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This study investigates European option pricing under fractional Brownian motion (fBm) and applies it to
realized volatility (RV). The RV measure is selected because it uniquely exhibits simultaneous stationarity and
long-range dependency properties in financial time series, as shown in our empirical study. Meanwhile, the
Black-Scholes differential equation is not well defined when the underlying assets follow fBm with the Hurst
exponent H �= 1

2 because fBm is not a semimartingale. Thus, we compute the European option prices using a
previously proposed fractional Black-Scholes formula. Our empirical study is conducted on Tokyo Stock Price
Index data from January 06, 1997 to December 30, 2013 with a sample size of 4177.
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1. Introduction
Fractional Brownian motion (fBm) was mathematically

introduced in 1940 by Kolmogorov as a method to generate
Gaussian spirals in a Hilbert space as stated in Bardet and
Bertrand (2007). The applicability of fBm to real world has
been empirically suggested by ancient sages.

In 1906, a young Englishman named Harold
Edwin Hurst arrived in Cairo. It was to have been
a short story. But it lasted sixty-two years and
ended with his solving one of the great mysteries
of the paharaohs—and, inadevertently, providing
a clue to the way financial markets work.

Mandelbrot, Benoit B. “The (Mis)Behavior of
Markets,” 2004.

Eventually, Hurst found a long-term relationship between
the volatile rain on the Nile River and drought conditions.
From these results, he determined the optimum dam siz-
ing and published his seminal paper (Hurst, 1951). Subse-
quently, long-run dependences in financial time series have
been frequently reported. Mandelbrot and Van Ness (1968)
first investigated a self-similar process with a long-range
dependent incremental process, known as fractional Brow-
nian motion (fBm). Meanwhile Granger (1980), Granger
and Joyeux (1980), and Hosking (1981) proposed an autore-
gressive fractionally integrated moving average (ARFIMA)
model for a discrete time series with a long memory. For de-
tails of these concepts, see Beran (1994) and Baillie (1996).

Lo (1991) indicated that long-memory components in as-
set returns are crucial to many paradigms of modern finan-
cial economics. For example,
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1) If stock returns are long-range dependent, the optimal
consumption-savings and portfolio decisions may be-
come extremely sensitive to the investment horizon.

2) The pricing of derivative securities (such as options
and futures) by martingale methods is problematic,
since the commonly employed class of continuous-
time stochastic processes is inconsistent with long-
term memory. Traditional tests of the capital asset
pricing model and the arbitrage pricing theory are in-
validated for persistent time series, because these se-
ries cannot be evaluated by typical statistical infer-
ences.

3) The conclusions of more recent tests of “efficient”
market hypotheses and stock market rationality also
heavily rely on the presence or absence of long-term
memory.

This study focuses on implication 2, which indicates that
pricing options by martingale methods is inconsistent with
long-term memory.

Therefore, we first study the definitions of long-memory
processes in discrete time and the autoregressive integrated
moving average (ARIMA) model with a fractional differ-
encing parameter. Second, we introduce the R/S statistic
proposed by Hurst (1951) and apply it to long-range de-
pendency testing. Third, we construct a realized volatility
(RV) measure for our empirical study and unit root tests for
testing stationarity. Finally, we investigate European option
pricing subjected to fBm and apply it to RV. Our empiri-
cal study uses Tokyo Stock Price Index (TOPIX) data from
January 06, 1997 to December 20, 2013. The sample size
is 4177.

Since the seminal paper of Black and Scholes (1973),
numerous papers have described option pricing by a par-
tial differential equation. However, the Black-Scholes dif-
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ferential equation is poorly defined when the underlying
assets follow fBm with the Hurst exponent H �= 1

2 be-
cause fBm is not a semimartingale, and the usual Itô in-
tegral cannot be integrated with respect to fBm (Biagini et
al., 2008). Hu and Øksendal (2003) and Elliott and Van
Der Hoek (2003) defined a new stochastic integral based on
Wick products and Skorohod integration, and showed that
it prevents arbitrage opportunities. However, although these
models guarantee no arbitrage opportunities, they have no
natural economic interpretation (Björk and Hult, 2005). For
this reason, we compute the European option prices by the
fractional Black-Scholes formula proposed by Norros et al.
(1999).

The remainder of this study is as follows. Section 2
briefly explains long-range dependency in discrete time.
Sections 3 and 4 introduce the concept of fBm and option
pricing under fBm, respectively. Section 5 simulates option
pricing under fBm. Section 6 presents our empirical result
and explains the RV measure and unit root tests for testing
stationarity. Section 7 concludes the study.

2. Long-range Dependency
In this section, we briefly survey the stochastic nature of

long-range dependence (LRD) in a time series, following
Minotani (2001).

The autocorrelations in stochastic processes with LRD,
or long memory, decay slowly to zero. A process is called
a short memory process if its autocorrelation function ρ at
lag k takes the form

|ρk | ≤ cak, c, a are constants,

and a long memory process if ρk takes the form

ρk ≈ c2d−1
k , 0 < d <

1

2
,

where d ∈ R (Brockwell and Davis, 1991). For instance,
Xt is expected to follow the first-order autoregressive model
AR(1)

(1 − φ1L)Xt = εt , |φ1| < 1, εt ∼ iid(0, σ 2),

(where φ1 ∈ R and L denotes the lag operator), the autoco-
variance function of process γk becomes

γk = φk
1σ

2

1 − φ2
1

→ 0, k → ∞,

and the autocorrelation function is

ρk = φk
1 → 0, k → ∞.

