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This paper presents a model for determining the sufficient density of alternative fuel stations. The model
extends a previous model to incorporate both flow demand and the deviation distance, and provides a more
appropriate framework for analyzing the density of stations. The service level is represented as the probability
that the vehicle can make the repeated round trip between randomly selected origin and destination within a
specified deviation distance. The density of stations required to achieve a certain level of service is obtained for
three cases: fuel is available at both origin and destination, fuel is available at either origin or destination, and
fuel is available at neither origin nor destination. The result shows how the deviation distance, the vehicle range,
the trip length, and the refueling availability at origin and destination affect the sufficient density of stations.
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1. Introduction
Alternative fuel vehicles powered by electricity, hydro-

gen, and biofuels have been promoted because of concerns
about climate change and energy security. One of the most
significant disadvantages of alternative fuel vehicles is the
scarcity of refueling stations (Greene, 1996). Adequate
availability of stations would accelerate the transition from
gasoline engine vehicles to alternative fuel vehicles.

Several approaches have been proposed to calculate the
sufficient number of alternative fuel stations. Melaina
(2003) developed three approaches for estimating the num-
ber of hydrogen stations based on the number of existing
gasoline stations, metropolitan land areas, and lengths of
principal arterial roads. Melaina and Bremson (2008) esti-
mated the number of stations required to provide a sufficient
level of coverage to all major urban areas. Nicholas et al.
(2004) presented a model for siting hydrogen stations and
examined the effect of the number of stations on the average
driving time from home or workplace to the nearest station.
Nicholas and Ogden (2006) studied the regional variation in
the number of stations needed to achieve a travel time tar-
get. Honma and Kurita (2008) obtained the optimal number
of hydrogen stations that minimizes the sum of operation
and transportation costs. Bersani et al. (2009) formulated
a model for selecting gasoline stations to be converted to
hydrogen stations.

Most of the studies reviewed above examined the dis-
tance to the nearest station, assuming that drivers use the
nearest station from their home. Refueling stations are,
however, typical flow demand facilities in that demand for
service can be expressed as flow (Hodgson, 1990; Berman
et al., 1992; Zeng et al., 2010). In fact, drivers usually re-
fuel their vehicles on pre-planned trips from origin to desti-
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nation. Nicholas (2010) and Kelley and Kuby (2013) found
that more drivers choose a station on their least deviation
route than the station closest to home. The flow demand
was introduced into the estimation of the sufficient number
of stations by Miyagawa (2013a), who focused on whether
the vehicle can make the round trip between origin and des-
tination.

An overlooked by Miyagawa (2013a) but significant el-
ement is the deviation distance—the travel distance when
drivers deviate from their pre-planned paths to visit a facil-
ity. The deviation distance has frequently been addressed in
flow demand location models (Hodgson, 1981; Berman et
al., 1995; Berman, 1997; Tanaka and Furuta, 2012). Ana-
lytical expressions for the deviation distance were derived
by Miyagawa (2010) for general flow demand facilities and
Miyagawa (2013b) for alternative fuel stations. Since re-
fueling demand generally decreases with the deviation dis-
tance to visit a station, the deviation distance should be con-
sidered when estimating the sufficient number of stations.

In this paper, we present a model for determining the suf-
ficient density of alternative fuel stations required to achieve
a certain level of service. To incorporate both flow demand
and the deviation distance, we focus on whether the vehicle
can make the round trip within a specified deviation dis-
tance. The service level is represented as the probability
of making the round trip between randomly selected ori-
gin and destination within a deviation distance. The present
model therefore extends the model by Miyagawa (2013a).
We then examine how the deviation distance, the vehicle
range, the trip length, and the refueling availability at origin
and destination affect the sufficient density of stations.

Facility location models based on flow demand have been
used to optimally locate alternative fuel stations. Kuby and
Lim (2005) developed the flow refueling location model
(FRLM), which locates p facilities to maximize the total
flow volume that can be refueled. Kuby et al. (2009) ap-
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Fig. 1. Deviation distance to visit a station.

plied the FRLM to the location of hydrogen stations in
Florida. Lim and Kuby (2010) presented three heuristic al-
gorithms for the FRLM. Capar and Kuby (2012) and Capar
et al. (2013) proposed efficient formulations of the FRLM
to solve large problems. The FRLM was extended by Kuby
and Lim (2007) to add candidate sites along network arcs,
Upchurch et al. (2009) to include the capacity of refuel-
ing facilities, and Kim and Kuby (2012) to allow drivers
to deviate from their shortest paths. Wang and Lin (2009)
presented a set-covering model to minimize the cost of re-
fueling stations. In these location models, the number of
stations to be located is an input. Our model will thus sup-
plement location models of alternative fuel stations.

