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Coding Rule for Periodic Orbits in the One-dimensional Map
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A new coding rule for periodic orbits in unimodal one-dimensional maps is derived. The best-known example
of a family of unimodal maps is the logistic map. The band merging is observed in the bifurcation diagram of
the logistic map. Let ak

m (k ≥ 1) be the critical value at which 2k-band merges into 2k−1-band. At a > a0
m , the

diverging orbit appears and thus 1-band disappears. The relations ak+1
m < ak

m for k ≥ 0 hold. Let sq be the code
for periodic orbit of period q in the parameter interval (a1

m, a0
m]. Assume that the code sq represented by symbols

0 and 1 is known. In the interval (ak+1
m , ak

m], there exists the periodic orbit of period 2k × q (k ≥ 1). Let its code
be s2k×q . Let D be the doubling operator defined by the substitution rules as 0 ⇒ 11 and 1 ⇒ 01. The following
coding rule is derived. Operating k times of D to sq , the code s2k×q is determined.
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1. Introduction
In this paper, the coding rule for periodic orbits in uni-

modal one-dimensional maps is discussed. The best-known
example of a family of unimodal maps is the logistic map.
Let q be the period of periodic orbit. The periodic orbit is
represented by a set of q symbols. This set is called code.
The method using the code to classify periodic orbits has
been introduced by Metropolis-Stein-Stein (Metropolis et
al., 1973). The kneading theory by Milnor-Thurston (Mil-
nor and Thurston, 1988) inherits this method and it gives
the useful method to calculate the topological entropy (see
also Nagashima and Baba, 1999). In this paper, we use two
symbols 0 and 1 to represent codes.

Using the bifurcation diagram displayed in Fig. 1 of the
logistic map, we explain the problem discussed in this pa-
per. In Fig. 1, for example, a natural number 3 means the pe-
riodic window of period-3 orbit. There exist infinitely many
windows in the parameter interval (a1

m, a0
m = 4] where ak

m
(k ≥ 1) is the critical value that 2k (k ≥ 1) bands merge
into 2k−1 bands and a0

m is the critical value that one band
disappears. For example, a window of period-3 orbit cor-
responds to the domain of a stability of period-3 orbit. We
remark that the interval (ak+1

m , ak
m] (k ≥ 0) in the bifurcation

diagram is 2k-band.
Let us consider the window of period-3 orbit in 1-band.

The origin of this window is the appearance of period-
3 orbits with codes 001 and 011 which appear through
the tangent bifurcation. In the bifurcation diagram, the
stable periodic orbit with code 001 is observed. In the
following, the periodic orbit with code 001 is abbreviated
as the periodic orbit 001.
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There exists the window of period-2 × 3 orbit (2 × 3
in Fig. 1) in the interval (a2

m, a1
m]. Our problem discussed

in this paper is described as follows. ”What is the coding
rule to determine the code for period-2 × 3 orbit from that
of period-3 orbit?” If we can determine the coding rule,
using it, the codes for period-2k × 3 (k ≥ 2) orbits in the
interval (ak+1

m , ak
m] are determined automatically. We can

apply the coding rule to the periodic orbits included in the
Sharkovskiĭ ordering (Sharkovskiĭ, 1964) (see Appendix
A) in (a1

m, a0
m] and also apply it to the periodic orbits not

included in the Sharkovskiĭ ordering.
In Sec. 2, the notations used in this paper are introduced.

In Sec. 3, Coding rule 3.1 for the period-doubling bifurca-
tion is derived. In Sec. 4, Coding rule 4.1 as an answer to
our problem is derived. In Sec. 5, the results are summa-
rized.

2. Preparations
2.1 Code for periodic orbit

We introduce the logistic map f .

f : xn+1 = axn(1 − xn). (1)

Here 0 < a ≤ 4 and 0 ≤ xn ≤ 1. The fixed point P located
at x = 0 is stable at 0 < a < 1. A new fixed point Q
appears at a = 1 and its position is x = 1 − 1/a (a > 1).
The fixed point Q occurs the period-doubling bifurcation at
a = 3.

Here, we show the coding method introduced by
Metropolis-Stein-Stein. Take the particular orbit starting
from the initial point at x = 1/2 and coming back to the
initial point. This type orbit is called the superstable peri-
odic orbit. If the orbital point enters into the region satis-
fying x > 1/2, we give a symbol R. If the orbital point
enters into the region satisfying x < 1/2, we give a symbol
L . Suppose that the following coding is obtained.

