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Any factor that exert the influence on the process of JP¥/US$ exchanges rate has been discussed widely by
researchers in academic and business fields. In some cases, for instance, the cause of changes was explained
by many macro-economical factors and they tried to explain by stochastic and statistical model. However, a
heavy fall was necessarily expressed. We attempt to express the change of the JP¥/US$ exchange rate in
addition to it by a phase transition model with noise. We carried out some empirical studies with a fractal
analysis and statistical tests for verifying whether the series are random and generated by the stochastic
model. We found that time series on difference of JP¥/US$ exchange rates satisfy these properties. We com-
posed a stochastic differential equation as the model that might describe variability of the difference. We
regressed the potential function in the sense of the time average on the stochastic differential equation with
use of graphs of polynomials. This paper also presents the necessity of the number of order on the polynomi-
als with consideration on stability of singular points for perturbation, what we call structural stability in
Topology. With integration of the series reproduced by our model, we obtained series as numerical simulations
of the JP¥/US$ exchange rate. We compare these series with the time series data of the JP¥/US$ exchange
rate to evaluate our stochastic differential equation.
Key words: Central Rate, Stochastic Differential Equation (SDE), Stability on the Form of Probability Den-
sity Function

mination can be described by a mathematical model with
use of its structure and a noise term. The author assumes
that the stochastic process indicates the changes of eco-
nomic fundamentals.

Comparing time series data with the time series of their
difference (differenced time series), it generally seems to
be difficult to describe the differenced time series with
use of a deterministic dynamical-system because the rug-
gedness increase on the differenced time series and their
differentiability is lost (see Fig. 1). We proposed a method
to construct a stochastic differential equation (SDE) on
time series data with Markov property (Takada et al.,
2001). Our mathematical model, the SDE, is obtained as
necessary condition with the data.

Our method treats entire of stochastic processes that
generate observed data as a solution in this paper.

(i) Based on a certain assumption condition, we assume
an entire set of thinkable processes.

(ii) We translate the fact on the data into a mathemati-
cal expression as an assumption.

(iii) The set is reduced to a subset of the entire set with
the process (ii).
The subset is a family of stochastic processes. A math-
ematical model is extracted with recurrences of (ii) and
(iii). It has logical significance because the model must
be one obtained with this method, which generates the
time series data. We call the method reducing method af-
ter the process (iii) in this paper.

Here, entire of stochastic processes contains not only

1.  Introduction
According to Economics, it is said that the JP¥/US$

exchange rate is decided by demand and supply in the
foreign exchange market for a day (Stiglitz, 1993). So
many discussion are arisen on the factors exerts the
changes of JP¥/US$ exchange rate in the finance and eco-
nomic fields. To explain this, for example, Balance of
trade and Interest rate difference were used. As the number
of the factor increase on the regression, then multi-
colinearity occurs and the estimation fails. So far, we have
discussed how many factors should describe the process
of the JP¥/US$ exchange rate and the JP¥/US$ of the
exchange rate seemed to be composed not of randomness
but of chaos as reviewed below (Yoshimori et al., 1999,
2003). We concluded that the exchange rate on time se-
ries date makes up the deterministic dynamical-system.
But the method has not been established yet, which com-
poses the dynamical equation for the time series data.

The author carried out empirical studies employing sta-
tistical analysis to address the problem of finding the
number of variables describing the monthly JP¥/US$ ex-
change rate (Takada, 2013). Principal component analy-
sis extracts essential variables in economic fundamentals
such as and the money supply in Japan/US. We herein
examine whether the foreign currency exchange deter-
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Fig. 1.  This figure shows time series data on the US$/JP¥ (USD/JPY) exchange rate. (upper) Time series data on daily central rates, sampled
from November 1, 1985, to January 31, 2001. (bottom) Time series data showing the differences in the central rates shown in upper.

Ornstein-Uhlembeck process but also many other vari-
ous processes. We compose a SDE as the model that may
describe variability of the difference of the JP¥/US$ ex-
change rate. We empirically study weakly stability on the
differenced time series. We estimate a potential function
in the sense of the time average on this SDE by the prob-
ability density function. We regress the potential func-
tion with use of graphs of polynomials. We lead that the
potential function is not parabolic function which de-
scribes Ornstein-Uhlembeck process, but it must be forth
order with our analysis for the differenced time series data
of the JP¥/US$ exchange rate.

2.  Historical and Time Series Data
We obtained time series data of the central rate from

Bloomberg (see Fig. 1). The tick of the exchange rate is a
market price with the most dealings for a certain inter-

val. In this paper, we used here daily data.
Plaza Accord of September 19, 1985 and is believed

historically important in international finance studies
(Solomon, 1999). We obtained time series data of the cen-
tral rate after the Agreement from Federal Reserved Bank

of New York. The data V j{ } =j 1985 11 1

2001 1 31

. .

. .
 were daily sampled

from November 1, 1985 to January 31, 2001. The reason
why we have chosen the beginning point of data on No-
vember 1, 1985 is to remove the reflex process by Plaza
Agreement. The author assumes that variations of the
exchange rate in this term before the Sept. 11 attacks are
generated by a stationary process. The economic system
would be affected by the sudden eruption of violence.