The rest of this paper is organized as follows. The next
section develops a model for determining the sufficient den-
sity of alternative fuel stations. The following sections pro-
vide the density of stations required to achieve a specified
level of service for three cases of the refueling availability
at origin and destination. The final section presents con-
cluding remarks.

2. Model
Consider trips using alternative fuel vehicles. Let r be

the vehicle range—the maximum distance that the vehicle
with full tank of fuel can drive. Origins and destinations are
selected at random within a study region. The random travel
demand can be used as the first approximation for the actual
travel demand and serves as a basis for further analysis
with more realistic travel demand. For example, travel
demand that depends on the trip length can be considered
by incorporating the trip length distribution, as discussed
by Miyagawa (2016).

Drivers are assumed to deviate from their shortest paths
to refuel their vehicles. Let t be the trip length between ori-
gin O and destination D and u be the deviation distance to
visit a station. The deviation distance is defined as the sum
of the distances from O to the station and from the station
to D. Distance is measured as the Euclidean distance. The
region that a driver can cover within a deviation distance u
forms an ellipse, the foci of which are at O and D. Recall
that an ellipse is defined as the locus of points such that the
sum of the distances to two fixed points (foci) remains con-
stant. Set the coordinate system as shown in Fig. 1. The
ellipse is then expressed as

4x2

u2
+ 4y2

u2 − t2
= 1, (1)

where u ≥ t (Miyagawa, 2013b). If the ellipse contains a
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Fig. 2. Calculation of the probability.
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Fig. 3. Probability of making the round trip within a deviation distance u.

station, the station is available within the deviation distance
u.

Let p(u; t) be the probability that the vehicle can make
the repeated round trip between randomly selected origin
and destination within a deviation distance u. Refueling is
allowed only once for each one-way trip. Thus, we focus
on short distance trips which need at most one refueling.
Note that if multiple refueling is allowed for such short dis-
tance trips, the sufficient density of stations decreases, but
the inconvenience of drivers increases. Since p(u; t) de-
pends on the refueling availability at origin and destination,
three cases are considered: fuel is available at both origin
and destination, fuel is available at either origin or destina-
tion, and fuel is available at neither origin nor destination.
The first or second case can be applied to plug-in electric
vehicles, whereas the third case can be applied to hydrogen
and natural gas vehicles.

Refueling stations are assumed to be randomly dis-
tributed. This assumption is not entirely unrealistic because
when stations are sparse in an early stage of the develop-
ment, the pattern of stations makes little impact on the basic
properties of the probability of making the round trip. By
comparing the probabilities for grid and random patterns
of stations, Miyagawa (2013a) demonstrated that the differ-
ence between them is relatively small.

3. Fuel is Available at Both Origin and Destination
First, we assume that fuel is available at both origin O

and destination D. The vehicle can then start at O with
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Table 1. Density of stations required to achieve p(u; t) ≥ α.

t 1.2 1.4 1.6

α u 1.3 1.4 1.5 1.5 1.6 1.7 1.7 1.8 1.9

0.2 0.61 0.43 0.35 0.73 0.53 0.45 1.05 0.79 0.71

0.4 1.39 0.97 0.80 1.68 1.21 1.02 2.40 1.82 1.62

0.6 2.49 1.75 1.43 3.02 2.18 1.84 4.31 3.26 2.90

0.8 4.38 3.07 2.51 5.30 3.83 3.23 7.57 5.72 5.09
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Fig. 4. Calculation of the probability: (a) t ≤ u ≤ 2r − t ; (b) 2r − t < u ≤ 3r/2.

full tank of fuel. If t ≤ r , the vehicle can reach D without
refueling and return to O . If t > 2r , the vehicle cannot
reach D because more than one refueling is needed. Hence,
we focus on the case where r < t ≤ 2r . If r < t ≤ 2r ,
the vehicle can make the round trip if both O and D are
within the distance r of a station (Miyagawa, 2013a). In
fact, the vehicle can reach the station, fill up at the station,
go to D, fill up again at D, turn round, fill up again at that
same station, and return to O .