1/2 → R → L → R → R → 1/2. (2)
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Fig. 1. Bifurcation diagram of the logistic map where a0
m = 4, a1

m = 3.678573, a2
m = 3.592572 and a3

m = 3.574804. A natural number 3 represents the
window of period-3 orbit.

Here, a fraction 1/2 represents an initial point and the arrow
(→) means the orbital order. The code is determined as
RL R R. The number of symbols in code does not accord
with the length of period. Thus, in the kneading theory,
a symbol C is added in front of this code and new code
C RL R R is defined. Symbol C means the center of interval.

Next, using C RL R R, we explain the minimum represen-
tation for code. The position represented by C is x = 1/2
and the mapping function has the maximum point at this
point. This fact implies that next position represented by
R (next symbol of C) is the maximum orbital point. In the
unimodal map, the maximum orbital point is mapped to the
minimum one. Thus, the position represented by L (next
symbol of R) is the minimum one. We name the representa-
tion L R RC R the minimum representation for code. In the
following, we use the minimum representation for codes.

We use two symbols 0 and 1 in consideration of corre-
spondence with the binary representation where a symbol 0
(1) means L (R). Thus, the code for P is 0 and that of Q is
1. Next, we give a meaning of symbol C . Two periodic or-
bits which appear through the tangent bifurcation constitute
(0-1)-pair which means a pair of the stable and the unstable
periodic orbits (Hall, 1994). In the two dimensional map,
(0-1)-pair means the saddle-node pair. There exist periodic
orbit with code where C is replaced by 0 and that with code
where C is replaced by 1. The code L R RC R means two
periodic orbits 01101 and 01111. The set of these codes is
an example of (0-1)-pair.

We comment on the codes for periodic orbits which ap-
pear through the period-doubling bifurcation. For exam-
ple, let us consider the code 0111, which is the code for the
daughter periodic orbit which appears through the period-
doubling bifurcation of the period-2 orbit. We exchange a
symbol 1 at the second-to-last to 0 and have new code 0101
which is the repetition of word 01. Thus, 0101 is mean-
ingless as a code. The code for the periodic orbit which
appears through the period-doubling bifurcation does not

have a partner code of (0-1)-pair.
The code obtained here is the same as the code deter-

mined by the tent map T defined on [0, 1]. In the follow-
ing, we explain this fact. The logistic map f at a = 4 is
converted into the tent map T .

T : Xn+1 = 1 − |2Xn − 1| (3)

by the translation formula

xn = sin2((π/2)Xn). (4)

Thus, the logistic map at a = 4 and the tent map T are
conjugate. Here, we take the orbit of logistic map at a = 4.
If the orbit enters the interval [0, 1/2], the symbol is defined
as 0. If the orbit enters the interval [1/2, 1], the symbol is
defined as 1. For the point x = 1/2, we can use 0 or 1. This
is originated from the fact that there are two representations
to an irreducible fraction, for example, 1/2 =• 10∞ and
1/2 =• 01∞. Here, a symbol • is a decimal point and the
right hand sides are the binary representation.

For example, suppose that the code 011 is obtained. In
the tent map, there exists the periodic orbit 011. Conversely,
the periodic orbit in the tent map exists in the logistic map.
From these facts, we can study the periodic orbit with a
given code in the tent map. Translating the orbital points
in the tent map by Eq. (4), we have the orbital points in the
logistic map at a = 4. The orbital order of periodic points
in the tent map is the same as that in the logistic map.
2.2 Block representation

First, we introduce two block symbols E(2) = 01 and
F(2) = 11 (Yamaguchi and Tanikawa, 2009, 2016). Block
symbol E(2) = 01 represents the code for the daughter
periodic orbit which appears through the period-doubling
bifurcation of Q. Block symbol F(2) = 11 is introduced
for convenience sake and there is no periodic orbit repre-
sented by F(2). Suppose that the periodic orbit of period
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q = 2n (n ≥ 2) is written by E(2) and F(2). We say
the block symbol as block briefly. Since the first symbol of
block F(2) is 1, the first block of the minimum representa-
tion is E(2).

Let us consider the block code that the number of blocks
are greater than or equal to 2. The minimum representation
begins with E(2)F(2). In order to prove this fact, we
confirm the large/small relation between •E(2)F(2) =•
0111 and •E(2)E(2) =• 0101. Translating them into the
binary one, we obtain •0101 for •0111 and •0110 for •0101.
The translation procedure is given in Appendix B. Since the
relation •0101 <• 0110 holds, the claim is proved. In the
following discussions, we use the abbreviated notations E
and F .
2.3 Intervals and symbols

We explain the structure of bifurcation diagram displayed
in Fig. 1. In the left side of Fig. 1, the accumulation of the
period-doubling bifurcation is observed.

