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Several examples of branching structures in the nature, social structures and the human body are intro-
duced, and results of their analyses are given. It is shown that the Horton’s law, which is confirmed for river
branching structures, is satisfied also in variety of branching structures in the nature and human societies. It
is suggested that these structures are constructed owing to mechanisms similar to that for river structure. As
for the branching structures in human body some trials are introduced to construct them numerically by the
use of mathematical models. The object of this review article is to show that the analyses of branching forms

are interesting topics as the science of forms.
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1. Introduction

The branching structures are seen everywhere in the
nature and also in human societies. It is easy to nominate
their examples in physical, biological, geological and
social fields. The purpose of this review article is to point
out that many of these branching structures have certain
properties in common concerning to their geometrical
properties, and that it is possible to understand proper-
ties of various branching systems in a certain unified way.
Through this way it will be expected that we can make
further investigation of branching structures from more
many research fields both of natural and social sciences.

To begin with let us define two terms concerned to geo-
metrical property of branching structures, i.e. “tree” and
“network”. The tree indicates a line shape which includes
no loop in it (see Fig. 1(a)). In other words, the tree is
defined as follows; choose arbitrary two points in a
branching shape (A and B, for example, in Fig. 1(a)) and
draw a path within the structure connecting these points,
where it is forbidden to trace the same part more than one
times. Then, the tree structure has only one such path (dot-
ted line in Fig. 1(a)). On the other hand, a network struc-
ture allows to choose a pair of two such points, i.e. one
can draw more than one paths connecting these points
without tracing the same part more than one times (two
dotted lines in Fig. 1(b)).

Familiar examples of tree structure are the most of real
trees and rivers, the air ducts in the human lung, and
graphic expressions of social structures such as schools
and governments. Those of network structures are capil-
lary blood vessels, leaf veins, road systems and graphic
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expressions of human relations and communication net-
works. Some of these examples appear in this review ar-
ticle.

As a mathematical framework developed since many
years we have the method developed by a geologist Horton
(1945), who found so-called Horton’s law in the tree-type
river branching structures, which is introduced briefly in
Sec. 2. This method has a great advantage in a sense that
the geometrical properties of tree-type structures can be
expressed in terms a single parameter. On the other hand,
the network-type branching systems have been often
treated successfully by scientists from various fields, but
they were not based on a simple method similar to that of
Horton. The present author has once proposed a method
to treat network-type system for leaf veins and road sys-
tems, which was included in a monograph by the present
author (Takaki, 1978) and not published as a scientific
paper. It is introduced in Sec. 4.

Of course, the framework of analysis of branching sys-
tems is not limited to the Horton’s method, and some re-
markable examples are introduced in the following sec-
tions. In particular, an application of the topology (one
of mathematical fields) is made by a pathological scien-
tist Shimizu (1992) for analysis of 3-dimensional (3D)
network-type structures of blood vessels in human liver
along with a topological concept called “Betti number”.

Here, it is expected that introductions of various method
and concepts would give a larger scope of branching sys-
tems, which would stimulate further development of stud-
ies in future.

2. Horton’s Law for River Structures and Its
Derivations
2.1 Horton’s law

A river made of branching streams has a shape belong-
ing to the category of tree-type. The tree structure of riv-
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Fig. 1. Definitions of (a) tree and (b) network.

ers begins its formation with a lot of streams from ori-
gins, which merge with each other and form new larger
streams. Through these processes the number of streams
continues to decrease, and finally they gather to a main
stream. It is found by Horton (1945) that if each stream
at every stage of merger, including origins and the main
stream, is given a number index, called an “order of
stream”, the numbers of streams of successive orders de-
crease by a constant ratio, which is called “Horton’s law”.
He found similar laws for other quantities concerned to
river structure, as mentioned later. After this paper was
published, an improvement was proposed by Strahler
(1952) in defining the order of streams so that the Horton’s
law is established better. In the following the ordering
method by Strahler and the Horton’s law based on this
method are explained.

Figure 2 shows how the orders of streams are given.
First, the streams starting from origins (indicated by dots
in this figure) have order 1, and new streams produced
by merger of two order-1 streams have order 2. If streams
of order 1 and 2 merge, the order-2 stream continues to
keep its identity. In general, two streams of order n merge
to produce an order-(n+1) stream, and two streams of or-
ders n and n + m (m > 0) merge to keep the identity of the
order-(n+m) stream. Next, count the number of streams
of each order, and plot these data in a coordinate system
with abscissa and longitudinal (logarithmic scaling) for
the order and the number of streams, respectively. As an
example the Amazon is chosen (Fig. 3(a)), and the data
obtained by the present author is shown in Fig. 3(b). The
four data points are arranged nearly on one line, and the
numbers of streams decrease by a ratio 3.2 as the order n
increases.