To refuel at a station and complete the round trip, the
station must be in the intersection of the two circles centered
at O and D with radius r . To visit the station within a
deviation distance u, the station must also be in the ellipse
(1). Thus, p(u; t) is the probability that the intersection of
the two circles and the ellipse contains at least one station,
as shown in Fig. 2. The probability that a region of area S
contains exactly x stations, denoted by P(x, S), is given by
the Poisson distribution as

P(x, S) = (ρS)x

x!
exp(−ρS), (2)

where ρ is the density of stations (Clark and Evans, 1954).
The area of the intersection is, if t ≤ u ≤ 2r ,

S = 2
√

u2 − t2

u

∫ α

0

√
u2 − 4x2 dx + 4

·
∫ r−t/2

α

√
r2 −

(
x + t

2

)2

dx, (3)

where

α = 2ru − u2

2t
. (4)
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Fig. 5. Probability of making the round trip within a deviation distance u.

The probability p(u; t) is obtained as

p(u; t) = 1 − P(0, S) = 1 − exp(−ρS). (5)

Although the final form is not provided due to the limited
space, the probability can be expressed in a closed form.
The probability p(u; t) is shown in Fig. 3. It can be seen
that p(u; t) increases with the deviation distance u and
the density of stations ρ. Note that p(t; t) = 0 because
the vehicle cannot make a deviation and that p(2r; t) is
identical with the result obtained by Miyagawa (2013a).

Using the probability p(u; t), we can calculate the den-
sity of stations required to achieve a specified level of ser-
vice. Table 1 shows the density of stations required to
achieve p(u; t) ≥ α for the vehicle range r = 1. The re-
quired density increases with the trip length t and the target
probability α, and decreases with the deviation distance u
that drivers can tolerate. The target service level should be
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Table 2. Density of stations required to achieve p(u; t) ≥ α.

t 0.7 0.9 1.1

α u 0.8 0.9 1.0 1.0 1.1 1.2 1.2 1.3 1.4

0.2 1.28 0.83 0.63 1.20 0.79 0.63 1.41 1.03 0.90

0.4 2.93 1.90 1.44 2.75 1.81 1.44 3.22 2.37 2.07

0.6 5.26 3.41 2.59 4.93 3.25 2.58 5.77 4.25 3.71

0.8 9.24 5.99 4.54 8.66 5.70 4.53 10.14 7.46 6.52
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Fig. 6. Calculation of the probability: (a) t ≤ u ≤ r − t ; (b) r − t < u ≤ r .

determined according to the traffic condition in the study
region. If long distance trips are dominant, we should use a
large value for both t and α. If drivers are reluctant to make
a deviation to refuel their vehicles, the value for u should
not be much greater than that for t .

4. Fuel is Available at Either Origin or Destination
Next, we assume that fuel is available at either origin O

or destination D. Without loss of generality, we assume
that fuel is available at only O . Since the round trip is
considered, the vehicle is required to reach D with at least
half a tank remaining. If t ≤ r/2, the vehicle can make
the round trip without refueling. If t > 3r/2, the vehicle
cannot make the round trip without refueling more than
once. Hence, we focus on the case where r/2 < t ≤ 3r/2.
If r/2 < t ≤ 3r/2, the vehicle can make the round trip if
O is within the distance r of a station and D is within the
distance r/2 of the station (Miyagawa, 2013a). In fact, the
vehicle can reach the station, fill up at the station, go to D,
turn round, fill up again at that same station, and return to
O .

To refuel at a station and complete the round trip, the
station must be in the intersection of the circle centered at
O with radius r and the circle centered at D with radius
r/2. To visit the station within a deviation distance u, the
station must also be in the ellipse (1). Thus, p(u; t) is the
probability that the intersection of the two circles and the
ellipse contains at least one station, as shown in Fig. 4. The
area of the intersection is, if t ≤ u ≤ 2r − t ,

S =
√

u2 − t2

u

∫ u/2

α

√
u2 − 4x2 dx + 2

·
∫ α

t/2−r/2

√(r

2

)2
−

(
x − t

2

)2

dx, (6)
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Fig. 7. Probability of making the round trip within a deviation distance u.

and if 2r − t < u ≤ 3r/2,

S =
√

u2 − t2

u

∫ β

α

√
u2 − 4x2 dx

+ 2
∫ α

t/2−r/2

√(r

2

)2
−

(
x − t

2

)2

dx

+ 2
∫ r−t/2

β

√
r2 −

(
x + t

2

)2

dx, (7)

where

α = u2 − ru

2t
, β = 2ru − u2

2t
. (8)

The probability p(u; t) is obtained from Eq. (5) and shown
in Fig. 5. Note that p(3r/2; t) is identical with the result
obtained by Miyagawa (2013a).