We decrease the parameter value of a from a = a0
m = 4.

At the critical point a = a1
m = 3.678573, one band splits

into two bands. At the critical point a = a2
m = 3.592572,

two bands split into four bands. Let a∞
m = 3.569945 be

the accumulation point of the band splitting. The critical
value a∞

m is also the accumulation point of period-doubling
bifurcation. Increasing a from a∞

m , we can observe the band
merging.

Next, we give the relation of the bifurcation diagram and
the shape of mapping function. Figure 2(a) represents the
shape of f (x) at a = a0

m where f (1/2) = 1. The orbit
starting from x = 1/2 reaches the fixed point P at x = 0.
It is an example of superstable orbit.

The closed interval Int(A0) is defined as [1/2, 1] and
Int(B0) is defined as [0, 1/2]. We remark that Int(A0) in-
cludes Q. The mapping function f (x) is a unimodal func-
tion which has two monotonic branches. Let M0 be the tran-
sition matrix representing the transitions between Int(A0)
and Int(B0).

M0 =

 A0 B0

A0 1 1
B0 1 1


 . (5)

In M0, A0 (B0) expresses Int(A0) (Int(B0)). For example,
the first row means that the image of Int(A0) covers Int(A0)
and Int(B0) once. The eigenvalue of M0 is 2, and thus the
topological entropy at a = 4 is ln 2.

In Fig. 2(b), the functions f 2(x) and f 4(x) around x =
1/2 at a = a1

m are displayed. The superstable orbit dis-
played by arrowed line goes to the fixed point Q where the
condition f 4(1/2) = 1 − 1/a holds. From this condition,
the critical value a1

m is determined. In Fig. 2(b), there are
two intersection points of f 2(x) and the diagonal line. The
right intersection point is Q and the left one is α0 which is
the daughter orbital point which appears through the period-
doubling bifurcation of Q. The other point α1 is not dis-
played in Fig. 2(b) since it locates in the right side of Q.
The period of daughter orbit is 2. We say it period-2 orbit.
There are four intersection points of f 4(x) and the diago-
nal line. New intersection points β0 and β2 = f 2(β0) are
the daughter orbital points which appear through the period-
doubling bifurcation of α0. Note that β0 is the minimum

point in orbital points of period-22 orbit.
Let the interval sandwiched between dashed lines located

in the region x ≤ 1/2 (x ≥ 1/2) be Int(A1) (Int(B1)). The
interval including the fixed point α0 of f 2(x) is Int(A1),
Int(A1) includes β0 and Int(B1) includes β2. We remark
that Int(Ak) and Int(Bk) for k ≥ 1 include both end points
(Nagashima and Baba, 1999).

The function f 2(x) is a monotonic decreasing function in
Int(A1) and is a monotonic increasing one in Int(B1). From
the unimodal property of f 2(x), the transition matrix M1

representing the transitions between Int(A1) and Int(B1) is
obtained as follows.

M1 =

 A1 B1

A1 1 1
B1 1 1


 . (6)

The eigenvalue of M1 is 2, and thus the topological entropy
at a = a1

m is (1/2) ln 2.
In Fig. 2(c), the left intersection point of f 4(x) and the

diagonal line is β0 and two intersection points γ0 and γ4 of
f 8(x) and the diagonal line are the daughter periodic points
which appear through the period-doubling bifurcation of β0.
We say the periodic orbit of γ0 and γ4 period-23 orbit. Two
points β0 and γ0 locate in Int(A2), and α0 and γ4 in Int(B2).

In Fig. 2(d), the left intersection point of f 8(x) and the
diagonal line is γ0 and two intersection points δ0 and δ8

of f 16(x) and the diagonal line are the daughter periodic
points which appear through the period-doubling bifurca-
tion of γ0. Two points γ0 and δ0 locate in Int(A3), and β0

and δ8 in Int(B3).
The transition matrix Mk (k ≥ 1) at a = ak

m (k ≥ 0) is
determined.

Mk =

 Ak Bk

Ak 1 1
Bk 1 1


 . (7)

The critical value ak
m (k ≥ 0) is determined by the rela-

tion f 2k−1×3+2(1/2) = f 2k+2(1/2) (see Appendix C). The
eigenvalue of Mk is 2, and thus the topological entropy at
a = ak

m (k ≥ 0) is (1/2k) ln 2. At a∞
m , the topological en-

tropy is zero.
If the orbital point by f 2k

locates in Int(Ak) (Int(Bk)),
let the symbol of orbital point be Symb(Ak) (Symb(Bk)).
These symbols are constructed by the symbols 0 and 1.
For example, we consider the orbit in the parameter range
(ak+1

m , ak
m] (k ≥ 1). Suppose that x0 exists in Int(Ak) or

Int(Bk). The orbital point x2k = f 2k
(x0) does not es-

cape from these intervals. This fact means that the code
for periodic orbit by f 2k

is represented by Symb(Ak) and
Symb(Bk).