This ratio of decrease of the stream numbers is called a
“bifurcation ratio”. In many rivers in Japan the branch-
ing ratios have values between 4 and 4.5. Horton (1945)
found four laws for streams of order n including that for
the stream numbers mentioned above, which are listed
below.

average number of streams:

N(n) = R)max " (nmaX is the order of the main stream),

average length of streams:
L(n)=L()R,"",

Fig. 2. Definition of the orders of streams. Dots indicate origins.
Number of streams with orders 1, 2 and 3 are 5, 2 and 1, respec-
tively.

average inclination of streams:

S(n) = SR ",

average area of drainages:
A(n)=A()R,", (1)

where R, etc., are constant ratios for respective quanti-
ties.
2.2 Theoretical prediction of Horton’s law

A theoretical prediction of the Horton’s laws is made
by Tokunaga (1966, 1984). He introduced average num-
bers £, of streams of order A, which meat streams of
order x, and assumed the following two kinds of rela-
tions based on an assumption that tree shapes of river have
a certain kind of self-similarity:

mEm_i= """ =, &= € = constant,

mEm_2="""=3€= €&, = constant, etc.,

(2)

& €

=2 =33 =...= K = constant. (3)
& &

Then, after some manipulations the ratios in Eq. (1) are

derived as

12
Ry=2+&+K+(2+8+K) -8K)

Ry,=R,, R, = RAI/Z' (4)

These results means that the four laws in Eq. (1) are re-
lated each other.
2.3 Mechanism of river structure formation
As for the mechanism to produce tree-type structure of
rivers, a numerical simulation was made to derive the
Horton’s law for stream numbers by Kayane (1973). In
the simulation the following three rules were set up; (1)
the streams change directions randomly, (2) the streams
avoid to make a loop, (3) when two streams meet, they
merge definitely. The process of simulation is as follows:
1. Prepare a section paper with square lattice.
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Fig. 3. Examination of the Horton’s law for Amazon (reproduced from Takaki (1978)).
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Fig. 4. Simulation of tree shape of river. (a) Distribution of origins, (b) a result of simulation, where stream are directed downwards, (c)
confirmation of Horton’s law with the bifurcation ratio 3.1 (simulation by students, T. Hashimoto et al. (2005, not published)).

2. Choose a point of origin randomly in the lattice.

3. Draw a zigzag stream line along the lattice edges
while changing its direction randomly.

4. When the line comes to the periphery of the section
paper, i.e. the sea coast, stop drawing.

5. Choose the next origin randomly and draw a zigzag
stream line.

6. When the line meets another line, let these lines merge
and go to the process 5.

7. When all lattice points are occupied by lines, the
simulation is complete.
Then, the inside of the section paper is divided into sev-
eral areas with one tree shape. It was found that the
Horton’s law for stream numbers is satisfied for each of
these trees. It means that the Horton’s law for stream num-
bers is related to the properties of water flows, which are
stated above as three assumptions (1)~(3).

The present author tried to follow this method of simu-
lation with students (T. Hashimoto and others) of Kobe
Design University, where they had a course with title “In-

troduction to the theory of design” for several years. In
the simulation the area to draw lines has a pentagonal
shape as shown in Fig. 4(a) and is inclined so that the
streams have a tendency to go downwards. The 36 points
in the area are origins which are chosen randomly by
throwing a die. The direction of stream is confined either
left-downward or right-downward. On the side edges of
the test area the stream should go oblique or go inside.
Other rules are the same as given above. After all origins
are chosen, the simulation is complete and one tree shape
is produced, as shown in Fig. 4(b). The relation between
the orders and the stream numbers shows the Horton’s
first law (Fig. 4(c)).

The reason why this simulation was recommended to
students of design is that the present author wanted to let
them find a certain kind of beauty in the outcome of natu-
ral processes with an exact algorithm, which could not
be seen in freely drawn patterns.

In this section the river is assumed to have a tree shape,
but natural rivers sometimes includes a part with network
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Fig. 5. (a) Lightening of thunder and (b) Horton’s law with bifurca-
tion ratio 3.7 ((a) sketch by R. Takaki from Strache (1973)).

bed to form meandering and braiding is discussed by
Parker (1976).

3. Horton’s Law in Various Natural Systems

The Horton’s law has been examined until recently only
for river branching structures. In a monograph by the
present author (Takaki, 1978) it is shown that this law is
satisfied also for other branching structures in the nature.
Some of them are shown in this section.

Figure 5 shows a result for a lightening pattern of thun-
der, where (a) is a 2D projection of a 3D tree-type shape.
Figure 6(a) shows cracks in a grass plate whose center
was heated suddenly, which are composed of two tree
patterns beginning from points C and C’ in the figure.
Both of these trees satisfy the Horton’s law, as are shown
in Figs. 5(b) and 6(b).

