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The images obtained using a confocal laser scanning microscope (CLSM) alone cannot detect three-
dimensional (3D) structures, for example of the endothelial cells that compose blood vessels, and require seg-
mentation for 3D interpretation. Here, we investigated the segmentation of hepatic sinusiodal veins, which form
periodic 3D networks. We propose a new approach for image segmentation based on the Turing reaction-diffusion
(RD) model. We performed segmentation of CLSM images of sinusoidal endothelial cells using the proposed
RD algorithm. Moreover, we discuss potential applications of this algorithm.
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1. Introduction
Although diffusion processes generally generate uniform

distributions of substances, Alan Turing [1] presented the
scenario that a spatially periodic pattern is stable in a cou-
pled reaction system with diffusion, if the diffusion coef-
ficients and reaction terms satisfy certain conditions. The
pattern induced by the scenario is now called the Turing
pattern. Many periodic patterns generated by chemical re-
actions and biological processes have been examined and
explained by the Turing scenario.

Many researchers have investigated utilizing reaction-
diffusion (RD) models to perform image processing. Ad-
matzky et al. [2] and Ebihara et al. [3] proposed algorithms
for the segmentation of 2D images utilizing RD models.
Using this method, no preprocessing for noise removal,
which often affects the accuracy of information extraction,
is required.

Although many researchers think that an understanding
of 2D periodic patterns is sufficient to explore 3D patterns,
we have identified new structures in 3D patterns that cannot
be extrapolated from the corresponding 2D structures [4, 5].
Most of these structures are network periodic ones. There-
fore, these 3D network structures should be considered as
native 3D structures.

Immunostained cells, such as the endothelial cells that
compose blood vessels or the cell membranes of hexago-
nally arranged cells have been studied using CLSM images
[6]. However, CLSM images alone cannot detect the full 3D
structures. For segmentation of the 3D structures from pixel
data obtained by CLSM observation, we propose a new ap-
proach based on the Turing RD models. In this forum, we
report that we have investigated the periodic network struc-
tures of hepatic sinusoidal veins, as an example of CLSM
images, using the proposing RD algorithm.
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2. Formalism
We considered the following types of RD models:

∂u(�x, t)

∂t
= Duδ∇2u(�x, t) + f (u(�x, t), v(�x, t)) + εU (�x),

(1)
∂v(�x, t)

∂t
= Dvδ∇2v(�x, t) + g(u(�x, t), v(�x, t)). (2)

where Du , Dv , and ε are positive constants. The variable
u(�x, t) and v(�x, t) are the local concentrations of two sub-
stances. U (�x) denotes the distribution of the pattern ob-
tained by CLSM observation. δ is the control parameter for
space-scaling of the patterns obtained by CLSM observa-
tion.

Here, we employ the following reaction terms:

f (u(�x, t), v(�x, t)) = u(�x, t) − u(�x, t)3 − v(�x, t) and

g(u(�x, t), v(�x, t)) = γ (u(�x, t) − αv(�x, t) − β), (3)

where α, β, and γ are positive constants [7, 8] selected to
satisfy the following conditions in the case of ε = 0. The
only one equilibrium solution (ū, v̄) given by ū−ū3−v̄ = 0
and ū − αv̄ − β = 0 is stable without diffusion terms,
and (ū, v̄) is unstable with respect to fluctuations of a finite
wavelength, which are so-called Turing condition [9].

As explained in Murray’s textbook [9], static periodic
patterns are self-organized when ε = 0. When ε > 0, the
self-organized patterns are entrained to the distribution of
U (�x), as shown in Figs. 1(a)–(c). Pixel data contain local
differences in fluorescence intensity and inevitable noise.
Considering these situations, a distribution of U (�x) was
prepared, as shown in Fig. 1(a). Figures 1(a)–(c) show
the time evolution. The amplitude of u(�x, t) and local
periodicities of u(�x, t) and U (�x) became almost identical
throughout.

To incorporate and extend these features of RD models
into 3D space, we constructed an RD algorithm for seg-
mentation of CLSM images, as follows. We first scaled the
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Fig. 1. Formation of spatial patterns obtained from Eqs. (1), (2), and (3) for (a) t = 0.0, (b) t = 2.0, and (c) t = 10.0. The thick red line, the thick blue
line, and the dotted black line indicate u(�x, t), v(�x, t), and U (�x), respectively.
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Fig. 2. The 3D reconstructed confocal images of liver sections from rats (a), (b), and their 3D segmentation images obtained using the algorithm
proposed here (c), (d). (a) and (c) indicate the 3D patterns of the sinusoidal network (red tubes), and (b) and (d) show the slices at the middle position
of the z-axis from (a) and (c), where the white area indicates positions inside the vein. (e) shows the spatial variations of the distributions of pixel
data (black line) and the scaled distribution (red line) after RD processing of Eqs. (1) and (2) along the black arrow in (b) and (d). The dotted red
line indicates the threshold of segmentations in the image processing, where the values above red line were considered to be inside the vein, and the
values below red line were considered to be outside the vein or other types of cells.
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Fig. 3. Examples of 3D segmentation images obtained using the proposed algorithm of Control group (a) and HFC group (b). δ∗ of the control group
was 1.00 ± 0.05 and that of the HFC group was 1.45 ± 0.08. The difference was significant according to the Mann-Whitney U -test (p < 0.01).