We give the remark about coding. If Int(A0) is defined,
Symb(A0) is also determined. Int(B0) and Symb(B0) are
also defined. At a = 4, their explicit representations by
0 and 1 are determined. We remark that Symb(A0) = 1
and Symb(B0) = 0. For the other symbols Symb(Ak) and
Symb(Bk) (k ≥ 1), the same facts hold. The length of
Symb(Ak) and Symb(Bk) represented by 0 and 1 is 2k .

The structure of windows in the interval (a1
m, a0

m] is sim-
ilar to that in the interval (ak+1

m , ak
m]. Thus, if the periodic
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Fig. 2. Definition of two closed intervals Int(Ak ) and Int(Bk ) for k = 0, 1, 2, 3. (a) Situation at a = a0
m = 4. The point Q represents the fixed point

at x = 3/4. (b) Situation at a = a1
m . The orbital point α0 is that of period-2 orbit and the orbital points β0 and β2 are those of period-22 orbit.

(c) Situation at a = a2
m . The orbital point β0 is that of period-22 orbit and the orbital points γ0 and γ4 are those of period-23 orbit. (d) Situation at

a = a3
m . The orbital point γ0 is that of period-23 orbit and the orbital points δ0 and δ8 are those of period-24 orbit. In (b), (c) and (d), the arrowed line

represents the superstable orbit.

orbit of period q with code sq exists in the interval (a1
m, a0

m],
the corresponding periodic orbit of period 2k × q with code
s2k×q exists in the interval (ak+1

m , ak
m]. It is noted that sq is

represented by Symb(A0) and Symb(B0) and s2k×q is repre-
sented by Symb(Ak) and Symb(Bk). Thus, our problem is
renewed as Problem 2.1.

Problem 2.1. Derive the rule to determine Symb(Ak) and
Symb(Bk) from Symb(A0) = 1 and Symb(B0) = 0.

3. Coding Rule for the Period-doubling Bifurcation
Only the coding rule to determine codes for periodic or-

bits which appear through the period-doubling bifurcation
of the fixed point Q has been known. In this section, we
make clear the period-doubling bifurcation of Q and derive
Coding rule 3.1. In oder to answer Problem 2.1, we need
Coding rule 3.1.

Using Fig. 3, we explain the period-doubling bifurcation.
Let two daughter periodic points appeared from Q be ξ0

and ξ1. We remark that these notations for period-2 orbit
are different from those in Subsec. 2.3.

Orbital point ξ0 moves to the region x < 1/2 across
x = 1/2 with the increase in parameter a. If ξ0 does not
move to the region x < 1/2, the symbols of ξ0 and ξ1 are 1.
The code 11 of period-2 orbit is obtained but it is repetition
of the code P0 = 1 of Q. This is a contradiction. As a result,
one orbital point of daughter periodic points which is near to
x = 1/2 moves to the region x < 1/2. Its symbol becomes
0. The code P1 = 01 for period-2 orbit is determined.

Next, after the period-doubling bifurcation of period-2
orbit, new two daughter periodic points ζ0 and ζ2 are born
from ξ0. Let the point which is near to x = 1/2 be ζ0. We
increase the parameter a furthermore. The point ζ0 moves
to the region x > 1/2 across x = 1/2. Schematic orbit
starting from ζ0 is displayed in Fig. 4(a). We obtain the
code 1101 for period-4 orbit. Its minimum representation
is P2 = 01 · 1 · 1 and it is rewritten as P2 = P1 P0 P0. The
notation P1 P0 P0 means that we write the code for P1 P0 P0

in this order.
New daughter periodic points η0 and η4 appear from ζ0 of

period-4 orbit. Let the point which is near to x = 1/2 be η0.
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Fig. 3. The parameter a increases from the upper figure to the lower one. The orbital points ξ0 and ξ1 are the daughter periodic points appeared from Q.
The arrows represent the direction of movement of ξ0 and ξ1 when a increases. The orbital points ζ0 and ζ2 are the daughter periodic points appeared
from ξ0, and η0 and η4 are those appeared from ζ0.

Fig. 4. (a) Period-4 orbit. (b) Period-8 orbit.