Hence, AR(1) is found to be a short memory process. As
another example, if Xt is expected to follow the autore-
gressive moving average (ARMA) model of order (p, q),
denoted by ARMA(p, q), and the process is presumed sta-
tionary and invertible, the autocovariance function becomes

γk ≈ cλk
1 → 0, k → ∞, |λ1| < 1,

where λ1, . . . , λp are the roots of the characteristic equation
of the AR(p) and λ1 is closest to 1. Hence ARMA(p,q) is
also a short memory process.

On the other hand, Xt has a long memory property if its
autocovariance function is expressed as Lo (1991)

γk ∼
{

k2H−2L(k), 1
2 < H < 1,

−k2H−2L(k), 0 < H < 1
2 ,

where H denotes the Hurst exponent and L(k) is an arbi-
trary function such as lim

t→∞ L(tk)/L(t) = 1.

2.1 ARFIMA model
The ARIMA process takes the form

φ(L)(1 − L)d Xt = θ(L)εt ,

where φ, θ ∈ R, and d is the difference parameter, which
must be integer valued. The ARFIMA model extends
the ARIMA model to allow fractional order of differenc-
ing d (Granger, 1980; Granger and Joyeux, 1980; Hosk-
ing, 1981). An ARFIMA(p, d, q) has the following d-
dependent properties (Chen et al., 2008; Das and Pan,
2011).

1) If d = 1/2, the ARFIMA(p, −1/2, q) process is sta-
tionary but non-invertible.

2) If −1/2 < d < 0, the ARFIMA(p, d, q) process has
short memory and monotonically and hyperbolically
decays to zero.

3) If d = 0, the ARFIMA(p, 0, q) process can be white
noise.

4) If 0 < d < 1/2, the ARFIMA(p, d, q) process is a
long-memory stationary process. This model appro-
priately describes LRD. The autocorrelation of a LRD
time series slowly decays as a power law function.

5) If d = 1/2, the ARFIMA(p, 1/2, q) process is a dis-
crete time 1/ f noise.

2.2 R/S statistic
Hurst (1951) and Mandelbrot (1972) developed the R/S

statistic for testing whether LRD exists in a time series.
First, we define the range R of X at time T as

RT = max
1≤k≤T

k∑
t=1

(Xt − X̄) − min
1≤k≤T

k∑
t=1

(Xt − X̄),

where X̄ denotes the sample mean of Xt . Second, we
estimate the sample standard deviation of Xt as

ST =
[

1

T

T∑
t=1

(Xt − X̄)2

] 1
2

.

The quantity Q = RT /ST is called the R/S statistic.
Hurst (1951), Mandelbrot (1972), and Lo (1991) showed

that
p lim

T →∞
{T −H (RT /ST )} = constant.

They also approximated the above equation as

log[E(RT /ST )] ≈ constant + H log(T ).

Rearranging this formula, the Hurst exponent H is approx-
imated by

H � log(RT /ST )

log(T )
.
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The properties of the Hurst exponent H depend on its value
Peters (1994). In the original theory, H = 1/2 implies an
independent process, whereas 1/2 < H ≤ 1 implies a per-
sistent time series, which is characterized by long memory
effects. Theoretically, what happens today forever influ-
ences the future. 0 ≤ H < 1/2 signifies anti-persistence.
An anti-persistent system covers less distance than a ran-
dom one, because it self-reverses more frequently than a
random process. In addition, the Hurst exponent H is di-
rectly related to the fractional differencing operator d of the
ARFIMA model as

d = H − 1

2
. (1)

In fact, when testing for LRD in Xt , we require the sam-
ple distribution of the R/S statistic. Again, we introduce
QT as

QT = RT

ST

= 1

ST

[
max

1≤k≤T

k∑
t=1

(Xt − X̄) − min
1≤k≤T

k∑
t=1

(Xt − X̄)

]
.

Assuming that Xt ∼ iid is true, we have

1√
T

Q ⇒ V,

where ⇒ denotes convergence in law, V is the range of
Brownian bridge in [0, 1], E(V ) = √

π
2 and Var(V ) =

1
6π(π − 3); see Lo (1991).
2.3 Lo’s modified R/S statistic

The type I error probability is known to exceed the nomi-
nal size of the R/S statistic. Consequently, a short memory
process may be incorrectly deemed as a long memory one.
To correct this problem, Lo (1991) proposed the following
modified R/S statistic:

Q∗ = RT

σ̂T (q)
,

where σ̂ 2
T (q) = S2

T + 2
∑q

j=1 ω j (q)c j , c j = γ̂ j and

ω j (q) = 1 − j
q+1 for q < T . The Q∗ and Q differ in one

respect only; the divisor of Q∗ is σ̂T (q), whereas that of
Q is ST . For instance, when Xt follows an AR(1) process,
q = 1 and

σ̂ 2
T (1) = S2

T + c1.

Moreover, since Q∗ < Q by virtue of c1 > 0, we have
σ̂ 2

T (1) > S2
T . Q∗ also has the following asymptotic prop-

erty:
1√
T

Q∗ ⇒ V,

where V is the range of the Brownian bridge in [0, 1] as
stated before. However, we notice that a large lag q may
lower the power of the test, indicating that if q is oversized,
Q∗ cannot properly detect the LRD in a time series. Hence,
the right choice of q is essential in Lo’s method (Teverovsky
et al., 1999).

3. Fractional Browninan Motion
A stochastic process Z on the filtered probability space

(
,F, {Ft }t≥0, P) is called fBm {Zt }t≥0 with Hurst expo-
nent H ∈ (0, 1) if the following conditions are satisfied:

1) Zt has strictly stationary increments, that is, Zt+s −
Zt , s ≥ 0 is strictly stationary.

2) Z0 = 0 and E[Zt ] = 0 for all t almost surely.
3) E[Z2

t ] = |t |2H for all t and H ∈ (0, 1).
4) Zt follows a Gaussian distribution.
5) Zt is almost surely continuous.