A physical process called “percolation” often shows
branching structures. It is a transport of material through
a filter or a porous media. Suppose that the 2D or 3D
space is filled with regular arrangement of uniform ele-
ments which are connected with neighbors for transpor-
tation of material with certain probability. The major prob-
lem in the percolation theory is to predict the extent of
spreading of material when the probability of connections
is given, i.e. to obtain a probability (called a percolation
probability) for elements to form a network with finite or
infinite size for a given value of probability of one site
(site percolation) or bond (bond percolation) to allow flow
of material (see Fig. 7). An example of percolation phe-
nomena is the spreading of epidemic or secret informa-
tion. It is known that the size of infected group becomes
infinite, if a patient makes more than 4.5 persons infected
on the average.

The theory of percolation was introduced by Broadbent
and Hammersley (1957) and Hammersley (1957) by a sta-
tistical method. A compact review of percolation theory
is given by Hori (1972), and an easy monograph by
Odagaki (2000) is recommended for general people.

Here, precise description of the percolation theory is
avoided and some typical results are given. A theoretical
result of 2D site percolation with finite square arrange-
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Fig. 6. (a) Cracks in glass plate composed of two tree patterns, (b)
Horton’s law with bifurcation ratio 2.9 ((a) sketch by R. Takaki from
an essay by Hyodo (1974)).

Fig. 7. Two types of percolation. (a) Site percolation, where black
circles show lattice points where occupancies of material are allowed,
(b) bond percolation, where bonds with X marks are closed.

ment is given in Fig. 8, where (a) and (b) show examples
of percolation patterns with probabilities below and above
the critical value of the percolation probability (p, =
0.5927) and (c) shows a probability of connection between
upper and lower edges of the square region. Note that the
pattern tends to form a tree-type or a network type struc-
ture below or above the critical condition, respectively.
In the case of infinite size the probability is either 0 or 1.
In the 3D case with square arrangement of sites a similar
analysis is made and the critical value is p, = 0.31.

Of course the values of critical condition depends on
the type of arrangement of sites (square one, hexagonal
one, etc.), and critical values for various arrangements
are given in Odagaki (2000).

There is an interesting case in the percolation theory,
which treats a percolation in the Bethe lattice, a tree type
lattice introduced by the nuclear physicist Bethe (1935),
as shown in Fig. 9. It is produced through dichotomous
branching at each end, as shown in Fig. 9(a). If it grows
infinitely, it attains a pattern without a particular central
point, i.e. by choosing any point as a center the whole
pattern can be deformed to have a form similar to that in
Fig. 9(a). For both site and bond percolations of the Bethe
lattice the critical probability for percolation is 0.5. The
present author made recently a trial to produce bond per-
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Fig. 8. Examples of 2D site percolation in a 10 x 10 system, where white circles indicate absence of element. Probabilities of site elements are
(a) 0.55 and (b) 0.65. (c) Results of theoretical analysis for system with infinite size (p. = 0.5927) and numerical simulation for system with

finite size (19 X 19) ((c) sketch by R. Takaki from Odagaki (2000)).
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Fig. 9. (a) Bethe lattice. (b), (c) Bond percolations in a 1/3 part of Bethe lattice with p = 0.4 and 0.5, respectively. (d) The numbers of streams for

obtained percolation patterns.

colation in the Bethe lattice for probabilities 0.4 and 0.5,
whose results are shown in Figs. 9(b) and (c), respectively,
where the lattice was cut off at the highest positions in
Fig. 9(c).

The Bethe lattice seems to play a role to bridge between
the river formation and the percolation, and the present
author applied the Horton’s method to these percolation
patterns. Its result is shown in Fig. 9(d), where the low-
est data were neglected in estimating the bifurcation ra-
tios because a special treatment was made for bonds at
the central point (corresponding to the main stream of
river). Nevertheless, the percolation pattern, especially
that in (c) seems to follow the Horton’s law.

4. Horton’s Law in Biological Systems
4.1 Leaf veins

A typical example of 2D branching structures in plants
is the leaf vein. Figure 10 shows results of trials to exam-
ine the Horton’s law in leaf veins. The fern shown in (a)
is one leaf, which is divided into many parts containing
one vein and forms a tree shape. The other two leaves
have one main vein at the center (order 4) and more than

10 branches coming out of them (order 3), while smaller
veins form network structures. Therefore, a different
method is necessary to estimate orders for these smaller
veins. These veins can be classified into two groups, one
(thicker, order 2) connecting neighboring order-3 veins
to form quadrilateral regions with number N(2), while the
other (thinner, order 1) forming fine network patches with
number N(1) within each quadrilateral region. Figure
10(b) is obtained by counting numbers of elements of
these orders.