Schematic orbit starting from η0 is displayed in Fig. 4(b).
The point η0 moves to the region x < 1/2 across x = 1/2.
The code for period-8 orbit starting from η0 is 01011101. Its
minimum representation is P3 = 0111 · 01 · 01 = P2 P1 P1.
Thus, Coding rule 3.1 is obtained.

Coding rule 3.1. Let P0 be the code for Q and Pk (k ≥
1) be the code for daughter periodic orbit which appears
through the period-doubling bifurcation of Q. The code
Pk+1 (k ≥ 1) is determined by the recursive rule as

Pk+1 = Pk Pk−1 Pk−1 (8)

where P0 = 1 and P1 = 01.

Here, we define the doubling operator D.

Definition 3.2. The doubling operator D is defined.

D : 0 ⇒ 11 ≡ F, 1 ⇒ 01 ≡ E . (9a)

D : E ⇒ E F, F ⇒ E E . (9b)

Here, the notation 0 ⇒ 11 means the replacing 0 with 11.

Using D, we rewrite Coding rule 3.1 in Substitution rule
3.3.

Substitution rule 3.3. Operating k times of D to P0, the
code P̂k is determined. After rewriting P̂k in the minimum
representation, Pk is obtained.

4. Coding Rule as an Answer to Problem 2.1
4.1 Coding rule

In this subsection, we derive Coding rule 4.1 which is an
answer to Problem 2.1. First, we take out the periodic orbits
related to period-3 orbit from the Sharkovskiĭ ordering.

3 � 2 × 3 � 22 × 3 � 23 × 3 � · · · . (10)

Here, 3 � 2 × 3 means the fact that period-3 orbit implies
the existence of period-2 × 3.

The window of period-3 orbit is in 1-band, that of period-
2 × 3 in 2-band, and so on. The two codes for period-3
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Fig. 5. (a) Period-3 orbit 011. Interval I1 includes x = 1/2. (b) Štefan diagram C3.

Fig. 6. Period-6 orbital points 011101 = E F E . Interval I2 includes x = 1/2.

orbits are 011 and 001. Here, we use the code 011. Note
that we obtain the same results mentioned below even if
the code 001 is used. Using the tent map, we confirm the
order relations of orbital points of period-3 orbit 011 and
display schematic orbit in Fig. 5(a) where we place the
orbital points to the equal distance. Two intervals I1 and
I2 are defined in Fig. 5(a) where I1 and I2 include both
end points. We name the graph representing the transitions
between I1 and I2 Štefan diagram (Štefan, 1977, Devaney,
2003). Here, we call the diagram displayed in Fig. 5(b) C3.
From C3, it is easy to see the existence of period-6 orbit
starting from I1 and coming back to I1.

I1 → I2 → I2 → I2 → I1 → I2 → I1. (11)

Here, the relation I1 → I2 means that the image of I1 covers
I2.

Since the interval I1 includes x = 1/2, we can use 0
and 1 for the orbit in I1. On the other hand, the interval
I2 locates in the region satisfying x > 1/2. The symbol
of the orbital point in I2 is 1. We obtain the code 01301
of period-6 orbit. The other period-6 01311 also exists.
These constitute (0-1)-pair. Using blocks E and F , 01301
is represented as E F E and 015 as E F F . Just after the
tangent bifurcation, period-6 orbit E F E is unstable and that
with E F F is stable just after the appearance (see Appendix
D). Thus, all periodic orbits which are appeared through the
period-doubling bifurcation or the tangent bifurcation in the
interval (a2

m, a1
m] are coded by two symbols Symb(A1) and

Symb(B1).
Using the tent map, we confirm the order of period-6 (2×

3) orbital points with block code E F E and display them in
Fig. 6. Five intervals Ik (k = 1, 2, · · · , 5) are defined and

the transition matrix M6 among them are obtained.

M6 =




I1 I2 I3 I4 I5

I1 0 0 0 1 1
I2 0 0 0 0 1
I3 0 0 1 1 0
I4 0 1 0 0 0
I5 1 0 0 0 0




. (12)

For example, the first row means that transitions from I1 to
I4 and to I5 are permitted.

We can construct Štefan diagram C6 displayed in Fig. 7.
The orbit starting from I3, passing through I4 and coming
back to I3 does not exist. Thus, I3 is deleted in Fig. 7. We
name Fig. 7 the simplified Štefan diagram. We define the
long cycle and the short one in C6. Let the long cycle

I1 → I4 → I2 → I5 → I1 (13)

be Ro and the short one

I1 → I5 → I1 (14)

be Rs. Here, we define Ri = Rs Rs. The length of Ro is the
same as that of Ri.