The stochastic process is defined by

Zt − Zs = cH

[∫ t

s
(t − u)H−1/2dwu

+
∫ s

−∞

(
(t − u)H−1/2 − (s − u)H−1/2

)
dwu

]
,

(2)

where wt is a standard Brownian motion (Bm) and cH is
given by

cH =
[

2H�( 3
2 − H)

�(H + 1
2 )�(2 − 2H)

]1/2

,

with � being the gamma function. Setting s = 0 in Eq. (2)
we can write

Zt = cH

[∫ t

0
(t − u)H− 1

2 dwu

+
∫ 0

−∞

(
(t − u)H− 1

2 − (−u)H− 1
2

)
dwu

]
.

If H = 1
2 , fBm reduces to standard Brownian motion.

Zt = c 1
2

[∫ t

0
(t − u)

1
2 − 1

2 dwu

+
∫ 0

−∞

(
(t − u)

1
2 − 1

2 − (−u)
1
2 − 1

2

)
dwu

]
,

=
∫ t

0
dwu = wt ,

where

c 1
2

=
[

2 · 1
2�( 3

2 − 1
2 )

�( 1
2 + 1

2 )�(2 − 2 · 1
2 )

]1/2

= 1.

As described in the previous section, fBm with 1/2 < H ≤
1 implies a persistent time series and 0 ≤ H < 1/2 signifies
antipersistence.
3.1 A fractional Brownian market model

We introduce a riskless asset At and a risky asset St by
means of a geometric fBm driven by d At = r At dt and
d St = µSt dt + σ St d B H

t , respectively. The parameters
for the riskless interest rate r as well as the drift µ and the
volatility σ are constant. The stochastic differential equa-
tion can be interpreted in multiple ways depending on the
chosen stochastic integration calculus, which are pathwise
integration, and in contrast, Wick-based integration (see
Rostek and Schöbel, 2013).
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Numerous articles have been published choosing frac-
tional Brownian motion as an underlying diffusive process.
There has been an ongoing discussion about the usage of
fBm within financial models since Rogers (1997). Some
publications also discuss market microstructure foundations
of fBm while most of the literature focuses on arbitrage and
its exclusion. Shiryayev (1998) constructed an explicit arbi-
trage strategy within the fractional market setting based on
pathwise integrals. Duncan et al. (2000) provided a stochas-
tic integration calculus with respect to fBm based on the
Wick product. For more detailed information, see Rostek
and Schöbel (2013).
3.2 Wick-Itô integral

Let w be a Brownian motion and F be a left-continuous,
adapted and locally bounded deterministic process. The
mean squares of the Riemann-Stieltjes sums converge to a
random variable called the Itô integral of F with respect to
w, which is defined up to time T :∫ T

0
F(s)dws = lim

∑
F(ti )(wti+1 − wti ).

However, if the integrand is no longer deterministic, conver-
gence in the mean square sense is not necessarily given, see
Rostek (2009). Therefore, following Duncan et al. (2000),
we replace the ordinary multiplication within the Riemann-
Stieltjes sums with a different multiplicative concept called
the Wick product (denoted by a diamond symbol �. The
fractional Wick-type integral, called the Wick-Itô integral,
is the limit of the according sequence of Riemann-Stieltjes
sums:∫ T

0
F(s)dwH

s = lim
∑

F(ti ) � (wH
ti+1

− wH
ti ).

The Wick-Itô integral cannot exhibit martingale behavior
since the integrator of fBm is not a semimartingale. Mean-
while, the Wick-Itô approach is formally compatible with
classical Brownian theory when pricing options (Rostek,
2009).

Following Biagini et al. (2008), we now explain the Wick
product in the above equation. First, we define the nth-order
Hermite polynomial:

hn(x) := (−1)nex2 dn

dxn
(e−x2

), n ≥ 0,

and the nth order Hermite function:

h̃n := π−1/4(n!)−1/22−n/2hn(x)e−x2/2, n ≥ 0,

also we have

Hα(ω) = 
n
i=1hαi (< h̃i , ω >),

where ω ∈ 
, α = (α1, . . . , αn), and αi ∈ N ∪ {0}. Let
two random variables F(ω), G(ω) ∈ L2(
) be chaotically
expanded as

F(ω) =
∑

α

cαHα(ω) and G(ω) =
∑

β

dβHβ(ω),

respectively, where cα, dα ∈ R, β = (β1, . . . , βn) and
βi ∈ N ∪ {0}. The Wick product is then defined as

(F � G)(ω) =
∑
α,β

cαdβHα+β(ω).

The Radon-Nikodym derivative for fBm is provided in
Appendix A and for the discrete approximation of fBm, see
Appendix B.

Hu and Øksendal (2003) and Elliott and Van Der Hoek
(2003) implemented the Wick product into the definitions
of the portfolio value and/or self-financing property. The
seemingly encouraging result of a fractional Black-Scholes
market excluding arbitrage provided by Hu and Øksendal
(2003) and Elliott and Van Der Hoek (2003) entailed fur-
ther models. Athough this pricing approach grew in popu-
larity, some serious concerns questioned the usage of Wick
products beyond pure integration theory. The suitability of
Wick-based definitions of fundamental economic concepts
was first doubted by Sottinen and Esko (2003).
3.3 Option pricing with fBm

When the underlying assets follow fBm with H �= 1
2 ,

fBm is not a semimartingale, and the usual Itô integral
cannot be integrated with respect to fBm (Biagini et al.,
2008). Under this circumstance, the Black-Scholes differ-
ential equation is ill-defined. To circumvent this problem,
Hu and Øksendal (2003) and Elliott and Van Der Hoek
(2003) defined a new stochastic integral based on Wick
products and Skorohod integration, which ensures the ab-
sence of arbitrage opportunities. However, as already men-
tioned, these models lack a natural economic interpreta-
tion (Björk and Hult, 2005). We introduce self- and Wick-
financing portfolios following Björk and Hult (2005) in Ap-
pendix C.
3.4 Fractional Black-Scholes formula

In the study, we compute European option prices using
the fractional Black-Scholes formula proposed by Norros
et al. (1999).

