, the size of the ring, the volume of
fluid and the time needed to eject it determine the strength
of the vortex ring.
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Fig. 1. Velocity due to a vortex ring.

Fig. 2. Hill’s vortex ring.

4. Velocity Induced by a Vortex Ring
Velocity field dv induced by a line element dx′ on the

vortex ring with vorticity ω(x′) is given by

dv = ω(x′)dx′ × (x − x′)
4π |x − x′|3 , (2)

which is the same form as the Biot-Savart’ law known in the
electromagnetism. The velocity at any fluid point x is given
by integrating the contribution from the velocity induced by
ω(x′).

If a vortex ring of radius R has uniform vorticity ω over
the core region of radius a (see Fig. 1), the velocity at any
point on the vortex ring Q induced by the other part of the
vortex ring is the same due to the axisymmetry of the ring,
so that the vortex ring itself translates at a certain speed U
without deformation. In the case of a thin vortex ring (Lord
Keivin, 1867; Dyson, 1893),

U ≈ �

4π R

[
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(
8R

a

)
− 1

4

]
. (3)

On the other hand, a thick vortex ring of a spherical shape,
i.e., thick enough to allow no fluid through the ring, creates
a velocity field described in spherical coordinate system
(r, θ, φ) by

vr = − 1

r2 sin θ

∂ψ

∂θ
, vθ = 1

r sin θ

∂ψ

∂r
,

where ψ is the stream function given by

ψ = 3U

4a2
r2(r2 − a2) sin2 θ, r < a

Fig. 3. Deformation of a vortex ring of elliptic shape; bird’s-eye view (left
column) and plan view (right column).

Fig. 4. Interaction of two vortex rings in tandem position.

ψ = U

2

(
r2 − a3

r

)
sin2 θ. r > a (4)

Evidently, the fluid volume inside the sphere of radius a
moves with the vortex ring (Hill’s spherical vortex, see Fig.
2) (Hill, 1894), In general, a vortex ring behaves like a
particle with characteristic velocity, momentum, and energy
kept constant.

5. Non-circular Vortex Ring
According to Eq. (3), a vortex ring of smaller radius

moves faster, and vice versa under the same �. This implies
that if the vortex ring is elliptic with AC a longer diameter
(see Fig. 3(a)), the part with the smaller radius (near the
points A and C in Fig. 3(a)) moves faster than the other
part, so that the vortex ring ceases to lie on a plane and
deforms like Figs. 3(b) and (c). Then, the local radius near
the points B and D becomes smaller, so that the parts near
the latter catch up, and that the vortex ring recovers to be
in a plane with BD a longer diameter (Fig. 3(d)). Further
deformation is repeated from Figs. 3(d) to (f), similarly to
that from Figs. 3(a) to (d) with longer diameter 90◦ rotated
(Kambe and Takao, 1971). A vortex ring with much more
waves along the ring behaves similarly. It proceeds with a
speed in accordance with the average ring radius, in which
the deformation of alternating concave and convex parts is
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Fig. 5. Collision of a vortex ring with a granular plane; (a) cross section of
the surface (schematic), and (b) contour lines observed at the collision
of a stronger vortex ring.

accompanied.
An initially circular vortex ring in a viscous fluid can be

deformed as a result of instabilities inherent to the vortex
ring (Lugt, 1983; Shariff and Leonard, 1992), such as Wid-
nall instability (Widnall and Sullivan, 1973; Widnall et al.,
1974; Saffman, 1978), curvature instability (Fukumoto and
Hattori, 2005), etc. Wavy motions along the ring develop,
and the latter finally decays due to viscous dissipation.

6. Interaction of Two Vortex Rings in Tandem Position
When two vortex rings of equal circulation are placed

along a common axis of symmetry, a mutual slip-through
motion is observed (see Fig. 4). The vortex ring A placed
behind the vortex ring B induces a velocity field which
increases the latter radius, and vice versa. The translational
speed of the ring B decreases, whereas that of A increases,
so that the ring A passes through ring B. Once this happens,
the role of ring A and ring B alternates, so that the latter
passes through the former. This mutual slip-through motion
will be repeated indefinitely in an inviscid fluid (Dyson,
1893). In the viscous fluid, however, only a few times slip-
through motion is observed because of the dissipation of the
vorticity (Oshima et al., 1975; Yamada and Matsui, 1978).