It should be remarked here that the Horton’s law is con-
firmed for the three plants with the same value of bifur-
cation ratio, in spite of the fact that they are chosen from
quiet different classification groups. Furthermore, biologi-
cal systems satisfy a similar law to that in non-biological
cases. Although reasons of these facts are not clear, it
will be interesting to suggest that the structures treated in
this review article have a function to distribute materials
(mainly liquids) into wide regions, where branching forms
assuring the least energy consumption would be chosen.
4.2 Branching rules of blood vessels

Geometrical rule at branching points of blood vessels
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Fig. 10. Examinations of Horton’s law for three leaf veins. (a) Single leaves of fern, magnolia and hydrangea. The fern leaf is divided into many
parts and forms a tree shape, while the other two leaves include network structures. (b) Horton’s law with a common bifurcation ratio of about

14 (reproduced from Takaki (1978)).

has been investigated since many years. In the following
a short review is given based on the article by Kamiya
and Togawa (1973). As for the branching of blood ves-
sels, Thompson (1917) gave some qualitative rules as fol-
lows, which are seen in most blood vessels:

(1) When a mother vessel branches to two daughter
ones, cross-sectional area of the mother is smaller than
the sum of the daughters’areas.

(2) When the cross-sectional areas of daughters are
equal, their angles of deviations from the direction of the
mother are equal.

(3) When one daughter has smaller cross-sectional area
than the other, it has a larger deviation angle than the
other daughter.

More precise study of the branching rule was made by
Murray (1926a, b). He considered two kinds of cost for
blood vessels to maintain its roles; one is the power to
transport the blood and the other is a metabolic cost to
refresh the blood. If these costs are considered for a sin-
gle duct with radius r and length / filled with blood, the
former is a product of flow rate f and the pressure differ-
ence Ap, while the latter is proportional to the volume V
of the duct, hence the cost function CF is expressed as

CF = fAp +kV, where Ap = 8—“4, V=ml, (5)
T

~

and u and k are the blood viscosity and an unknown con-
stant, respectively. The formula for the pressure differ-
ence is derived by minimizing CF, i.e. from dCF/dr = 0,
and we have the following expression for the flow rate:

[ 2,
fz\/”—ﬁ-rSocr3. (6)

If we consider a branching of vessels as shown in Fig.
11 with radii and flow rates of mother and daughters r,
ry, o and fy, f1, f>, respectively, we have f, = f| + f,, hence
we have

= (7)

From this result we can derive r,> = r, 27 /ry + ry>ry/ry <
ri2 + r,%, which agrees with the assertion (1) of D.
Thompson. An experimental value 2.7 of the index in Eq.
(7) was obtained (instead of 3) by Suwa and Takahashi
(1971). A comment is given here on the index 3 in Eq.
(7). If it is 2, the sum of cross sectional areas of daugh-
ters after branching is equal to that before branching.
However, owing to the viscosity of blood the flows in
narrow daughters the blood receives strong resistance,
which results in loosing much energy. Therefore, the value
3 of the index assures an effective flow distribution.

Furthermore, by minimizing the CF for the combina-
tion of three ducts as shown in Fig. 11 through varying
the coordinates (x, y) of the connection point B, Murray
(19264, b) obtained the relations between 6,, 8, and r,
ry, Iy, as follows:

r04 +r14 —r24 r04+r24 _},14
cos 6, =, cos 6, ==
2R 217
4 4 4
_Thh —h —n
005(91 +02) = (8)
25°n

These results agree with the assertions (2) and (3) of
Thompson (1917).

Kamiya and Togawa (1972, 1973) proposed another
theory for the condition at the branching for the follow-
ing reason. Blood vessels are connected at the end to tis-
sues through the capillary system, where the blood pres-
sure must balance with the pressure of tissue or osmotic
pressure there. On the other hand, the pressure at the be-
ginning, i.e. the heart, is also fixed. In addition, the flow
rate of blood must be adjusted to the needs from tissues.
Therefore, in order to consider the optimal design of blood
vessels, it is not meaningful to include the transportation
cost of blood. Hence, they considered only the volume of
blood. They chose three quantities x, y and r, in Fig. 11
as variables for optimization. Reason of the choice of r
for optimization is not mentioned in their paper. Accord-
ing to the guess of the present author, they fixed the sizes
of narrow vessels at tissues and tried to construct thicker
blood vessels.
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Fig. 11. Parameters at branching of blood vessel.

Then, instead of Eq. (7), they give the following re-
sults:

6 6 6
14 n 15
0o _ 1 + 2

=i, ©)
fo H f

and conditions for branching angles, which are the same
as Eq. (8) but have different expressions. Equation (9)
includes the condition (7) as a special case if fis propor-
tional to r°, hence Eq. (9) is more general. They applied
these results to reconstruction of blood vessels in the
mesentery (film spanned among parts of intestine) of dog,
and obtains a good agreement (see Fig. 12).