Let s2 be the symbol of orbital point in I2. Remember the
fact that I2 extends over the regions satisfying x < 1/2 and
x > 1/2. Thus, there exist the periodic orbit satisfying the
condition s2 = 0 and that satisfying the condition s2 = 1.
For our purpose, we choose the periodic orbit satisfying
the condition s2 = 1. Thus, we obtain Ro = 0111 and
Ri = 0101.
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Fig. 7. The simplified Štefan diagram C6 where I3 is deleted.

Using blocks E and F , Ro is represented as E F ≡
Symb(A2) and Ri as E E ≡ Symb(B2). We also have the
following relations.

Symb(A2) = Symb(A1)Symb(B1), (15a)

Symb(B2) = Symb(A1)Symb(A1). (15b)

All periodic orbits which are appeared through the period-
doubling bifurcation or the tangent bifurcation in the in-
terval (a3

m, a2
m] are coded by two symbols Symb(A2) and

Symb(B2).
From the simplified Štefan diagram C6, we obtain that

the periodic orbit Ro Ri Ro exists. Its code is represented
as E F · E E · E F . This implies the existence of period-
12 (22 ×3) orbit. The partner of (0-1)-pair is E F · E E · E E .

Using the tent map, we confirm the order of periodic orbit
E F · E E · E F and display them in Fig. 8. Eleven intervals
are defined and the transition matrix M11 among them are
obtained.

M12 =




I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11

I1 0 0 0 0 0 0 1 0 0 0 0
I2 0 0 0 0 0 0 0 1 0 0 0
I3 0 0 0 0 0 0 0 0 1 1 0
I4 0 0 0 0 0 0 0 0 0 0 1
I5 0 0 0 0 0 0 0 0 0 1 1
I6 0 0 0 0 0 1 1 1 1 0 0
I7 0 0 0 0 1 0 0 0 0 0 0
I8 0 0 0 1 0 0 0 0 0 0 0
I9 0 0 1 0 0 0 0 0 0 0 0
I10 0 1 0 0 0 0 0 0 0 0 0
I11 1 0 0 0 0 0 0 0 0 0 0




. (16)

The simplified Štefan diagram C12 is displayed in Fig. 9.
In C12, let the long cycle

I1 → I7 → I5 → I10 → I2 → I8 → I4 → I11 → I1

(17)

be Ro, and the short cycle

I1 → I7 → I5 → I11 → I1 (18)

be Rs. Here, we define Ri = Rs Rs.

The interval I4 extends over the regions satisfying x <

1/2 and x > 1/2 Thus, we choose the periodic orbit sat-
isfying the condition that the symbol of orbital point in
I4 is 0. Thus, we obtain E F E E ≡ Symb(A3) for the
block code for Ro and E F E F ≡ Symb(B3) for that of
Ri. Symb(A3) and Symb(B3) are represented by using
Symb(A2) and Symb(B2).

Symb(A3) = Symb(A2)Symb(B2), (19a)

Symb(B3) = Symb(A2)Symb(A2). (19b)

All periodic orbits which are appeared through the period-
doubling bifurcation or the tangent bifurcation in the in-
terval (a4

m, a3
m] are coded by two symbols Symb(A3) and

Symb(B3). Summarizing the results obtained above, we ob-
tain Coding rule 4.1. Coding rule 4.1 is proved in Subsec.
4.2.

Coding rule 4.1. Let Symb(Ak) and Symb(Bk) be the sym-
bols in the interval (ak+1

m , ak
m] where k ≥ 0. Symb(Ak) and

Symb(Bk) are determined by the following coding rules.

Symb(A0) = 1 ≡ P0, (20a)

Symb(B0) = 0, (20b)

Symb(A1) = E ≡ P1, (20c)

Symb(B1) = F, (20d)

Symb(Ak) = Symb(Ak−1)Symb(Bk−1) ≡ Pk (k ≥ 2), (20e)

Symb(Bk) = Symb(Ak−1)Symb(Ak−1) ≡ Pk−1 Pk−1 (k ≥ 2).

(20f)

Using the doubling operator D, Coding rule 4.1 is re-
newed as Substitution rule 4.2.

Substitution rule 4.2. Suppose that the code sq for the
periodic orbit of period q in the interval (a1

m, a0
m] is known.

Let s2k×q be the code for period-2k × q orbit in the interval
(ak+1

m , ak
m]. Applying k times of the doubling operator D to

sq , the code s2k×q is determined.

Using Coding rule 4.1, we have Proposition 4.3.