[0,255] scale image of U (�x) into the [−0.5, 0.5] range lin-
early. Equilibrium values (ū, v̄) for white noise without any
spatial correlations were given as the initial distributions of
u(�x, 0) and v(�x, 0). We performed numerical simulations
of Eqs. (1) and (2) with Eq. (3) in three dimensions.

The parameter for space-scaling, δ, was varied in the
numerical simulations, whereas the other parameters were
fixed. In the case of ε = 0, stable periodic patterns with
different periodicities are self-organized with changing δ.
To examine the most suitable δ for pixel data obtained by
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CLSM, we calculated the correlation between u and U as
follows:

I (δ) = 1

V σuσU

∫
(u(�x, t) − ū)(U (�x) − Ū )d �x (4)

where ū, Ū , σu , and σU are the mean and the variance of
u and U . V is the total volume of the region. For each 3D
fluorescence image obtained by CLSM, we examined the δ∗

with maximum I (δ). The final segmentation patterns were
obtained using the value of δ∗.

Figure 2 shows an example of 3D segmentation patterns.
The 3D images of the raw pixel data are shown in Fig. 2(a),
and the slice at the middle position of the z-axis from Fig.
2(a) is shown in Fig. 2(b).

After rescaling the pixel data and introducing U (�x), Eqs.
(1), (2) and (3) were calculated in three dimensions. Ad-
justing the parameter δ, we obtained the 3D segmentation
patterns shown in Fig. 2(c) with δ∗ = 1.05. The slice at the
middle position is shown in Fig. 2(d). The blank portions
surrounded by the bright region disappeared.

Moreover, we could automatically remove the inevitable
noise in CLSM observation processes during the image pro-
cessing. In Fig. 2(e), the solid black line indicates the dis-
tributions of pixel data obtained by CLSM observation, and
the solid red line indicates the scaled distribution of u(�x, t)
to [0, 255] after the numerical simulation of Eqs. (1) and
(2). Comparing Figs. 2(a)–(d) and Fig. 2(e), we could find
that the scaled u(�x, t) in the positions of inevitable noise
did not evolve above the threshold for sinusoidal veins, and
that the positions of inevitable noise disappeared.

3. An Application of this Algorithm: Pattern Recogni-
tion in Diseased Rats

Nonalcoholic fatty liver disease (NAFLD), which is re-
lated to metabolic syndrome, can cause alteration of the mi-
croarchitecture of the liver, because hepatocytes accumu-
late intracellular fat droplets [10]. We obtained CLSM im-
ages of liver sections of rats fed a high-fat/high-cholesterol
(HFC) diet for 9 weeks, which causes pathological features
similar to those of human patients with NAFLD, and eval-
uated the 3D patterns using the δ∗ obtained using the RD
algorithm [11]. Figure 3 shows the 3D segmentation pat-
terns of sinusoidal networks calculated from fluorescence
pixel data using the RD algorithm. The sinusoidal networks
of rats in the HFC group, shown in Fig. 3(b), appear tapered
or compressed by enlargement of the hepatocytes. Compar-
ison of δ∗ between the HPC and control groups showed a
significant difference (data shown in Fig. 3).

4. Concluding Remarks
We propose an RD algorithm for segmentation of one

type of blood vessels, sinusoid vessels in the liver, from 3D
images of sinusoidal endothelial cells obtained by CLSM.

The RD model of self-organized distributions was entrained
to the distributions of scaled pixel data. Changing the scal-
ing parameter δ in Eqs. (1) and (2), we were able to capture
the periodicity of the sinusoid vessels.

The patterns in living organisms cannot be clearly
represented by physical analysis methods such as auto-
correlation functions, since the patterns in biological struc-
tures often show considerable local variation. However, us-
ing the proposed algorithm, δ∗ displayed differences in pat-
terns, even though local variation was present in the pat-
terns. This is one of the advantages of the proposed algo-
rithm.

Another advantage of the algorithm is that it permits
elimination of the noise removal algorithm, which is nec-
essary for preprocessing for traditional segmentation meth-
ods, and is often sensitive to pattern recognition. In RD
model dynamics, using the RD algorithm, noise in the
image was automatically removed, enhancing the primary
wave patterns, and their amplitude would be almost same
among the area.

In this paper, we were able to detect the structure of the
sinusoidal network in the liver. This algorithm shows po-
tential for application not only to CLSM images of other or-
gans, but to images obtained using other observation meth-
ods. We aim to examine these issues in further detail in
future research.
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