Suppose that a stock price follows geometric Brownian
motion. Then, the price of a European call option Cbs is
given by the celebrated Black-Scholes formula

Cbs = s�(d1) − k exp(−r t)�(d2),

where s is the value of the underlying asset, k is the strike
price of the option, t is the expiry time of the option, r is the
risk-free interest rate, and σ is the volatility of the underly-
ing asset. �(·) represents the cumulative distribution func-
tion of a standard normal variable, and d1 and d2 are given

by d1 = (log( s
k )+(r+ 1

2 σ 2)t

σ
√

t
and d2 = d1 − σ

√
t . As shown

by Norros et al. (1999), one can define a centered Gaussian
martingale (the fundamental martingale) that generates the
same filtration as fBm (Kozlowski, 2012). Since the filtra-
tion (rather than the stochastic process itself) represents the
information provided by the market, this martingale may
reasonably be used for option pricing. By this approach,
formulas analogous to the classical Black-Scholes formulas
are easily obtained, and coincidence is achieved by setting
the Hurst index to 1/2. The fractional European call option
price Cfbs is given by

Cfbs = s�(d3) − ke−r t�(d4),

where d3 = log( s
k )+(r+ 1

2 c2
2σ

2t1−2H)t
c2σ t1−H and d4 = d3 − c2σ t (1−H).

If H = 1
2 , we find that Cbs = Cfbs. That is, the dif-

ferences between the fractional and the standard Black-
Scholes prices are solely determined by the value of the
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time
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Fig. 1. Simulated fBm with H = 0.50.

time
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fB
m

-0.6
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-0.3

-0.2

-0.1

0

0.1

0.2
Path of a fractional Brownian motion ----- parameters: N=50000, H=0.75

Fig. 2. Simulated fBm with H = 0.75.

long memory parameter H (i.e., the Hurst exponent). The
fractional European put option price Pfbs is also determined
by the standard put-call parity relation

Pfbs = Cfbs + ke−r t − s.

4. Simulation Study
In the section, we examine how the fractional European

call option prices are evaluated in simulation studies.
Figures 1 and 2 are examples of fBm paths with H =

0.50 and H = 0.75, respectively. Simulations were per-
formed using the dvfBm*1 package function circFBSM() in
the R language. As noted above, H = 0.50 (Fig. 1) de-
scribes standard Brownian motion, while H = 0.75 (Fig. 2)
describes a process with a long memory property. Genera-
tion of the fractional Brownian paths is detailed in Coeur-
rjolly (2000).

∗1http://cran.r-project.org/web/packages/dvfBm/
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Fig. 3. Call option prices with H = 0.50 (current stock price s = 100;
volatility σ = 0.5; risk-free interest rate r = 0.1).
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Fig. 4. Call option prices with H = 0.75 (other parameters fixed as in Fig.
3).

Figures 3 and 4 show the European call option prices cal-
culated by the fractional Black-Scholes formula introduced
above. The Hurst parameters are set to H = 0.50 and
H = 0.75 respectively, the current stock price s = 100, the
volatility σ = 0.5, and the risk-free interest rate r = 0.1.

Since Figs. 3 and 4 are visually very similar, we clarify
their differences in Figs. 5 and 6.

Figure 5 shows how the European call option prices differ
between H = 0.50 and H = 0.75 with other parameters
fixed at s = 100, σ = 0.5, and r = 0.1. According to
this figure, the price difference is enhanced around the at-
the-money (here denoted by the strike price k = 100), and
widens as the time to maturity reduces. Figure 6 shows how
the European call option prices as the Hurst exponent H
varies from 0 to 1. Other parameters are fixed at s = 100,
σ = 0.5, r = 0.1, and k = 100. From this figure, we
observe that the difference greatly increases as the time to
maturity reduces and the Hurst exponent H increases.

5. Empirical Study
In this section, we examine the long memory property of

real financial data such as time series of stock prices, log-
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Fig. 5. Differences in call prices with fixed H = 0.50 and H = 0.75
(s = 100; σ = 0.5; r = 0.1).
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Fig. 6. Differences in call prices as H is varied from 0 to 1 (s = 100;
σ = 0.5; r = 0.1; k = 100).

return, and volatility. We employ the daily closing price
data of the Tokyo stock price index (TOPIX) from January
1997 to December 2013, denoting its value at time t by
St . The daily logarithmic return at time t is defined as
rt = log St − log St−1. Our analysis also includes the RV
defined at time t as the sum of the intraday squared returns
(Andersen et al., 2001):

RVt =
nt∑

i=1

r2
t,i ,

where r2
t,i denotes a squared log-return (the i th observation

on day t) and nt is the number of data points in t . Re-
garding the underlying log-price process as the continuous
martingale part in a semimartingale model setup, the RV
can be viewed as a proxy variable of the integrated vari-
ance calculated from the intraday full high-frequency log-
returns. Consequently, the RV estimation requires the full
high-frequency data over 24 h as a daily volatility mea-
sure. However, the Japanese stock market is divided into
two sessions by a lunch break, i.e., the morning session lasts
from 09:00 to 11:00 and the afternoon session from 12:30

05-Jan-1997 04-Sep-2002 03-May-2008 31-Dec-2013
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S t
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Fig. 7. Paths of St , rt and RVt time series in the TOPIX data (1997–2013).