Proposition 4.3. Let s be the code of periodic orbit which
is appeared through the period-doubling bifurcation or the
tangent bifurcation in (ak+1

m , ak
m] (k ≥ 1). The code s is

represented by Symb(Am) and Symb(Bm) (m = k, k −
1, · · · , 0).

We give two remarks. For example, the period-2 orbit
exists in (a3

m, a2
m]. This is not the periodic orbit which is ap-

peared through the period-doubling bifurcation in (a3
m, a2

m].
Thus, its code is not represented by Symb(A2) or Symb(B2).

Let s2×3 be the code of periodic orbit which is appeared
through the tangent bifurcation in (a2

m, a1
m]. The code s2×3

is represented by Symb(A1) and Symb(B1). Using Coding
rule 4.1, we obtain that s2×3 is represented by Symb(A0)
and Symb(B0).

Finally, we show two examples of how to use of Substitu-
tion rule 4.2. We pay attention to the period-5 orbit locating
between the windows of period-3 orbit and period-4 orbit.
This is not included in the Sharkovskiĭ ordering. The codes
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Fig. 8. Periodic orbit 011101010111 = E F · E E · E F . Interval I4 includes x = 1/2.

Fig. 9. The simplified Štefan diagram C12 where I3, I6 and I9 are deleted.

are 00111 and 00101. First, we apply D to the stable peri-
odic orbit 00111. The code for period 2 × 5 is E F F E E ,
and that of period 22 × 5 is E F · E E · E E · E F · E F . Next,
we apply D to the unstable periodic orbit 00101. The code
for period 2 × 5 orbit is E F F E F , and that of period 22 × 5
orbit is E F · E E · E E · E F · E E . By numerical calculation,
the correctness of codes obtained here is confirmed.
4.2 Proof of Coding rule 4.1

First, we give the proof of Eqs. (20c) and (20d). Next, we
give the proof of Eqs. (20e) and (20f).

Proof of Eqs. (20c) and (20d). We consider the situa-
tion after the accumulation of period-doubling bifurcations.
Therefore, there exist the orbital points β0 and β2 of period-
4 orbit appeared from α0 of period-2 orbit. Suppose that the
point β0 locates in the left side of α0. The point β0 ∈Int(A1)

is the minimum point of period-4 orbit. On the other hand,
the point β2 locates in the right side of α0 and in Int(B1).
The point β2 move to Int(B1) (see the proof of Coding rule
3.1). From Coding rule 3.1, the code for orbit starting from
β0 is P2 = P1 P0 P0 = 01 · 11. The former part 01 rep-
resents Symb(A1) = E and thus the latter one 11 repre-

sents Symb(B1) = F . This means that the word for orbit
from β2 to β0 is 11. Thus, we have Symb(A1) = E and
Symb(B1) = F . (Q.E.D.)

Proof of Eqs. (20e) and (20f). Assume that the daughter
periodic points γ0 and γ4 appear from β0 of period-4 orbit
(see Fig. 2(c)). Suppose that γ0 (γ4) locates in the left
(right) side of β0 and γ4 moves to Int(B2). From Coding
rule 3.1, the code for the periodic orbit starting from γ0

is P3 = P2 P1 P1 = E F · E E . The point f 4(γ0) enters
into Int(B2), and f 4(γ4) comes back to Int(A2). Thus, the
former part E F represents Symb(A2) and the latter one E E
represents Symb(B2). Two symbols are the super-blocks
constructed by E and F .

The daughter periodic orbit with code Pk+1 = Ak Bk has
its orbital point in Int(Ak) and Int(Bk). Coding rule 3.1
guarantees that the super-blocks Symb(Ak) and Symb(Bk)

are determined by Eqs. (20e) and (20f). (Q.E.D.)

5. Concluding Remarks
The parameter interval (ak+1

m , ak
m] in the bifurcation dia-

gram is defined. The code of periodic orbit in (ak+1
m , ak

m]
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is coded by Symb(Ak) and Symb(Bk). Coding rule 4.1 to
determine Symb(Ak) and Symb(Bk) from Symb(A0) = 1
and Symb(B0) = 0 is derived and its correctness is proved.
We can apply Coding rule 4.1 to the periodic orbits in the
unimodal maps.

For example, in the window of period-3 orbit, the bifur-
cation processes similar to the original bifurcation diagram
in a ∈ (0, 4] are observed. For periodic orbits in the win-
dow of period-3 orbit, we can consider the same problem
discussed in this paper.

Interval (ak+1
m , ak

m] is regarded as a small world where
the basic words are Symb(Ak) and Symb(Bk). This concept
came out of the symbol dynamics naturally. It is needed
to reconsider the relation of periodic orbit and code. As a
result, we may provide new concept or interpretation of the
bifurcation diagram.