Table 2 shows the density of stations required to achieve
p(u; t) ≥ α for r = 1. Observe that more stations are
required than the previous case to achieve an even lower
level of service.
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Table 3. Density of stations required to achieve p(u; t) ≥ α.

t 0.2 0.4 0.6

α u 0.3 0.4 0.5 0.5 0.6 0.7 0.7 0.8 0.9

0.2 4.24 2.05 1.24 1.89 1.06 0.77 1.70 1.22 1.05

0.4 9.70 4.69 2.84 4.34 2.42 1.77 3.89 2.78 2.39

0.6 17.39 8.42 5.09 7.78 4.35 3.17 6.98 5.00 4.29

0.8 30.55 14.79 8.94 13.66 7.64 5.56 12.27 8.77 7.54

5. Fuel is Available at Neither Origin nor Destination
Finally, we assume that fuel is available at neither ori-

gin O nor destination D. We also assume that the vehicle
starts at O with half a tank of fuel and reaches D with at
least half a tank remaining, as suggested by Kuby and Lim
(2005). This assumption ensures that the vehicle can make
the repeated round trip. If t > r , the vehicle cannot make
the round trip without refueling more than once. Hence, we
focus on the case where t ≤ r . If t ≤ r , the vehicle can
complete the round trip with at least half a tank remaining
if both O and D are within the distance r/2 of a station
(Miyagawa, 2013a). In fact, the vehicle can reach the sta-
tion, fill up at the station, go to D, turn round, fill up again
at that same station, and return to O .

To refuel at a station and complete the round trip, the
station must be in the intersection of the two circles centered
at O and D with radius r/2. To visit the station within a
deviation distance u, the station must also be in the ellipse
(1). Thus, p(u; t) is the probability that the intersection of
the two circles and the ellipse contains at least one station,
as shown in Fig. 6. The area of the intersection is, if t ≤
u ≤ r − t ,

S = πu

4

√
u2 − t2, (9)

and if r − t < u ≤ r ,

S = 2
√

u2 − t2

u

∫ α

0

√
u2 − 4x2 dx + 4

·
∫ r/2−t/2

α

√(r

2

)2
−

(
x + t

2

)2

dx, (10)

where

α = ru − u2

2t
. (11)

The probability p(u; t) is obtained from Eq. (5) and shown
in Fig. 7. Note that p(r; t) is identical with the result
obtained by Miyagawa (2013a).

Table 3 shows the density of stations required to achieve
p(u; t) ≥ α for r = 1. As expected, more stations are
required than the other two cases.

6. Conclusions
This paper has extended a previous model for determin-

ing the sufficient density of alternative fuel stations to con-
sider the deviation distance. The service level is represented
as the probability that the vehicle can make the repeated

round trip between randomly selected origin and destina-
tion within a specified deviation distance. The model incor-
porates both flow demand and the deviation distance, and
thus provides a more appropriate framework for analyzing
the sufficient density of stations.

The analytical expressions for the probability demon-
strate how the density of stations, the deviation distance,
the vehicle range, the trip length, and the refueling avail-
ability at origin and destination affect the service level.
Note that finding these relationships by using discrete net-
work models requires computation of the number of origin-
destination pairs that can make the round trip for various
combinations of the parameters. The relationships enable
us to estimate the number of stations required to achieve a
certain level of service. The estimated number of stations
can be used as an input in location models of alternative
fuel stations. The relationships are also useful to evaluate
the effect of policies to support infrastructure development.

The proposed model can be extended in future research.
First, not only the deviation distance but also the distance
from home to the nearest station should be considered. The
proximity to home might be important for the purchase
decision of alternative fuel vehicles. Second, estimating
the number of vehicles refueled and the quantity of fuel
needed at each station is necessary to determine the capacity
of stations. The estimation involves more realistic travel
demand such as spatial interaction models (Roy, 2010).
Finally, the refueling time cannot be ignored particularly
for electric vehicles.
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