4.3 Reconstruction of human airway system

The mathematical method for blood vessels can be ap-
plied also to the branching system of airway in the hu-
man lung. In the following the past studies of airway sys-
tem and a new trial by those including the present author
is introduced based on review articles by Kitaoka and
Takaki (1998) and Takaki and Kitaoka (1999). The first
mathematical study of airway was made by Weibel (1963),
where a branching to equal size ducts is assumed. Exten-
sions of this study to include cases with unequal ducts
was given by Horsfield ef al. (1971). In both of these stud-
ies 3D reconstruction is not made. The first 3D recon-
struction of airway system is made by Parker et al. (1997),
who applied a fractal pattern, the Koch curve of tree type,
to reconstruct airway tree. But, in this model a branch is
assumed to be divided into two equal size branches, and
it is not realistic in this sense. The first trial to recon-
struct a realistic 3D airway was made by Kitaoka et al.
(1999).

For creating an algorithm to reconstruct airway, we pose
the following four prepositions.

(1) The shape of space for reconstruction is given ac-
cording to the real shape of lung, including the main trunk
and excluding the space of the heart.

(2) The role of lung, i.e. to distribute the air, is consid-
ered so that the end points must be distributed uniformly
in the given space.

(3) The properties of fluid are considered, such as the
minimum energy consumption for transportation.

(4) The timing of change from the convective transport
to the diffusion transport within the alveolus is consid-
ered.

As for the branching angles, Eqgs. (7) and (8) are used,

— Mesenteric
vessels
........ computed

Fig. 12. Mesenteric vessels in a dog, where the starting points on the
intestine and the end point are fixed (sketch by R. Takaki from
Kamiya and Togawa (1972)).

Fig. 13. Geometry at the successive two branchings (sketch by R.
Takaki from Takaki and Kitaoka (1999)).

but the index 3 is replaced by n in Eq. (7) and transformed
to a different expression including the flow-dividing ra-
tio 7, where the low rate is divided to two branches with
aratio 7: (1 — 1), respectively, as is indicated in Fig. 13.

The following rules are set up based on the preposi-
tions stated above (see Fig. 13), where some notes on these
rules are given in Appendix:

1: Branching is always limited to dichotomous one.

2: The mother and daughter branches lie on the same
plane (called branching plane).

3: The flow rate is conserved after branching.

4: The 3D region governed by a mother branch is di-
vided into two daughter regions by a plane (called space-
dividing plane). This plane includes the mother branch,
and is perpendicular to the branching plane and extends
to the border of the mother region.

5: Flow dividing ratio Tis equal to the ratio of volumes
of daughter regions.

6: Radii and directions of daughters are determined
according to the flow-dividing ratio.

7: The lengths of daughters are three times as long as
their respective diameters.

8: After a branching the daughters become mothers and
the space-dividing plane becomes a new branching planes.

9: The branching process stops when the flow rate be-
comes smaller than a certain threshold, or when the branch
extends out of its own region.
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(a)

Front view

(b)

Side view

Fig. 14. Reconstructed lung airway, (a) front view and (b) side view. The right-left asymmetry of the front view comes from the effects of the
trachea (white ducts) and the heart having asymmetric shapes. The grey levels of ducts indicate different lobes of lung (reproduced from
Takaki and Kitaoka (1999); note that Kitaoka et al. (1999) contains similar results with slightly different conditions).

Reconstruction of airway system was made by the use
of personal computer (Gateway 2000, EV700) with a soft-
ware C++. An example of reconstructed lung airway is
shown in Fig. 14.

Some applications of this reconstruction method are
proposed. One is a diagnosis of lung cancer. It is difficult
to judge whether a suspicious part is a cancer or a simple
inflammation. In order to find a hint for diagnosis, Kitaoka
et al. (1999) made a computer simulation to deform a part
of airway, where either a cancer or an inflammation has
appeared. Both cancer and inflammation attract nearby
airway branches towards themselves, but in different
ways; a cancer strongly attracts only those branches quite
close to it, while an inflammation weakly attracts more
number of branches. This difference of deformations
would be detected by CT.

The end points in the airway are connected to another
tissue made of many tiny sacks, called pulmonary aci-
nus, which fill the space out of the airway. Morphology
of this tissue has been misunderstood since many years,
so that the pulmonary acini are arranged like a bunch of
grapes. Recently, Kitaoka et al. (2000) began to claim
that the pulmonary acini are not like the bunch of grapes,
where many vacant spaces are left out of the grapes, but
like a 3D labyrinth made of branching paths, which fills
the space completely and whose exit is connected to an
end point of airway. At first, this claim met strong objec-
tions among medical scientists, but it is now getting more
supports.