Acknowledgments. Author would like to thank the referee for
helpful comments.

Appendix A. Sharkovskiĭ ordering
Theorem A was proved by Sharkovskiĭ (Sharkovskiĭ,

1964).

Theorem A. Consider the following ordering on the set of
natural numbers (Sharkovskiĭ ordering):

3 � 5 � 7 � 9 � · · ·

2 × 3 � 2 × 5 � 2 × 7 � 2 × 9 � · · ·

22 × 3 � 22 × 5 � 22 × 7 � 22 × 9 � · · · (A.1)

23 × 3 � 23 × 5 � 23 × 7 � 23 × 9 � · · ·

· · · � 24 � 23 � 22 � 2 � 1.

Let f be a one-dimensional continuous map from inter-
val to itself. If f has a period-n orbit and the relation n � m
in the Sharkovskiĭ ordering holds, then f has a period-m or-
bit.

Appendix B. Translation procedure
We introduce the translation procedure from code for the

tent map (Xn+1 = 1 − |2Xn − 1|) to that of the binary map
(Xn+1 = 2Xn (mod 1)) (Yamaguchi and Tanikawa, 2016).

Procedure B. Let w = s1s2s3 · · · sq be a given code. If
the parity of w is even, we prepare s = s1s2 · · · sq and
t = t1t2 · · · tq where t1 = s1. If the parity of w is odd, we
prepare s = ww. We rewrite the suffices as s = s1s2 · · · s2q

and prepare t = t1t2 · · · t2q where t1 = s1.
If the parity of w is even, for 2 ≤ k ≤ q , determine tk by

the following rules (a) or (b). If the parity of w is odd, for
2 ≤ k ≤ 2q, determine tk by the following rules (a) or (b).
After t is determined, output t .

(a) If 	k−1
i=1 s j is odd, we let tk = 1 − sk .

(b) If 	k−1
i=1 s j is even, we let tk = sk .

Appendix C. How to determine the critical value
ak

m
All orbital points exist in the region [xmin, xmax] where

xmax = f (1/2) (≤ 1) and xmin = f 2(1/2) (≥ 0). Here, we
use the fact that the maximum point xmax is mapped to the
minimum point xmin in the unimodal map. In the logistic
map, f (1/2) gives the maximum point.

First, we derive the equation to determine a1
m (k = 1).

In Fig. 2(b), xmin is the left edge of Int(A1). The relations
f 2(xmin) = xQ , xmin = f 2(1/2) and f (xQ) = xQ hold.
In these equations, xQ represents the position of Q. Using
these relations, we obtain the equation to determine a1

m .

f 5(1/2) = f 4(1/2). (C.1)

The critical value a1
m determined by Eq. (C.1) is equal to

that by f 4(1/2) = xQ = 1 − 1/a. In fact, the left hand
side of Eq. (C.1) is rewritten as f 5(1/2) = f ( f 4(1/2)) =
f (xQ) = xQ .

Next, we derive the equation to determine a2
m (k = 2).

In Fig. 2(c), xmin is the left edge of Int(A2). Let xα0 be
the position of α0. From the relations f 4(xmin) = xα0 ,
xmin = f 2(1/2) and f 2(xα0) = xα0 , we have the equation
to determine a2

m .

f 8(1/2) = f 6(1/2). (C.2)

We derive the equation to determine a3
m (k = 3). In

Fig. 2(d), xmin is the left edge of Int(A3). Let xβ0 be the
position of β0. We have the relations f 8(xmin) = xβ0 ,
xmin = f 2(1/2) and f 4(xβ0) = xβ0 and obtain the equation
to determine a3

m .

f 14(1/2) = f 10(1/2). (C.3)

Repeating this procedure, the following equation to de-
termine ak

m (k ≥ 1) is derived.

f 2k−1×3+2(1/2) = f 2k+2(1/2). (C.4)

Appendix D. Parity of code and the stability of pe-
riodic orbit

We define the parity of code and give the stability of
periodic orbit (Hall, 1994).

Definition D.1. If the number of 1 included in the code is
even (odd), the parity of code is even (odd).

Property D.2.
(i) Suppose that the parity of code s is even. The periodic
orbit with code s is unstable.
(ii) Suppose that the parity of code s is odd. The periodic
orbit with code s is stable just after the appearance and
occurs the period-doubling bifurcation.

Property D.2 is applicable to all periodic orbits which
are appeared through the period-doubling bifurcation or the
tangent bifurcation.
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