We estimated correlation dimensions of the attractor on
which a dynamical system generates sampled time series
of central rates and their difference. The difference of the
central rates is defined as follows:
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Fig. 2.  This figure compares the central rate time series data and the series produced by the multiple regression model. The model uses two
principle components of the Japanese Wholesale Price Index, the Japanese Gold and Foreign Exchange Reserves, the Japanese Short-term
Interest Rate, the Japanese Current Balance, the U.S. Money Supply, and the U.S. Index of Industrial Production.

v jj j j= - = -( )+V V1 1985 11 1 2001 1 30 . . . . .

We assume the set of these days to be K at the following,
when the central rate is sampled.

We analyzed the time series after the Agreement in this
paper. We calculated the correlation dimension of each
expected attractor on which a dynamical system gener-
ates time series of the central rate. We have concluded
that it is necessary for two essential variables, principal
components z1, z2,

ˆ . .V t z t z t= ( ) + ( ) ( )1 58 0 37 11 2

to regress the time series {Vj}tŒK with the multiple regres-
sion analysis where Vt is a regression value at time t
(Matsugi et al., 2001). The determination coefficient on
the multiple regression formula was more than 0.80. How-
ever, we consider squares of error sum at both sides of
the interval remarkable (see Fig. 2); therefore the linear
model is not enough to express the central rates. Our pur-
pose of this study is what kind of mathematical models
describe the variations of central rates and their differ-
ence.

The differenced time series seem to be complex in com-
paring with time series data of the central rates (Fig. 1).
The variations on the difference of them are more furious
than the time series data and seem to be random. The dif-
ferential coefficients do not necessarily converge to bound
values. We mathematically show the fact with calcula-
tion on their correlation dimension and run tests in next
section. Based on the property of the differenced time
series, we apply the method proposed to construct a SDE
for a description of the JP¥/US$ exchange rate (Takada
et al., 2001). We also verify assumptions of the reducing
method and evaluate the SDE with the numerical simula-
tion here.

3.  Empirical Study for Differenced Time Series
and Their Randomness

We mathematically compare the time series data of the

central rate with the differenced time series. We show that
the later is more complex than the former with calcula-
tion of the correlation dimensions and statistics.
3.1  A method of fractal analysis

Using the embedology, we calculated the correlation
dimension of the reconstructed attractor on which a dy-
namical system generates time series of JP¥/US$ ex-
change rates and their difference. We compose the fol-
lowing delay coordinates that are m dimension vector
system:

  
x j j j j mx x x= ( ) ( )+ + -t tL ( ) ,1 2

where t is the sampling time and negative sign of t, 2t,
..., (m–1)t mean delay time. An orbit with delay coordi-
nates (2) is embedded in m dimensional phase space (see
Appendix A). Assuming that a dynamical system on n
dimensional compact manifold generates time series, it
is possible to think that an attractor on the dynamical sys-
tem can be reconstructed as the orbit if the time series is
observed for a long while. According to Takens’ theorem
(Takens, 1981), a transform from the time series to the
attractor is embedding on the condition of m ≥ 2n + 1
(Appendix A). The attractor and the manifold are isomor-
phism.

It is important on the theorem mentioned above that
the transformation F onto the delay coordinate is embed-
ding. If the transformation F is embedding, it is immer-
sion; therefore the fractal dimension of the attractor is
preserved (Ikeguchi and Matozaki, 1996). Calculating the
fractal dimension of the attractor with delay coordinates;
we can analyze the geometrical structure of the manifold
M.

The phase space in which we have embedded coordi-
nates with delay time can be delimited with hyperspheres
whose radius is assumed to be e. The number of these
hyperspheres is assumed to be n(e). The probability that
the embedded points are contained in that sphere whose
center is xj is assumed to be Pj. The correlation dimen-
sion of the attractor with delay coordinates is defined as
follows:
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Fig. 3.  This figure shows the relationship between the dimension of the embedding space and the correlation dimension of the reconstructed
attractor on which a dynamic system generates the JP¥/US$ exchange rate time series. The time series are sampled on a daily basis in left and
on a monthly basis in right.
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where C(e) is the correlation integral (Appendix A).
In general, it seems to be difficult to calculate the theo-

retical limit on Eq. (3) because of the resolution- limit of
the observation. For instance, the resolution-limit is 0.05
Yen as a lower bound on the amount of dealings of this
exchange rate. Based on this formula (3), we calculated
regression coefficients D2(m) as the correlation dimen-
sion of the attractor with delay coordinates on each em-
bedding space with the following method and obtained
the presumed correlation dimension for it.

Calculation Method (Sano and Sawada, 1985) for each
embedding space whose dimension is m.
1) We integrated C(e), the correlation integration.
2) We regressed a line on the figure of loge versus logC(e)
at the range –4 £ logC(e) £ –2. This regression coeffi-
cient is assumed to be D2(m).
3) The calculated D2(m) is saturated in the embedding
space with enough high dimension (m ≥ 2n + 1) from the
theorem. The saturated value is assumed to be a correla-
tion dimension D2.
3.2  Results of fractal analysis

With this Calculation Method, we estimated D2(m) in
each m dimensional embedding space (m = 1, ..., 10).
Fractal dimension of the attractor could be calculated with
increase of the dimension of embedding space because
the embedding space can sufficiently include the attractor.
Based on the theorem (Appendix A), D2(m) are saturated
and we can accurately estimate the correlation dimension
of the attractor as the partial manifold in higher dimen-
sional embedding space. If the time series were gener-
ated by a dynamical system on 2-dimensional compact
manifold, we can estimate the correlation dimension of it
in 5-dimensional embedding space at least.