We have reviewed the studies of branching systems in
organs, which are aimed at how to reconstruct these sys-
tems. On the other hand, there is another problem of how
a branching system grows in embryo of real animal. Here,
an interesting paper by Honda and Yoshizato (1997) is
cited here. Their observation revealed that a branching
system was formed from an initial fine and uniform net-
work through a process of selection, i.e. some elements
of the network became thick while others shrank. This
process is confirmed by computer simulation.

central vein sinusoidal capillary  portal vein

liver cells

hepatic artery~" duct of bile

Fig. 15. Structure of a part of lobule for explanation of sinusoidal
capillaries and cells (a rough sketch by R. Takaki from a textbook of
histology (Fujita and Fujita, 1976)).

4.4 Reconstruction of blood vessels in liver

The liver is made of a lot of units called a lobule, which
has also a complicated structure, so that it is connected
to three kinds of ducts; first, the hepatic artery to supply
energy and necessary material, secondly the bile capil-
laries to carry a liquid called bile and thirdly the portal
vein to carry the blood from various parts of body in or-
der to make the liver to detoxify it.

Figure 15 is a rough sketch of a part of lobule. The
blood coming into the lobule is collected at the central
vein (located at the center of the lobule) and is carried
out. The hepatic artery and the portal vein are connected
to the central vein through capillaries called “sinusoidal
capillaries”. Therefore, the most part of lobule is occu-
pied by liver cells and a network of sinusoidal capillar-
ies. The blood coming to the central vein is carried to the
hepatic vein and goes out of the liver.

There are two mathematical problems concerned to the
structures of blood vessels in the liver; one is to simulate
the branching systems of portal veins and hepatic veins,
the other is to simulate the network of sinusoidal capil-
laries. The present author made some works on these prob-
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Fig. 16. (a) Lattice structure of simulation of liver veins, (b) algorithm for the vein branching systems (deformed from that in Takaki et al.

(2003)).

=

=3 o

EE § o ¢

£ z N vt ¥

2 38 * %4

=) £t 5 s o

G RS-

P 1 B

z

36
0 0.4 08 » 12

1

Energy consumption

0 0.4 08 ¢, 12

Fig. 17. Results of simulation of veins. Upper: reconstructed vein systems for some values of direction parameter C;, which is larger for larger
tendency to extend to the exit (or the entrance) (reproduced from Takaki er al. (2003), originally from Nishikawa (2002)).

lems with his collaborators (Takaki ef al., 2003; Takaki,
2005). They are introduced here briefly. The object of
simulation is to examine how the shapes of network of
blood vessels are determined.

In the first simulation of portal and hepatic veins the
outer boundary of liver and the positions of entrance of
artery and the exit of vein are given. The boundary of a
liver is given as a realistic but simplified shape within a
30 x 30 x 30 cubic lattice, as shown in Fig. 16(a), where
the portal and hepatic veins constitute separated lattices.
Algorithm to construct vein networks is shown in Fig.
16(b). The construction of veins (both portal and hepatic)
is made by extending a path from a randomly chosen point
to the exit point. The basic idea of the simulation is that
the each lobule should touch to both kinds of veins, while
the number of ducts constituting the network should be
reduced in order to economize energy.

For this purpose extension of hepatic vein from the
present point is made by choosing one of six neighbors
with probabilities, Pr(tx) = 1 £ Cye,, Pr(xy) =1 £ Cje,,

Pr(xz) =1=£ Ce_, where (e,, e, e.) is a unit vector from
the present point to the exit of the liver and C, is a posi-
tive parameter indicating a tendency to extend towards
the exit. For extension of the portal vein, the unit vector
is directed from the present point to the entrance of the
liver. For constructed veins the total number of end points
and the total consumption of energy due to viscous re-
sistance are computed. The results of simulation are
shown in Fig. 17. As is seen from this figure, larger value
of C, (larger tendency to the direction of exit or entrance)
results in larger number of end points and smaller energy
consumption. These results show that the choice of di-
rection at each point of the path extension produces bet-
ter results both in numbers of end points and the energy
consumptions.

Next, results of simulation to construct sinusoidal cap-
illary system within a lobule is introduced. The space of
simulation is limited to a cube within a lobule, whose six
edges out of twelve constitute either portal veins or cen-
tral veins (see Fig. 18(b)). The inside of this cube is oc-
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Fig. 18. (a) Algorithm to construct the sinusoidal capillary system. (b) Two examples of simulated sinusoidal capillaries with initial defect
fractions given above. Thickness and the color of ducts indicate the flow rate and the pressure (the blood flows from portal vain (grey) to

central vein (black)) (reproduced from Takaki et al. (2003)).
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Fig. 19. A simple example of defining Betti number. The frame of
tetrahedron shape has three holes, hence the Betti number is 3.

cupied by a network of sinusoidal capillaries, which con-
nect these two kinds of veins and touch all liver cells in
order to hand over the blood to cells and to receive re-
freshed blood. Here, a restriction is posed on this net-
work that the branching of capillaries is dichotomous, i.e.
a capillary branches only to two new ones. Since the si-
nusoidal system is not of a tree-type, an algorithm differ-
ent from that for construction of veins is necessary.