Table 1. Summary statistics of TOPIX data (1997–2013).

St rt RVt

Mean 1173.374 −0.0000 0.01025

Median 1145.760 0.0002 0.00716

Maximum 1816.970 0.1286 0.39879

Minimum 695.510 −0.1001 0.00001

Std. Dev. 293.302 0.0141 0.01489

Skewness 0.317 −0.2925 11.76425

Kurtosis 2.018 8.402 223.907

Obs. 4177 4177 4177

LB(10) 41133.82∗ 22.47 8548.13∗

Note that LB(10) denotes the Ljung-Box test statistics at lag 10 and ∗ in-
dicates the rejection of the null hypothesis that the process is not autocor-
related.

to 15:00. Thus, we adopt the weighted RV proposed by
Masuda and Morimoto (2012), which is a modified version
adjusted to the Japanese market (Hansen and Lunde, 2005).
The weighted RV with estimated optimal weights λ1, λ2, λ3

and λ4 is defined by

wRVt = λ1Y 2
t,1 + λ2 RVt,2 + λ3Y 2

t,3 + λ4 RVt,4,

where Y 2
t,1, RVt,2, Y 2

t,3, and RVt,4 denote the square of the
close-to-open return, the RV in the morning session, the
square of the lunch break return, and the RV in the afternoon
session, respectively, on the t th day. Hereafter, we replace
the weighted RV wRV by RV for notational simplicity.
In addition, we set the sampling frequency to 1 min, the
minimum observation interval of the Japanese stock market.
The resulting sample sizes of the morning and afternoon
sessions are 120 and 150, respectively.
5.1 Data description

In the empirical analysis, we first describe the three time
series data St , rt and RVt discussed above. Figure 7 depicts
the paths of St , rt and RVt over the sample period, and Table
1 presents the descriptive statistics of these data. The null
hypothesis is that the data are independently distributed.
According to the Ljung-Box (10) statistics for serial cor-
relation in Table 1, we cannot reject the null hypothesis for
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Fig. 8. Sample autocorrelation functions of St , rt and RVt time series in
the TOPIX data (1997–2013).

Table 2. Results of t-ratio τ̂µ estimated by the DF test.

Assumed models St rt RVt

AR(1) −0.632 −63.28 −24.68

(0.421) (0.001) (0.001)

AR(1) with drift −1.929 −63.27 −31.05

(0.328) (0.001) (0.001)

TS −1.796 −63.28 −31.85

(0.694) (0.001) (0.001)

Note that TS represents trend-stationary and p-values for the null hypoth-
esis are reported in parentheses.

Table 3. Results of the R/S analysis.

Used methods St rt RVt

Hurst-Mandelbrot

V̂ 1245.19 66.35 561.00

Ĥ 0.855 0.503 0.759

Lo

V̂ 880.86 65.68 440.13

Ĥ 0.813 0.502 0.730

rt at the 0.01 significance level, but the null hypothesis for
St and RVt is rejected at this level. Thus, the St and RVt se-
ries show apparent serial correlations. As a graphical verifi-
cation, we present sample autocorrelation functions for St ,
rt and RVt in Fig. 8. The correlogram impressively shows
that the sample autocorrelation functions of both St and RVt

slowly decay, whereas that of St is one at all lags.
5.2 Stationarity and long-range dependency

In this subsection, we examine the stationarity and long-
range dependency of the series before setting the pricing
options under fBm.

First, we perform a unit root test on the series, namely
the Dickey-Fuller (DF) test proposed by Dickey and Fuller

Table 4. Estimated results of the ARFIMA model.

Estimates St rt RVt

d̂ 0.388 0.119 0.341

Ĥ 0.888 0.619 0.841

Table 5. Summary of the stationarity and long-range dependency result.

St rt RVt

Stationarity No Yes Yes

Long-range dependency Yes No Yes

(1979). The unit root problem in a time series arises when
either the autoregressive or moving average polynomial of
an ARMA model has a root on or near the unit circle
(Brockwell and Davis, 2002). We provide a brief theoretical
explanation of the unit root test in Appendix D since a unit
root in either of these polynomials has important implica-
tions for modeling. Table 2 shows the t-ratio τ̂µ estimated
by the DF test for each time series analyzed by the two mod-
els. While the St exhibits no obvious stationarity property,
the rt and RVt series are probably stationary processes.

Second, to examine the LRD of the data, we conducted
an R/S analysis using the Hurst-Mandelbrot and the Lo
methods introduced in the previous section. The results of
this analysis are presented in Table 3. The Hurst exponent
H of the rt by each method is approximately 0.5, implying
that the process follows a standard Brownian motion. In
contrast, the St and RVt series are likely to have long-range
dependency since their Hurst exponents lie within (1/2, 1).

In addition, we estimated the memory parameter d in
the ARIMA model, adopting the Sperio estimator proposed
by Reisen (1994). Table 4 shows the estimated d and H
for each time series, calculated by Equation (1). All the
estimated Hurst exponents in Table 4 are slightly higher
than those in Table 3.
5.3 Option pricing under fBm

Finally, we examined option pricing under fBm by the
method of Norros et al. (1999). We confined this analysis
to the RVt time series since the RVt data exhibit simultane-
ous stationarity and long-range dependency properties, as
shown in Table 5.

