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Large Deviation Statistics Derived from First Passage Times
—Inspired by Shishi-odoshi—
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Shishi-odoshi is a traditional device found in Japanese gardens composed of a bamboo tube that when filled
with water revolves to empty and makes a clanking sound. It consists of a water-filled bamboo tube which
clacks against a stone when emptied, and the sound scares beasts and birds from gardens. For a fluctuating flow
rate, intervals between the clacks are distributed. The flow rate per unit time and distribution function of the
clack interval can be respectively identified as a velocity of a random walker and first passage time distribution.
The rate function of the flow rate per unit time is derived not according to its definition, but by use of the
distribution function of a first passage time. Difficulties in applying this novel idea to various actual water flows
are disscussed. Experimental verification might be easier for a diffusion system than for water flow.
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1. Introduction
As mentioned in a preceding study of one of the authors

[1], one of the most remarkable points about determinis-
tic chaos is the duality consisting of irregular dynamics and
fractal structure of the attractor in the phase space. Am-
plifying this relationship between dynamics and geometry,
we can characterize an interesting geometry by considering
its dynamics. For example, water drops from a dripping
faucet take on various irregular shapes, as shown in Fig. 1.
Instead of a direct characterization of the irregular shapes
of the water drops, we can indirectly characterize those by
considering fluctuations in the flow rate of the faucet. Large
deviation statistics facilitate this.

Shishi-odoshi consists of a segmented tube, usually of
bamboo, pivoted to one side of its balance point. At rest, its
heavier end is down and resting against a rock. A trickle of
water into the upper end of the tube accumulates and even-
tually shifts the tube’s center of gravity past the pivot, caus-
ing the tube to rotate and dump out the water. The heavier
end then falls back against the rock, making a sharp sound,
and the cycle repeats. This noise is intended to startle any
herbivores such as deer or boar which may be grazing on
the plants in the garden. Examples are illustrated in [2]. In
Japan, its sounds are enjoyed in traditional gardens.

In this paper, we assume that the flow rate or the amount
of water pouring into Shishi-odoshi per unit time fluctuates.
Furthermore, we discuss the relationship of the distribution
of intervals between the clacks to large deviations of the
flow rate per unit time.
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2. Formalism
Let V be the volume of Shishi-odoshi’s water container.

The time-dependent flow rate per unit time is denoted as
f (t). At t = t0, we start to pour water into Shishi-odoshi,
and it is filled at t = t0 + n. In this case, the relation∫ t0+n

t0

f (t)dx = V is satisfied, in which n is the interval

between the clacks of Shishi-odoshi. In the following, an
ideal Shishi-odoshi is considered, which instantaneously
discharges the total amount of water when full. One may
regard f , V , and n respectively as the velocity of a random
walker starting from the origin, a distant goal, and the first
passage time to the goal. Thus, measuring the intervals
between the clacks of Shishi-odoshi, we can construct a
distribution of the first passage time.

The local average z of the flow rate per unit time is given
by:

z =
∫ t0+n

t0
f (t)dx

n
= V

n
.

The first passage times n distribute, as well as the local
averages z due to the above relation. The distribution of
z depending on n is denoted as P(n, z), from which we
can obtain large deviation statistics of the flow rate per unit
time. If n is much larger than its average auto-correlation
time of f (t), P(n, z) is scaled as:

P(n, z) = P(n, z) exp[−nψ(z)], (1)

in which P(n, z) is an algebraic factor depending on n and
ψ(z) is called the rate function of the flow rate per unit time
[3]. Let z be the long-time average as z. The rate function

is concave up, which satisfies ψ(z)|z=z = dψ(z)

dz

∣∣∣∣
z=z

= 0.
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Fig. 1. High-speed photography of waterdrops courtesy of Hiroki Hata (Kagoshima University).
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Fig. 2. Cumulative flow volume of Ujigawa (Uji-river) for four years from 2002 to 2005.
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As a consequence of the central limit theorem, the rate
function is quadratic around z = z.

From our novel viewpoint inspired by Shishi-odoshi, we
do not directly observe the local average z or its instanta-
neous value of the flow rate per unit time, but the first pas-
sage time n corresponding to the interval between the clacks
in the case of Shishi-odoshi. The distribution P(n, z) of z
can be regarded as a distribution Q(V, n) of n via the rela-
tion z = V/n.

Transformation of the variable from z to V = nz satisfies
the conservation of probability P(n, z)dz = Q(V, n)dV ,
so that we have:

P(n, z) = Q(V, n)
dV

dz
= nQ(V, n),

P(n, z) = nQ(V, n),

and the rate function ψ(z) is indirectly obtained from:

−1

n
log

nQ(V, n)

nQ(V, n)

plotted against z = V/n, where n = V/z is the long-time
average of the first passage time.

3. An Analytical Model and Real Water Flows
A dripping faucet is a real example of chaotic dynamics

[4]. We obtained analytical results for coin-tossing-like
dynamics [5]. The interval between successive waterdrops
from a real faucet is related to the diameter of the waterdrop.
A longer interval yields a larger waterdrop, so that the flow
rate of the dripping faucet is nearly constant and fluctuates
little [4].

Let us consider a long rigid pipe full of water. Such
a water flow is subject to Bernoulli’s principle, so that its
fluctuation is strongly limited in this case.

River flow rates in Japan are recorded on an open web-
site [6] controlled by the Ministry of Land, Infrastructure,
Transport and Tourism. For example, the cumulative flow
volume of Ujigawa (Uji-river) for four years from 2002 to
2005 can be obtained from the above website, and is shown
in Fig. 2. A constant flow rate is given by a straight line.
Thus, we expect large deviations of these data. However,
river flow rates generally obey a log-normal distribution and
do not follow the scaling (1), so that the rate function is not

suitable to describe river flow rates with marked intermit-
tency.

In summary, it is difficult to observe fluctuating flow rates
in a realistic system, in which the rate function in the form
of (1) is well-defined. In the second section, we consider an
ideal Shishi-odoshi, in which it instantaneously discharges
the total amount of water when full. A promising realization
of fluctuating flow rates is a realistic Shishi-odoshi, which
can be regarded as a chaotic oscillator yielding a fluctuating
output flow rate even for a constant input flow rate. An
example of such a study was performed by Japanese pupils
belonging to Shizuoka Prefectural Hamamatsu Kita High
School, awarded the Yamazaki-prize in 2013. The related
information written in Japanese is available on the websites
[7].

4. Concluding Remarks
Although we found inspiration in Shishi-odoshi and gave

an idea of derivation of the rate function from virtual first
passage times, it will be easier for a random walk, a Brown-
ian motion, a chaotic diffusion, and those genuine first pas-
sage times to examine our idea than using water flows and
virtual first passage times with respect to the flow rate. The
analytical model of waterdrops [5] can also be regarded as
a one-directional random walk, where the random walker
either stops or jumps in a positive direction.
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