7. Collision of a Vortex Ring with an Obstacle

As mentioned in Section 4, a vortex ring has its own
mass, momentum, and energy, so that it shows a self-
propelled motion in a fluid similarly to an isolated particle.
A vortex ring can blow out the candles at a distant place to
which it is directed.

Fig. 6. Schematic pictures showing the creation of “dimple pattern”.

Collision of a vortex ring with a fluid plane (an imagi-
nary boundary keeping a planar form but moving freely in
the tangential direction) is almost the same as a head-on
collision of two vortex rings of equal and opposite magni-
tude (Oshima, 1978; Lim and Nickels, 1992). Continuity of
the tangential velocity and stresses is satisfied, so that the
fluid plane remains undeformed. In the absence of viscos-
ity, the radius of the vortex ring increases indefinitely with
the approach to the plane, because of the flow induced by
the other (mirror) vortex ring. On the other hand, the colli-
sion of a vortex ring with a solid plane is rather complicated
(Boldes and Ferreri, 1973; Yamada et al., 1982; Walker et
al., 1987; Orlandi and Verzicco, 1993; Chu et al., 1993).

When the vortex ring approaches the solid plane from a
distant position, its radius increases similarly to the colli-
sion with the fluid plane. Near the solid boundary, how-
ever, a shear layer with vorticity opposite to that of the ring
is induced owing to the no-slip condition. If the magni-
tude of the primary vortex ring is large enough, the shear
layer near the solid boundary rolls up to form a secondary
vortex ring, which interacts with the primary one. Here,
the secondary vortex ring moves inward (toward the axis
of the ring) around the primary one, whereas the primary
one moves outward (away from the axis of the ring to in-
crease its radius) accompanied by a slight departure from
the solid plane (“rebound”), so that the entangled motion of
the two rings is recognized (similar behavior is illustrated
in the upper figure of Fig. 5). For much stronger primary
vortex ring, secondary vortex ring, tertiary vortex ring, · · ·
will be generated.

Collision of a vortex ring with a granular surface, which
has both fluid and solid properties, leaves rather compli-
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cated erosion patterns. Depending on the strength of the
vortex ring, “hardness” of the granular layer and the dis-
tance to the granular plane, several types of erosion pat-
terns are reported (Munro et al., 2009; Bethke and Dalziel,
2012; Masuda et al., 2012; Yoshida et al., 2012; Yoshida
and Sano, 2015). A weaker vortex ring, but above a certain
critical strength, will create a shallow circular depression on
the granular surface, which reflects the shape of the axisym-
metric vortex ring. The rim of the crater may be wavy if the
vortex ring travels enough distance to develop instabilities
described in Section 5. When a vortex ring is strong enough
and the distance to the granular layer is shorter, the shape
of the ring is kept circular immediately before the impact,
and creates a circular secondary vortex ring. These vortices
are coupled and erode the surface of the granular layer, so
that characteristic surface patterns like radial grooves in the
main circular crater or discrete dimples outside the ridge
of circular crater are observed. Figure 5 is an example of
“dimple pattern”, where a nearly circular depression with
a central mound is created by the primary vortex ring. The
process of dimple formation is illustrated in Fig. 6. The sec-
ondary vortex ring moves around the primary vortex ring
(Figs. 5(a) and 6(b)), becomes wavy as it is convected to
the interior region of the primary vortex ring (Fig. 6(c)), de-
velops to a row of hairpin-like vortices (Fig. 6(d)), which
creeps into the space between the primary vortex and the
granular boundary. These hairpin-like vortices engrave the
granular layer and create discrete smaller depression, called
dimples, outside of ridge of the nearly circular crater due to
the primary vortex ring (Fig. 5(b)).
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