In Fig. 3.1, we show the relationship between dimen-
sions of the embedding space and the reconstructed
attractor on which a dynamical system generates the time

series of the JP¥/US$ exchange rate. D2(m) converged to
a bounded value 1.10 in more than 5 dimensional embed-
ding spaces. That is, it is possible for 2 independent vari-
ables at most to describe the time series. In addition, we
show the relationship between dimensions of the embed-
ding space and the attractor on which a dynamical sys-
tem generates another time series sampled monthly in Fig.
3.2 to verify the regularity on the time series of the JP¥/
US$ exchange rate in accordance with the following ex-
perience rule.

Empirical Law (Ramsey and Yuan)  If the measured val-
ues of the correlation dimension increase with an increase
in the number of sampling data, the time series can be
considered to be random numbers and if the values de-
crease, we can believe that they are generated by a chaos
system.

As a result, D2(m) converged to a bounded value 1.39
in more than 5 dimensional embedding spaces. We ad-
mitted that the measured values of the correlation dimen-
sion decreased as the number of sampling grew. We have
believed that a chaos system generates the time series.
That is, it is mathematically suggested that a determinis-
tic equation can describe the time series of the JP¥/US$
exchange rate.

We also show the relationships between dimensions of
the embedding space and the attractor on which a dynami-
cal system generates the differenced time series of the
central rates. In Fig. 4, we can compare the relationship
on the time series sampled daily with monthly. Both D2(m)
did not saturate in less than 10 dimensional embedding
spaces. We also admitted that the measured values of the
correlation dimension increased as the number of sam-
pling grew. We have concluded that a stochastic process
generates the differenced time series.
3.3  Statistical tests

With statistical tests, we verify whether we consider
time series of JP¥/US$ exchange rates and their differ-
ence to be random. We use run tests and rank tests that
are non-parametric methods (Appendix C). The run test
is used for verification of hypothesis “the time series is
random”. A significant point of verification on the number
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Fig. 4.  This figure shows the relationship between the dimension of the embedding space and the correlation dimension of the attractor on which
a dynamic system generates the differenced time series of the central rates. The differenced time series are sampled on a daily basis in left and
on a monthly basis in right.

Table 1.  This table shows the results of run tests and rank tests used to
determine the randomness in each time series. The figures are the
statistical test values of the time series and of the differenced time
series, sampled on a monthly and a daily basis, respectively.

Time series/tests Rank Run

Time series sampled monthly –8.42 –10.63
Time series sampled daily –45.03 –57.20
Differenced variations sampled monthly 1.00 –2.17
Differenced variations sampled daily 1.54 1.85

of run is introduced to the run test. This method is com-
petent for a large number of samples. The rank test is
used for verification of the same hypothesis “the time
series is random without tendency of increase or decrease
at a uniform pace”. Both statistical test values conform
to normal distributions. The reference value is 1.96 for a
significant level 0.05.

We calculated the statistical test values of the time se-
ries sampled monthly and daily, four kinds of the time
series, with statistical test values zL, zQ. As the values are
shown in Table 1, the null hypothesis was rejected except
for the differenced time series of the central rates with
rank tests. Especially, the null hypothesis was also re-
jected on the differenced time series sampled monthly
with run tests.

Methods of statistical tests could be applied for time
series of the JP¥/US$ exchange rates and their difference.
We could suggest randomness on the differenced time
series data sampled daily with use of plural methods.

4.  Stochastic Model on Differential Process of
JP¥/US$ Exchange Rate

In this section, we review the reducing method men-
tioned in Section 2 and construct a mathematical model
for time series data. We assume that there is a process
generating the time series of the JP¥/US$ exchange rate.
We obtain the SDE for description of the process. We also
verify assumptions of the reducing method.
4.1  Review the reducing method to construct a
stochastic differential equation

We showed the following reducing method to construct
a mathematical model, on time series data (Takada et al.,
2001). The model is based on the stochastic theory. Defi-
nition on this reducing method is as follows.

Definition 2  This reducing method covers a continuous
stochastic process on state space W. We assume a condi-
tional probability to be P(x|y, t) in such case as the ran-
dom process X(t) satisfies conditions of X(0) = y(ŒW) and
X(t) = x(ŒW).

Assumption 1  The described stochastic process is one
of the Markov processes (Markovian).

Assumption 2  X(t) is not an anomalous process that rap-
idly extends far in a short time.