We begin from a cubic network with portal and hepatic
veins occupying its six edges, as indicated by thick ducts
in Fig. 18(b). These veins are given a pressure difference
to give blood flow. Inside of this cube is divided into 10
x 10 x 10 small cubes to span bridges (sinusoidal capil-
laries). The process to construct a network is shown in
Fig. 18(a). Initial condition is a cubic lattice having ran-
dom defects in the bridge network, i.e. some bridges with
fraction P, of all bridges in number are taken off. Then,
flow rates of all bridges are calculated, and the bridge
with the smallest flow rate is deleted. This process is re-
peated until the network includes only dichotomous
branching. Two examples of results with Py = 50% and
90% are shown in Fig. 18(b).

Quantitative treatment of 3D network structures can be
made based on the topological evaluation of networks,
where a topological parameter Ny, called “Betti
number” (a degree of multi-connectedness) plays an im-
portant roll. A method to apply this topological concept
to analysis of pathological states of human organs, espe-
cially the sinusoidal capillaries, is developed by a medi-
cal doctor H. Shimizu (Shimizu, 1992, 2012, 2013;
Shimizu and Yokoyama, 1994). In the following a brief
introduction of the Betti number is given.

The Betti number indicates the number of loops in-
cluded in a given network structure. For example, the tet-
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g 300 |
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99% 90% 70% 50% 39% 10%
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Fig. 20. Betti numbers vs. initial defect fraction obtained from the
results of simulation.

rahedron shown in Fig. 19, if it is seen from the top, has
three loops, hence it has Betti number 3. For a network
with Ny vertices, Nego. edges and Betti number Np;,
the following formula is satisfied:

NBetti_Ne + N,

vertex

dge =1. (10)
The Betti numbers for simulated network were counted,
as shown in Fig. 20. The Betti number was about 440 for
70% < P4 < 99%, while it decreases rapidly for P4 < 50
%. 1t is interesting to compare the present result with
measurement of Betti number in real liver by Shimizu
and Yokoyama (1994). They gave the values of Betti num-
bers from specimen with size 200 x 200 x 80 yum, where
Ngyi = 181 £ 24 for normal examinee and Np,; = 85 £
19 for examinee with cirrhosis, i.e. pathological harden-
ing of liver.

Now, since the liver sell size is about 20 um, their speci-
men corresponds to the 10 x 10 x 4 lattice, while the
number of cells in the present simulation is 10 x 10 X 10.
If our results of Betti numbers 440 and 200 for 50 % < P
< 99% and P; = 30%, respectively, are multiplied by
4/10, they give 176 and 88, respectively, agreeing well
with the data by Shimizu and Yokoyama (1994) as given
above. This result suggests that the network of sinusoi-
dal capillaries is formed so that they touch as many cells
as possible (choose larger value of P,) while keeping di-
chotomous branching.
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Fig. 21. Analyses of road networks. (a) Objects of analysis in Kyushu (left) and Shikoku (right) islands, where local roads are not shown here.
(b) Dependences of numbers of road loops on their orders. Note that the data of Kyushu lie on the steeper line (reproduced from Takaki

(1978)).

5. Branching Systems in Human Societies and
Computers

It is easy to find branching structures in human socie-
ties, human cultures and artifacts. Here, two examples
are introduced, which are treated by the present author.
5.1 Road networks

It was shown in Sec. 3 that an analysis similar to that
by Horton is possible for such 2D network structures as
leaf veins, where it is possible to classify network ele-
ments (loops) into different orders. The road networks
also satisfy this requirement, because roads are classi-
fied as 1st- and 2nd-class national roads, prefectural road
and local road. The present author made an analysis of
roads in Kyushu and Shikoku islands in Japan, and de-
rived bifurcation ratios for roads in these islands (Takaki,
1978).

Figure 21(a) shows the road systems in Kyushu and
Shikoku islands at the time of 1980, where the 1st and
2nd national roads and the prefectural roads are drawn
with different kinds of lines. In the analysis the regions
surrounded by Ist class national roads were chosen. Lo-
cal roads were also treated in the analysis, but are not
shown in this figure. Order of a closed loop is defined as
follows.

1. A loop made of local roads or of local and higher
ones has an order 1.

2. A loop made of prefectural roads or of prefectural
and higher ones has an order 2.

3. Aloop made of 2nd class national roads or of 1st and
2nd ones has an order 3.

4. A loop made of only Ist class national roads has an
order 4.

Note that loops are chosen so that a loop of a certain or-
der does not include a smaller loop of the same order.