Figure 9 shows how the European call option prices dif-
fer between H = 0.50 and H = 0.7592, estimated by the
Hurst-Mandelbrot method. For comparison, the price dif-
ferences between H = 0.50 and H = 0.7301 estimated by
Lo’s method are presented in Fig. 10. In both figures, the
differences are enhanced around the at-the-money (here de-
noting the strike price k = 100), and increase as the time
to maturity decreases. These figures are plotted identically
to Fig. 5 in the simulation study, but they exhibit a dis-
tinctly different shape. These shape differences might be
explained by the different values of the volatility parame-
ters in the simulation and the empirical study (σ = 0.5 and
σ = 0.01489, respectively). The volatility is well known as
the most sensitive input parameter in pricing options.
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Fig. 9. Differences in call prices between fixed H = 0.50 and
H = 0.7592.
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Fig. 10. Differences in call prices between fixed H = 0.50 and
H = 0.7301.

5.4 Discussion
The classical R/S statistic intrinsically depends on

ranges chosen arbitrarily by researchers. According to
Teverovsky et al. (1999), the Lo’s test, which is based on the
modified R/S statistic V , tends to be very conservative in
rejecting the null hypothesis of non-long-range dependence
series. The test performs very well and gives the correct
results when a series exhibits only short-range dependence.
However, the test still tends to incorrectly accept the null
hypothesis when the series is long-range dependent.

Hence we introduce alternative semi-parametric methods
of estimating the Hurst exponent H = d + 1

2 which are
known as a class of local Whittle estimators mainly ana-
lyzed by Robinson (1995), Shimotsu and Phillips (2005)
and Shimotsu (2010). We will now give a brief explanation
of these methods following Beran et al. (2013) and Kumar
(2014).

The first alternative is the local Whittle (LW) method
proposed by Künsch (1987) and Robinson (1995), which
assumes the behavior of the spectral density f (λ), when
λ = 0, Suppose that Xt is a stationary process with spectral
density

fX (λ) ∼ c f |λ|1−2H as λ → 0

Table 6. Estimated results of the LW and 2ELW tests.

Used methods St rt RVt

LW

d̂ 1.058 0.053 0.465

Ĥ 1.558 0.553 0.965

2ELW

d̂ 1.059 0.057 0.455

Ĥ 1.559 0.557 0.955

Note that Ĥ is naı̈vely estimated from Ĥ = d̂ + 0.5.

where − 1

2
< d <

1

2
and c f �= 0.

The empirical analog to the spectral density is the period-
gram

In,X (λ) = 1

2πn

∣∣∣∣∣ n∑
t=1

Xt e
−i tλ

∣∣∣∣∣
2

for λ j = 2π j

n
.

Then, given d ∈ � ⊆ (− 1
2 , 1

2 ), the LW estimator of d is
defined by

d̂LW = arg min
d∈�

Km(d),

where

Km(d) = log Gm(d) − d

(
2

m

m∑
j=1

log λ j

)
,

and for the spectral density satisfying the equation, the
Whittle log-likelihood function is given as:

ĉ f = Gm(d) = 1

m

m∑
j=1

In,X (λ j )

λ−2d
j

,

where λ j = 2π j/T and G is a constant. Robinson (1995)
derived the asymptotic distribution of d̂LW under some as-
sumptions that mimic those for the GPH estimator sug-
gested by Geweke and Porter-Hudak (1983):

√
m(Ĥ − H) ⇒ N (0, 1/4) as N → ∞.

For more details, see Beran et al. (2013).
The LW estimator introduced above is consistent for d ∈

(−0.5, 1) and asymptotically normal for d ∈ (−0.5, 0.75).
The issue of nonstationarity has been addressed more com-
pletely by Shimotsu and Phillips (2005). They proposed
correcting the discrete Fourier transform by adding a com-
plementing term, thereby ensuring a valid approximation
that holds for every value of d. This is a so-called exact
LW (ELW) procedure. Furthermore, Shimotsu (2010) pro-
posed the two-step ELW (2ELW) estimator which is con-
sistent and has the same limiting distribution as the LW and
ELW estimators under −0.5 < d < 2.

Table 6 shows the estimated results of the LW and 2ELW
tests using MATLAB codes*2 provided by Professor Shi-
motsu. The estimate of Ĥ obtained from St is abnormally

∗2http://shimotsu.web.fc2.com/Site/Matlab Codes.html
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large while the values of rt and RVt are reasonable in com-
parison to the previous results. It has been considered that
the relational expression Ĥ = d̂ + 0.5 cannot be simply
applied to a non-stationary time series such as St .

6. Conclusion
The objective of this paper was to study European option

pricing under fBm with application to RV. We confined our
study to the RV measure because the RV uniquely expressed
both stationarity and long-range dependency properties in
the financial time series, as shown in our empirical study.
The Black-Scholes differential equation is not well defined
when the underlying assets follow fBm with H �= 1

2 be-
cause the fBm is not a semimartingale. Thus, we computed
European option prices using the fractional Black-Scholes
formula proposed by Norros et al. (1999).

From our simulation study, we concluded that the Eu-
ropean call option prices are much more sensitive to the
Hurst exponent H as the time to maturity reduces (where H
ranges from 0 to 1). The price differences also widen with
increasing H . Furthermore, the differences in the European
call option prices exhibited substantially different behaviors
in the simulation and empirical studies. We attributed these
differences to the different volatility parameters σ = 0.5
in the simulation and σ = 0.01489 in the empirical study.
The volatility is well recognized as the most sensitive input
parameter in pricing options.

Acknowledgments. This work was supported by JSPS KAK-
ENHI Grant Number 26380279 and 15K03406.