Assuming Markov property and Physical demand on the
process X(t) mentioned above, the process must be de-
scribed by the Fokker-Plank equation (Appendix B). On
the contrast, the SDE:

dv t

dt
a v b F t

( ) = ( ) + ( ) ( ) ( )n , 4

corresponds to the Fokker-Plank equation (FPE) with
method of the stochastic Liouville equation (Kubo, 1963).
This FPE goes over into normalized FPE with permuta-
tion of variables in accordance of Stratonovich’s rule or
condition of b ∫ 1. With this condition, this normalized
stochastic differential equation (NSDE) corresponds to a
normalized FPE with calculation of moments of transi-
tion probability uniquely (Goel and Richter, 1978). The
problem finding the NSDE corresponding to a given FPE
has only one solution though it does not have a unique
solution in the family of Eq. (4) or general stochastic dif-
ferential equations (Appendix B). The following relation-
ship was shown in the reducing method to construct the
NSDE for description of time series obtained with dis-
creet observation of the process X(t).

g(v) = Cexp[–2U(v)]. (5)

This formula shows the relationship between a stationary
probability density function g(v) on the FPE and time-
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Fig. 5.  We empirically study the differenced time series of the central rate, sampled on a daily basis. The autocorrelation function decreases
exponentially, and falls below 1/e (upper). Typical numerical integrations of the moments of the transition probability converge to zero as n
increases (bottom).

averaged potential function U(v) on Eq. (4) (Appendix
B). Therefore, the following proposition is obtained by
differentiating both sides of Eq. (5) (Takada et al., 2001).

Theorem 1  The number of stationary points and their
positions z on the potential function U(v) and on the sta-
tionary probability density function g(v) are correspond-
ing.

Many of data that expected to be described with a SDE
seem to be in a certain dynamical equilibrium state. The
stationary probability density function g(v) can be ob-
tained with a normalized histogram of time series practi-
cally. With Proposition 1, the form of the graph of logg(v)
corresponds to the form of the graph of the potential func-
tion U(v) in the meaning of time average on Eq. (4) that
describes the process. We can consider NSDE to be the
mathematical model for description of them, which is
constructed with the time series data.
4.2  Empirical Analysis of assumptions with
differenced time series data

The above-mentioned method can be applied to a con-
struction of the mathematical model corresponding to the

time series on differential of the central rates. We verify
suitability for the assumptions in Subsection 4.1 with the
differenced time series data {vt}tŒK. However, it is nec-

essary for us to normalize from {vt}tŒK into {˜ }vt t KŒ  by
the following transformation:

  

v v
v v

vt t
t t

t

a ˜
˙

,=
-
( ) ( )

s
6

to construct the SDE (4) as b = 1 (NSDE), that is a math-
ematical model for description of time series. s ( ˙ )vt  is a
standard deviation on accelerations of the central rates.

It has been calculated that the stationary autocorrelation
function on Markovian decays exponentially (Gardiner,
1983). Assumption 1 and 2 are examined with each veri-
fication:

Empirical Analysis of Assumption 1  The autocorrelation
function of time series rvv(k) decreases exponentially and
falls below 1/e after that, where k means lag-time.

Empirical Analysis of Assumption 2  The numerical
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Fig. 6.  We regress the logarithmic histograms on the differenced time series with the graphs of each polynomial of degree n. We show the
relation between n and the coefficient of determination R on each regression of the logarithmic histogram.

integration of the moments of transition probability:

M v u v P t Wn
n

u v
u

( ) = -( ) ( ) ( )
Œ
Â ˜ , ˜ t
W

7

s.t. P
V v V u

V vu v
t t

t
t K

, ˜

# ˜

# ˜
,t t( ) =

=( )« =( ){ }
=( )

+

Œ

converges zero as n increases, where character # means
“the number of”, W is the minimal scale of the dealing
(0.05 ¥/$) and t is the sampling time (1 [day]).

The results of empirical analysis of Assumption 1 and
Assumption 2 are shown in Fig. 5. Then, we could be-
lieve that Assumption 1 and 2 were suitable to the ob-
tained data. We also assumed that the differenced time
series were a kind of Markov process. In the following,
we treat the differential process of the JP¥/US$ exchange
rate as a Markov process.
4.3  Construction of the approximate mathematical
model

We assumed that the process of JP¥/US$ exchange rate
was in a certain dynamical equilibrium state. Based on
the reducing method in Subsection 4.1, the mathematical
model can be constructed. Before we lead a mathemati-
cal model on the process of the JP¥/US$ exchange rate
with the reducing method, we have standardized time se-
ries {vt}tŒK. These standardized time series are assumed

to be {˜ }vt t KŒ . We have regressed logarithmic histograms

on this differenced time series {˜ }vt t KŒ  with graphs of each
polynomial of degree n. We calculated the coefficient of
determination R (Kendall and Stuart, 1958). The follow-
ing NSDE can be led approximately as a mathematical
model on the process of difference of the JP¥/US$ ex-
change rates with the regression polynomial:

dv

dt
ka v F tk

k

k

n˜
˜ ,= + ( ) ( )-

=
Â1

2
81

1

where F(t) is the standardized fluctuating force gener-

ated with the Gauss type stochastic process. ak are re-
gression coefficients of the polynomial for k (natural num-
bers) on the regression with the least square method. The
relation between n and R on each regression of the loga-
rithmic histogram is shown in Fig. 6. R tended to 0.9 at n
= 4 and was sufficiently large there.

Demand on Stochastic
It must be more than 0.9; the value R shows the suit-

ability for the regression curve and the relative impor-
tance on correlations of different magnitudes (Robert and
James, 1969).