Numbers of loops in Kyushu and Shikoku islands were
counted according to this rule, and the results are shown
in Fig. 21(b). It is remarkable that the data for both is-

lands follow the Horton’s law, i.e. the number of loops
decreases exponentially with the order. This situation
might have been realized through many years owing to
the human’s desire to construct a convenient road sys-
tem. In addition the difference of steepness of lines in
Fig. 21(b) could be understood by assuming that the so-
cial system of Kyushu is more developed than that of
Shikoku, so that society in Kyushu needed more number
of roads of lower orders.

It is noted here that the above results may contribute
well in a planning of road system in large scale regions.
5.2 Hierarchy of organization

A representative branching system in human society
would be the graphic expression of organizations, such
as schools, companies and governments. Most of them
have tree-type structures, otherwise they must have con-
fusions in information transmission and requests of jobs.
It will be easy to imagine that a system of network-type
suffers from great confusion through receiving various
requests contradicting each other from many sections.

Figure 22 shows a construction of a Japanese univer-
sity (Musashino Art University in 1970s), which was made
of sections with four levels. An analysis similar to that
for rivers was made for this construction by the present
author (Takaki, 1978), where orders of sections are de-
termined in the following way. The sections at the right
ends have order 1, and the upper sections composed of
lower sections acquire higher orders, where the rules in
the Horton’s analysis are followed.

It is remarkable that the graph in Fig. 22 shows an ex-
act linearity. It should be noted here that this kind of so-
cial structures are constructed so that they function in the
best way through continuous improvement, where man-
agers of the structures are not conscious of the Horton’s
law. However, the resulting structure satisfies this law.
This situation is similar to that for construction of road
networks.
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Fig. 22. An example of analysis of social structures by applying the Horton’s method. In the graph on the right the abscissa is the order of

sections and the ordinate is the number of sections.
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Fig. 23. Analysis of file structure in a personal computer by a design student (N. Sugimura, 2004, private communication). The small dots
indicate individual files (order 1), the small circles are folders (order 2) including order 1 files, the squares are folders of order 3 and the large
thick circle is the main folder (order 4). The left figure indicates the Horton’s law in this file structure.

The present author does not know well whether some
theoretical works are made as to the relation between
structures of social systems and their functions. Analysis
of this relation would be a difficult problem, because it
should include both geometry of systems and human
behavior in societies. However, it must be an important
problem.

It is noted here that data files stored in personal com-
puters have a certain kind of branching structure. In
computers data files are stored within a main folder, which
includes individual files and also some folders. These
folders also include individual files and folders. There-
fore, the total files can be expressed as a branching struc-

ture of tree type. A student, who took a course of the
present author at Kobe Design University in 2004, exam-
ined his file structure and found that it satisfies the
Horton’s law approximately (see Fig. 23). It is hoped to
confirm that this tendency is universally found in many
personal computers.

6. Concluding Remarks

In this review article branching and network structures
are discussed based on the Horton’s method for analysis
of river structure, and it is shown that the Horton’s law is
found universally among both natural and social phenom-
ena. It might suggest an existence of a more fundamental
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law governing phenomena from various fields. Although
the present author has at present no idea on how this kind
of law looks like, but it might be meaningful to investi-
gate it in an interdisciplinary activities, such as those by
the Society for Science on Form.

Here, some notes are given on concepts concerned to
complicated systems in general, i.e. the complex systems
and the chaos. The term “complex systems” is given to a
group of systems made of many elements which interact
each other with nonlinear way, while the term “chaos” is
concerned to systems with small number of elements with
nonlinear interaction. The former attracts scientists be-
cause it seems to bridge natural sciences and social ones.
The latter also attracts scientists because the chaos sys-
tems show complicated behavior in spite of the fact that
they are made of small numbers of elements.

On the other hand, the topics treated in this review arti-
cle seem to be somewhat different from the above two
concepts. Both in complex and chaos systems we are in-
terested in their dynamical behavior, while the topics of
branching structures are concerned to their geometrical
shapes, i.e. they are rather static. Although in appearances
of branching systems certain kinds of dynamical proc-
esses must have worked, our interest in branching struc-
tures is mainly their geometrical natures. Here, we mainly
investigate relations between “form” and “functions”,
which is considered to be one of important problems in
the Science of Forms.

Appendix

Several notes are given here to explain the rules given
in Subsec. 4.3, which are proposed for constructing lung
structure numerically.

Note on rule 4: a supplementary rule (4a) is posed so
that the end points are distributed uniformly within the
whole space (for precise, refer Kitaoka er al. (1999) and
Kitaoka and Takaki (1998)).

Note on rule 6: a supplementary rule (6a) is posed for
correcting the branching angles so that the daughters are
directed to the center of their regions.

Note on rule 7: a supplementary rule (7a) is posed so
that the daughter branches do not come out of the mother
region or are not too short for supplying air.

Note on rule 8: the angle between the successive two
branching planes (called rotation angle) is, in principle,
the right angle, but a supplementary rule (8a) is posed to
correct the rotation angle so that the volume ratio between
two divided regions is not too small.
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