Appendix A. Radon-Nikodym Derivative for fBm
Let Xt be a stochastic process driven by

Xt = Zt + at,

where a ∈ R and Zt is an fBm under the probability mea-
sure P . We can change the measure of process Xt via the
Radon-Nikodym derivative of Q with respect to P:

d Q

d P
= exp

(
−aMt − 1

2
a2〈M, M〉t

)
, (A.1)

which yields a stochastic process X without drift under the
new probability measure Q. Mt in Eq. (A.1) is given by

Mt =
∫ t

0
c1u

1
2 −H (t − u)

1
2 −H dwu,

where c1 = [
2H�

(
3
2 − H

)
�H + 1

2

]−1
and Mt is a martin-

gale with independent increment and zero mean. The vari-
ance of Mt is given by

E[M2
t ] = c2

2t2−2H , c2 = cH

2H
√

2 − 2H
.

In terms of this expression, we can rewrite the Radon-
Nikodym derivative (A.1) as

d Q

d P
= exp

(
−aMt − 1

2
a2c2

2t2−2H

)
. (A.2)

When H = 1
2 , Eq. (A.2) reduces to the change of measure

formula in standard Brownian motion.

Appendix B. Discrete Approximation of fBm
Discrete approximation problems for fBm can be cat-

egorized into three types depending on their H values
(Neuenkirch et al., 2010) as follows:

1) When H > 1/2, the Euler approximation con-
verges at the rate n−(2H−1)+ε for arbitrarily small
ε > 0 (Neuenkirch and Nourdin, 2007; Davie, 2008;
Mishura and Shevchenko, 2008).

2) When H = 1/2, the approximation reduces to a
discrete approximation of standard Brownian motion
(Kloeden and Platen, 2010).

3) When 1/3 < H < 1/2, the solution should be ap-
proximated by a Milstein-type scheme or a more so-
phisticated scheme (Lyons and Qian, 2003; Gubinelli,
2004). Moreover, it is easily seen that when H < 1/2,
the standard Euler scheme does not converge as the
step size reduces to zero, even in the one-dimensional
case. In fact, consider the one-dimensional standard
differential equation

d Xt = Xt dwH
t , X0 = 1,

whose exact solution is given by Xt = exp(wH
t ). The

Euler approximation of this equation at t = 1 is given
by

X (n)

1 =
n−1∏
k=0

(1 + (wH
(k+1)/n − wH

k/n)).

For n ∈ N sufficiently large, a Taylor’s expansion gives

X1 − X (n)

1

= exp(wH
1 )

− exp

(
n−1∑
k=0

log(1 + (wH
(k+1)/n − wH

k/n))

)
,

= exp(wH
1 )

− exp

(
wH

1 − 1

2

n−1∑
k=0

|wH
(k+1)/n − wH

k/n|2 + ρn

)
,

where ρn
a.s.→ 0 for n → ∞ for H > 1/3. Now, it is

well known that

n−1∑
k=0

|wH
(k+1)/n − wH

k/n|2
a.s.→ ∞,

when H < 1/2, so we have X (n)

1
a.s.→ 0. However, such

one-dimensional equations converge under a Milstein-
type scheme (Gradinaru and Nourdin, 2009).

Furthermore, Neuenkirch et al. (2010) demonstrated
three different regimes for the convergence rate of the ex-
act root mean square in the Euler scheme depending on the
Hurst parameter H ∈ (1/4, 1).

1) When H < 3/4, the exact convergence rate is
n−2H+1/2.

2) When H = 3/4, the exact convergence rate is
n−1

√
log(n).

3) When H > 3/4, the exact convergence rate is n−1.
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where n denotes the number of discretization subintervals.
Based on the above discussion, we now derive theorem

1 in Neuenkirch et al. (2010). Let B = (B(1), B(2)) be a
two-dimensional fBm with Hurst parameter H ∈ (1/4, 1)

indexed by R. We approximate

Xt =
∫ T

0
B(1)

s d B(2)
s , (B.1)

by the Euler and a trapezoidal scheme based on equidistant
discretizations. The standard Euler approximation of (B.1)
is explicitly given by

Xn
T =

n−1∑
i=0

B(1)
iT/n

(
B(2)

(i+1)T/n − B(2)
iT/n

)
. (B.2)

From this expression, we can determine the exact L2-
convergence rate of the Euler scheme.

Theorem B.1 (Theorem 1 in Neuenkirch et al. (2010))
Let XT and its Euler approximation Xn

T be given by
expressions (B.1) and (B.2), respectively. In addition, let

α1(H) = c0 + 2
∞∑

k=1

ck and α2(H) = H 2(2H − 1)

4(4H − 3)
,

where c0 and ck are constants defined in Neuenkirch et
al. (2010). Then,

∑∞
k=1 ck is a convergent series if H ∈

(1/4, 3/4) and

E|XT − Xn
T |2

=



α1(H) · T 4H · n−4H+1 + o(n−4H+1)

for H ∈ (1/4, 3/4),

9
128 · T 3 · log(n)n−2 + o(log(n)n−2)

for H = 3/4,

α2(H) · T 4H · n−2 + o(n−2)

for H ∈ (3/4, 1).

At the end of this section, we introduce a limit theorem
for the asymptotic error distribution of the Euler scheme
proposed by Neuenkirch et al. (2010).

Theorem B.2 (Theorem 3 in Neuenkirch et al. (2010))
Define XT , Xn

T and α1(H), α2(H) as above. Moreover, let
Z be a standard normal random variable. Then

1) Case 1/4 < H ≤ 3/4. The following central limit
theorems hold:

lim
n→∞ n2H−1/2(XT − Xn

T )
�=

√
α1(H)T 2H · Z ,

for H ∈ (1/4, 3/4) and

lim
n→∞ n(log(n))−1/2(XT − Xn

T )
�= 3

4
√

8
T 3/2 · Z ,

for H = 3/4 where
�= denotes convergence in law.