Demand on Geometry
The time-averaged potential function should be struc-

turally stable with consideration of the perturbation ex-
erted on the control-system.

With the relation obtained by differentiating both sides
of Eq. (B.4), we could believe that each time-averaged
equilibrium space on the NSDE was approximated suffi-
ciently with the graph of a polynomial of degree 3 (Ap-
pendix B). Based on the Demand on Geometry, the time-
averaged potential function must be approximated by the
polynomial of 4 degree because the regression polyno-
mial that is more than 5 degree has degenerate singular
points or more than 3 minimal points.

The logarithmic histogram on the time series {˜ }vt t KŒ
and its typical regression with the graph of a polynomial
of degree 4 is shown in Fig. 7. Here, coefficients of the
regression polynomial were as follows:

dv t

dt
ka v F tk

k

k

˜
˜ ,

( ) = + ( ) ( )-

=
Â1

2
91

1

4

where (a1 a2 a3 a4) = (0.18 –0.43 –0.12 –0.0070).

5.  Simulations and Evaluation
We can easily formulate a difference equation into the

first-order differential equation; therefore, Eq. (9) is an
advantageous expression for the numerical computation.
The computations give numerical solutions of the SDE,
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Fig. 7.  We show the logarithmic histogram of the differenced time series and its typical regression with the graph of a polynomial of degree 4.

Fig. 8.  We compare the central rate time series and the time series generated by the numerical simulation.

which are not probability density functions but movement
of the variable. We can compare the solutions with the
time series data and verify the reducing method to con-
struct the SDE.
5.1  Numerical simulations of our mathematical model

We proposed a construction method of the mathemati-
cal model on time series data with Markov property and
obtained a SDE as a mathematical model. To be concrete,
we applied the method to the differenced time series data

of the central rate {˜ }vt t KŒ  and constructed a mathemati-

cal model (9) of {˜ }vt t KŒ . In this section, we calculate the
numerical simulation on Eq. (9) and evaluate the SDE
obtained for the description of the JP¥/US$ exchange rate
time series in Subsection 4.3. The SDE cannot describe
the central rates but the difference of them; therefore it is
necessary to integrate with a time valuable for the de-
scription. We reproduce the central rate with the integra-
tion.

The initial condition –1.12 was given by the normal-
ized difference of the time series data of the central rate.
We used pseudo random number series obtained by the
linear congruential method (Lehmer, 1951). Series of the
pseudo random numbers whose domain was [0, 1) were
standardized respectively because of the standard devia-
tion on the Gaussian white noise. We introduced these
series into the white noise terms on the difference equa-

tion that we rewrote Eq. (9) into. We calculated the dif-
ference equation with the Runnge-Kutta-Gill formula by
the time step 1. We transformed values on the time series
obtained with this method in accordance of the inverse
transformation of Eq. (6). Thus, we regenerate the

differenced time series of the central rates {ˆ }vt t KŒ  and
integrated them on each time step to compare the time
series data of the central rate. That is, we regressed vari-
ations of the central rate with use of the following series:

ˆ ˆ    . . . . .. .
. .

V Vj i
i

j

v j+
=

= + = -( )

( )

Â1 1985 11 1
1985 11 1

1985 11 1 2001 1 30

10

We show this time series obtained with the method pro-
posed in this paper and time series of the central rate (Fig.
8). We compare these series and evaluate the NSDE (9)
in the next section.
5.2  Evaluation for the mathematical model

In the previous researches, the time series on the cen-
tral rate were described by the multiple regressions with
economic variables. We compare these previous regres-
sion models with the SDE (9) here.

Their coefficient of determination R2 is about 0.72 with-
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Fig. 9.  This figure shows that the inequalities (V)i < 2.24 do not hold for any M, except for values expressed for a period of less than a week.

out spick functions that express unexpected political
speech (Moriyama, 1999). We showed our value R2 in
Section 2. Obviously, the magnitude for the explanation
of the regression model had been improved by our re-
gression model with used of two essential components,
the first principal component of six economic variables
and so on. We show the comparison on the time series of
the central rate with the time series reproduced by our
regression model on Fig. 1. We found that the error at
both ends was comparatively large on those figure. We
reflected that the linear sum has been mostly used as re-
gression models in economics and believed that we should
try to compose the non-linear model for description on
the time series of the central rate.

We obtained the mathematical model for the process
on the differential of the central rate v(t) in accordance of
Assumption 1 and Assumption 2. The mathematical model
is a SDE. We evaluate the magnitude for the explanation
with the SDE here. We composed the SDE (9) that de-
scribes the process on the difference of the JP¥/US$ ex-
change rate. The first term on the right hand of the SDE
is nonlinear function that depends on the autonomic vari-
able. We specially emphasize on the non-linearity of the
autonomic variable on this SDE.

The time series of the central rate ˆ
. .

. .
V j{ } =j 1985 11 1

2001 1 30
 were

reproduced by the integration with a variable t (see Fig.
8). We found that reproduced variations were smooth in
comparison of the time series data of the central rate. We
believed that the smoothness was caused by the integra-
tion (10). But 0.88 was obtained as the correlation coef-

ficient between ˆ
. .

. .
V j{ } =j 1985 11 1

2001 1 30
 and V j{ } =j 1985 11 1

2001 1 30

. .

. .
 in our

result. We also concluded that the errors at both ends were
less than the errors with use of the multiple regression
formula (1). We can expect depreciation of yen against
the dollar in recently well with the SDE (9).

6.  Discussion
The JP¥/US$ exchange rate time series is not assumed

to be random but the differenced time series is with cal-

culation of the correlation dimensions and so forth in
Section 3; therefore, we obtained the SDE for the descrip-
tion of the differenced time series of the JP¥/US$ ex-
change rate with the reducing method.
6.1  Evidence of SDE

We believed the control system on the normalized dif-
ference of the JP¥/US$ exchange rates in a certain dy-
namical equilibrium state. According to empirical stud-
ies in Section 3, we have thought that its process is one
of weakly stationary processes; therefore we could esti-
mate the time-averaged potential function on a SDE by
the probability density function. We have believed that
the SDE is appropriate as a mathematical model for their
difference. We could also show the appropriateness by
the numerical simulation with use of our SDE (9). Phase
transition occurred on our time-averaged potential by the
noise generated with the SDE. We believed that this phase
transition explained the sudden yen’s appreciation after
the Plaza Accord.

We attempt to show evidence that the process is one of
stationary processes with use of a test (S) (Appendix C).
This test was proposed by Okabe and Inoue (1994) and
Okabe and Nakano (1991). However, the test (S) has not
been obtained by mathematical theory but many experi-
ments using the data of which regularity and structure
were given. We have calculated values of the left side on
each test (M)i, (V)i, (O)i, which corresponds to time in-
terval. Inequalities except (V)i < 2.24 were satisfied for
any length of time intervals (Fig. 9). This result also gave
us evidence that the process on the normalized time se-
ries of difference of JP¥/US$ exchange rates is one of
weakly stationary processes. The test (S) was accepted
with that differenced time series data, of which the time
interval was less than a week. That is, we could believe
that the SDE was appropriate as the mathematical model
on the differenced time series for a week. We may have
to construct mathematical rules on connection of the
stochastic differential equations as a mathematical model
over a week. This mathematical model might be a de-
terministic equation as we claimed (Takada et al., 1999).
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We will be able to obtain a new economic rule interpret-
ing the mathematical model.
6.2  Condition on the SDE

In general, the SDE can be also written as a first-order
differential equation that depends on a random variable v
and fluctuating force F(t) in the inhomogeneous term:

dv t

dt
G v F t

( ) = ( )( ), ,

where F(t) is standardized fluctuating force generated with
a Gauss type stochastic process. The problem finding the
SDE corresponding to a given FPE does not have a solu-
tion uniquely. However, the solution is unique if we limit
the SDE as a type of following additive formula, which
is described as a sum of a function on the variable z and
the fluctuating force.

dv t

dt
a v F t

( ) = ( ) + ( ) ( )ˆ . 11

Goel and Richter (1978) have shown that this SDE corre-
sponds to a normalized Fokker Plank equation (FPE) that
describes a regular stochastic process with calculation of
moments of transition probability in accordance of
Stratonovich’s rule. The SDE is originally an element of
the set of the normalized Fokker Plank equations that are
solvable on a certain condition.

The integral in accordance of Stratonovich’s rule is,
what we call, Stratonovich’s integral (Appendix A). The
advantage of this integral is to be able to treat infinitesi-
mal calculus as ordinal Newtonian derivative or Liemann
integral. Its defect is not to be able to assume that time-
average of the second term on left side ·b(v)W(t)Ò equals
to zero. However, the time-average is equivalent to zero
with Ito integral (Appendix A). The following equation
is a relationship between Stratonovich’s and Ito deriva-
tive.

S dx a b
b

v
dt b v dB t( ) = - ∂

∂
Ê
ËÁ

ˆ
¯̃

+ ( ) ( ) ( )e 12

where (S)dx is the former derivative (Suzuki, 1994). A
problem of rule-of-calculation appears if the coefficient
of the white noise term depends on the random variable
b(v) on Eq. (4). Stratonovich derivative is equivalent in
Ito derivative on Eq. (11).
6.3  Presumption for the mathematical model

Based on the Eq. (5), we assumed the logarithm of ob-
served probability distribution as the solution of the FPE
for the difference of JP¥/US$ exchange rates. Based on
the time series data, we have led that the potential func-
tion in the sense of the time average is not a parabolic
function that describes the OU process, but it must be
expressed by a polynomial whose order is larger than 4.
Moreover, the potential function must be forth order if it
is structural stable. We mention the necessity of the
number of its order with the consideration on the struc-

tural stability.
Thus, we obtained the SDE as the mathematical model

for time series data that were assumed to be random. We
concluded the SDE (9) for the description on the
differenced time series of JP¥/US$ exchange rates. How-
ever, according to the result of the test (S) mentioned in
Subsection 6.1, we could determine time-averaged
potentials per moving intervals of which the length was
less than a week. We have believed that each time-aver-
aged potential function is different. It seems to be possi-
ble for the potentials to fluctuate with the ravages of time.
Static potential function on our SDE might be only a
mathematical approximation although the SDE described
the sudden yen’s appreciation after the Plaza Accord.
Based on the SDE constructed in this paper, we will try
to construct the theory to obtain a family of differential
equations that do not describe the difference but the ex-
change rate.