2) Case H > 3/4. Let R1 and R2 be two independent
Rosenblatt processes (Neuenkirch et al., 2010) for the
definition). Then we have

lim
n→∞ n(XT − Xn

T )
�=

√
2α2(H)T 2H · (R1 − R2).

Appendix C. Portfolio Strategies

Self-financing portfolio Consider a financial market with
n + 1 asset price processes S0, S1, . . . , Sn , and denote
the corresponding vector process by S. We consider
an adapted portfolio process h = (h0, h1, . . . , hn) and
define the value process V h associated with h by the
standard formula

V h
t =

n∑
i=0

hi
t Si

t = ht St ,

where the equality between random variables is inter-
preted as equality P-almost surely. In continuous time,
the self-financing concept becomes more complicated.
However, we can specify a putative minimum require-
ment; that a buy-and-hold portfolio, i.e., a portfolio
that remains constant over a fixed time interval, be
self-financing over that interval. Let us consider the
time interval [t0, t1] and a portfolio h that is constant
over that interval. At any time t ∈ [t0, t1] the portfo-
lio value will be Vt = ht St . Since h is constant, the
portfolio value changes over the interval by an amount

Vt1 −Vt0 = ht1 St1 −ht0 St0 = ht0(St1 −St0) =
∫ t1

t0

ht d St ,

(C.1)
where the integral is defined trajectory-wise. Thus, we
have the standard Itô value dynamics

dVt = ht d St .

Wick-financing portfolio According to Eq. (C.1), the buy-
and-hold portfolio will satisfy

Vt1 − Vt0 = ht0(St1 − St0). (C.2)

However, to qualify as Wick-financing, the portfolio
should instead satisfy the condition

Vt1 − Vt0 =
∫ t1

t1

ht0 Su � dwH
u , (C.3)

which generally differs from (C.2) since (C.3) is not
generally consistent with

ht0 =
∫ t1

t0

Su � dwH
u ,

by non-commutativity of the Wick product i.e., (F �
G) · H �= F � (G · H).

As an illustrative example, we construct a portfolio
strategy that is self-financing in the standard sense but is
not Wick-financing. To this end, we refer to an exam-
ple in Björk and Hult (2005). We also demonstrate that
the use of “risk-neutral” pricing formulas based on the
Wick-financing concept, as suggested by Elliott and Van
Der Hoek (2003), leads to easily implementable arbitrage
possibilities in the standard naive sense.

Example C.1 (Example 1 in Björk and Hult (2005))
Consider the following portfolio strategy with initial capital
x > 0.
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1) At t = 0, we deposit all our money into a bank account and
wait until t = 1.

2) Since the short rate equals zero, amount x remains in the
account at t = 1.

3) At t = 1, we transfer all our money into a risky asset. Thus,
we buy x/S1 shares at price S1 and hold this position until
t = 2. Clearly, the value of our portfolio at t = 2 is given
by

V2 = x

S1
S2.

Since no capital has been added or withdrawn between
[0, 2], this portfolio strategy must be included in any rea-
sonable definition of a self-financing portfolio. However,
this strategy is not self-financing in the language of Elliott
and Van Der Hoek (2003). To prove this result, we must
show that

x
S2

S1
�= x +

∫ 2

0
h1

u Su � dwH
u .

In fact, even the expected values of the terms in the above
expression are unequal. For the right-hand side, we have

E

(
x +

∫ 2

0
h1

u Su � dwH
u

)
= x,

whereas for H �= 1/2, the expected value of the left-hand
side is

E

(
x

S1
S2

)
= x E

(
exp

{
wH

2 − 1

2
22H

}
exp

{
−wH

1 + 1

2
12H

})
,

= x exp

{
−1

2
(22H − 1)

}
E

(
exp

{
wH

2 − wH
1

})
,

= x exp

{
−1

2
(22H − 1)

}
exp

{
1

2
|2 − 1|2H

}
,

= x exp
{
1 − 22H−1

} �= x,

where St = s0 exp
{
wH

t − 1
2 t2H

}
.

Appendix D. Dickey and Fuller Test
Let X1, . . . , Xn be observations from the AR(1) model

Xt − µ = φ1(Xt−1 − µ) + Zt , Zt ∼ iid(0, σ 2), (D.1)

where |φ1| < 1 and µ = E[Xt ]. For large n, the maximum
likelihood estimator φ̂1 of φ1 is approximately N (φ1, (1 −
φ2

1)/n). If a unit root exists, this normal approximation is
invalidated (even asymptotically), so cannot be used to test
the unit root hypothesis H0 : φ1 = 1 vs. H1 : φ1 < 1. To
construct a test for H0, we write the model (D.1) as

∇ Xt = Xt − Xt−1 = φ∗
0 +φ∗

1 Xt−1 + Zt , Zt ∼ iid(0, σ 2),

where φ∗
0 = µ(1 − φ1) and φ∗

1 = φ1 − 1. Now let φ̂∗
1 be the

ordinary least squares estimator of φ∗
1 found by regressing

∇ Xt on 1 and Xt−1. The estimated standard error of φ̂∗
1 is

ŜE
(
φ̂∗

1

)
= s

(
n∑

t=2

(Xt−1 − X̄)2

)−1/2

,

where s2 = ∑n
t=2

(
∇ Xt − φ̂∗

0 − φ̂∗
1 Xt−1

)2
/(n − 3) and X̄

is the sample mean of X1, . . . , Xn−1. Dickey and Fuller de-

rived the limit distribution of the t-ratio τ̂µ := φ̂∗
1/ŜE

(
φ̂∗

1

)
as n → ∞ under the unit root assumption φ∗

1 = 0, which
allows a test of the null hypothesis H0 : φ1 = 1. The details
are provided in Brockwell and Davis (2002).
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