We have believed that the linear congruential method
is useful because this method is most fast generator on
the series of the pseudo random numbers and widely used
as the generator. But the problems of this method were
pointed out. For instance, they considered the period on
the pseudo random number to be short and the species on
the series fewer. We attempt to introduce Maximum-length
linearly recurring sequences into the noise term on the
difference equation that we rewrote Eq. (9) into for im-
provement of numerical simulation. We believe that we
can compare the time series data with the expectation-
path obtained from these numerical simulations and evalu-
ate the SDE for the description of them.

In the next step, we adopt economic fundamentals, es-
pecially the money supply in Japan, into the mathemati-
cal model of the exchange rate for recent decades because
current government, in an attempt to produce a weaker
yen and a period of high stock prices in collaboration with
the Governor of the Bank of Japan, are using the money
supply. A recent regression model could be obtained, com-
posed of the principal components in macroeconomic fac-
tors for t = 1985.10 to 2010.12. (Takada, 2013). The au-
thor compared three coefficients of principal components
in this recent regression model with those in the previous
one. In particular, the second and the third principal com-
ponents showed remarkable changes; therefore, it can be
proposed that foreign currency exchange determination
might be described by a non-equilibrium system.

7.  Conclusion
We could conclude here differenced time series of JP¥/

US$ exchange rates to be a kind of Markov processes.
We constructed the time-averaged potential function on
the SDE for variations of the differenced time series data.
We could reproduce the time series of the JP¥/US$ ex-
change rates with our SDE. We regressed the time series
data of JP¥/US$ exchange rate with time integral of the
values reproduced by numerical simulation of the SDE.
As the result of their comparison, we could improve the
mathematical model for description of the JP¥/US$ ex-
change rate.
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Appendix A:  Enumeration of Definitions and
Theorem

We enumerate definition and theorem to use in this pa-
per. First, we discussed a condition of the stochastic dif-
ferential equation (SDE) with rules of calculation. We
mention these definitions here. We assume n+1 division
of an interval to be a ∫ t0, t1, ..., tn ∫ b. Dn expresses a
maximum value of definition |tk+1 – tk| for any k.

Definition A.1 (S)

f B t dB t f
B B

B B
a

b

n

k k
k k

k

n

n

( )( ) ( ) = +Ê
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ˆ
¯ -( )Ú Â

Æ•
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D 0

1
1
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Definition A.2 (I)

f B t dB t f B B B
a

b

n
k k k

k

n

n

( )( ) ( ) = ( ) -( )Ú Â
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Æ

+
=

-

D 0

1
0

1

lim ,

where the function f is a element of C•(a, b) and Bk =
B(tk). We sum the left value of each interval with the defi-
nition A.2. The left value f(Bk) is independent on the in-
terval Bk+1 – Bk. Thus, the time average of their product
·f(Bk)(Bk+1 – Bk)Ò goes over into zero.

The following definition and theorem are useful for
Fractal analysis in Section 2.

Definition A.3  The correlation integral is described by
the following expression;

C
N

X Xi j
i j

N

e e( ) = - -( )
=
Â1

2
1

Q
,

,

where Q is Heviside’s function.

Theorem A.4 (Takens, 1981)  It is assumed that n dimen-
sional compact manifold M is given. A mapping F(f,g): M
Æ R2n+1 on the pair (f, g), i.e.,

  
F f f f, , , ,g

ng x g x g x( ) = ( ) ( )( ) ( )( ) ( )L 2 A.1

is a embedding, where f, g are C2-function and smooth.

One to one correspondence exists between M and 2n + 1
dimensional Euclidean space. The pair (f, g) by which
F(f,g) is assumed to be the embedding mapping is dense
in the function space (Tsuda, 1999). We can apply this
theorem if we consider that f is a diffeomorphic map-
ping on M, ft is flow on the dynamical system, and g
shows the observed value; therefore F on Eq. (A.1) trans-

forms from each point on the manifold M onto each de-
lay coordinate.

Appendix B:  The Method to Construct the
Stochastic Differential Equation

Takada et al. (2001) showed the theory to construct the
stochastic differential equation (SDE) for description of
time series observed the process X(t) discreetly with the
Assumption 1 and Assumption 2. If these are assumed,
the stochastic process X(t) can be described by the Fokker-
Plank equation (FPE). This stochastic differential equa-
tion goes over into the normalized Fokker-Plank equa-
tion

∂ ( )
∂

= - ∂
∂

( ) ( ){ } + ∂
∂

( )

∫ - ∂
∂

( ) ( )

g v v t

t z
a v g v v t

z
g v v t

z
J v v t

0
0

2

2 0

0

1

2

,
, ,

, , B.1

where g(v|v0, t) is a probability density function trans-
formed from P(x|y, t) and v0 is the initial condition with
the permutation of variables (Goel and Richter, 1978). A
strict stationary solution of Eq. (B.1) can be obtained by
Harken (1975). The stationary solution of Eq. (B.1) is as
follows:

g v C J a d d d
v v( ) = - •( ) - ( )È

ÎÍ
˘
˚̇

Ï
Ì
Ó

¸
˝
˛

( )È
ÎÍ

˘
˚̇

( )

ÚÚ Ú2 2 2exp exp ,x x z x x
z

B.2

where the stationary value J(v|v0, •) ∫ J(•) is a constant
and C is a normalization factor defined with the formula:
Ú–••g(x)dx = 1. Equation (B.1) can be led by calculating
moments of transition probability

M u v u P v u dvn
n( ) = -( ) ( ) ( )

Æ Úlim ,
t t

t
0

1
W

B.3

on the process that a stochastic differential equation (SDE)
describes (Goel and Richter, 1978). The problem finding
the SDE corresponding to a given FPE does not have a
solution uniquely. However, the solution is unique if we
limit the additive formula (11). With the operation of the
SDE corresponding to the FPE (B.1), the second term of
the right-hand side on Eq. (11) goes to 0 if we take time
averages of both sides of this equation. With
Stratonovich’s rule (Stratonovich, 1963), Eq. (11) can be
rewritten into an ordinary differential equation (ODE) on
the time average of the random variable v. a(v) = 0 is
equilibrium space of the ODE. On Eq. (11), a(v) = 0 means
the equilibrium space in the sense of the time average.
Hence, the space integral of the coefficient function a(v):

U v a d
v( ) = - ( ) ( )Ú x x B.4

is a potential function in the sense of the time average on
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Eq. (11). With this formula (B.4), the stationary solution
(B.2) can be rewritten as the Eq. (5) under a natural bound-
ary condition such as J(±•) = 0.

Appendix C.  Stochastic Tests
We discussed whether our theory could cover the time

series of JP¥/US$ exchange rate with some stochastic
tests. We give their method as follows.

Run test:  A value of each point of time series is com-
pared to a median of the time series, and the value is writ-
ten as;

a) a symbol “+” for a larger value
b) a symbol “-” for a smaller value

where the continuous symbols + or - are called a run. The
number of the continuous the symbol + is presented as m
and - is n. Length of the run L is defined as length of the
continuous group of the same symbol. If the length of the
run is too long, it shows that observed values makes the
same type of groups. Otherwise, if the different symbols
(+ and –) appears alternatively and the length of the run
is too short, it shows that the series have regularity. These
series of the observed value are not random series. Then,
we think verification of the randomness of the time se-
ries with a null hypothesis “the time series is not ran-
dom”. If the time series are random, the value L satisfies
the following relations (Minotani, 2000).

E L
mn

m n
[ ] =

+
+ ( )2

1 C.1

V L
mn mn m n

m n m n
[ ] = - -( )

+( ) + -( )
( )2 2

12 C.2

where E[L] is an average, V[L] is a standard deviation of
the random value L. If m and n are larger than 20 at least,
they can assume that the statistical test value ZL = (L –

E[L])/ V L[ ]  with a normal approximation of L composes

a standard distribution.

Rank test:  We think over the following pairs to verify
whether the time series X(t) monotonously increase or
decrease.

X(i) > X(j)

where i < j. We assume the number of the pairs to be Q.
According to easy consideration, the time series increase
at uniform pace if Q = 0 and decrease if Q = NC2. The
graph of the time series is linear in these cases. In gen-
eral, there are N! cases as permutations on the set {X(t1),
..., X(tN)}. We can obtain a stochastic distribution which
depends on Q. The average and standard deviation were
calculated by Kendall and Stuart (1958) with use of
Bernoulli’s number and cumulants of the distribution.

E Q N N V Q N N N[ ] = - [ ] = -( ) +( )1

4
1

1

72
1 2 5( ): .

We use statistical test value ZQ = (Q – E[Q])/ V Q[ ]  stand-

ardized by these factors E[Q], V[Q]. It is said that this
distribution goes over into normal distribution if N > 10
(Kendall and Stuart, 1958).

Test (S):  We consider difference of the time series to be
fluctuating force. We calculate the mean and standard
deviation on the time series of the difference to standard-
ize the time series of the difference. Each distribution of
the following statistical test values (M)i, (V)i, (O)i is as-
sumed to be a standard distribution by the center limit
theorem and low of a large number if their variations are
random and there are a number of data on the time series.

M
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-

Â1
1 2
, ,

,x x

where M is time interval (analytic interval) and n is lag
time. Ln,m

(1) + Ln,m
(2) expresses the data length of the ana-

lytic interval (Table 2). Their average, standard devia-
tion and correlation coefficients go over into 0, 1 and 0
respectively. Then, Okabe and Inoue (1994) and Okabe
and Nakano (1991) proposed the following test (S) to
verify whether the time series were obtained by observa-
tion of a stable process.

Test (S) ratios are less than 0.2, 0.3 and 0.2 respectively,
that are rejected against each standard (M)i < 1.96, (V)i <
2.24, (O)i < 1.96 for all i.
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Note added in proof.  The author found a misprint in the
notation of Eq. (A.1) on page S51. The correct expres-
sion is as follows:

  
F f f f,g( ) = ( ) ( )( ) ( )( )( )g x g x g xn   .L 2

In addition, Table 2 on line 18, right column of page S52
should be deleted due to the lack of the table in the origi-
nal manuscript.


