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Information Reduction for Chaotic Patterns
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To investigate the universality and diversity of spatiotemporal chaos, information reduction, which describes
phenomena using generalized quantities such as amplitude and phase, is an important technique. Several methods
of image analysis are presented for information reduction of experimental image data of spatiotemporal chaos.
Key words: Spatiotemporal Chaos, Image Analysis, Information Reduction

1. Introduction
Some of the dynamical properties of dissipative struc-

tures appearing in nonequilibrium open systems are univer-
sal among systems despite the constituent materials and the
underlying mechanisms for structure formation being com-
pletely different. A method by which to explore the univer-
sality is information reduction.

One phenomenon that exhibits such universality is spa-
tiotemporal chaos appearing in spatially-extended systems.
The order of a dissipative structure is represented by a pe-
riodic function of a physical quantity. For example, in ther-
mal convection systems, the physical quantity corresponds
to the vertical component of the flow velocity. In the pa-
rameter range close to the occurrence point of the dissi-
pative structure, long-wavelength instability is often gen-
erated by retaining local order. If this instability occurs as a
macroscopic stationary fluctuation, it is called spatiotempo-
ral chaos [1,2]. This fluctuation is represented by the slow
spatiotemporal variations of the amplitude and phase of the
periodic function. In this way, describing phenomena us-
ing generalized quantities such as amplitude and phase is
called information reduction. With such generalizations, it
is possible to compare nonlinear phenomena with different
physical backgrounds and to analyze their diversity as well
as universality.

In theoretical studies on dissipative structures, the equa-
tions governing amplitude and phase can be obtained from
the fundamental equations, such as the Navier–Stokes equa-
tion for fluid systems and the reaction-diffusion equation
for systems of chemical reactions, using the mathemat-
ical method called reductive perturbation. The Newell–
Whitehead equation, the complex Ginzburg–Landau equa-
tion, and the Kuramoto–Sivashinsky equation were ob-
tained in this manner [3].

In regard to experimental studies of spatiotemporal
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chaos, the electroconvection that occurs in nematic liquid
crystals on applying an electric field has played an impor-
tant role, because it has the following experimental mer-
its. Because the control parameter is the applied voltage,
it is easy to precisely tune the control parameters neces-
sary to generate spatiotemporal chaos. From the optical
properties of the liquid crystals, no special technique is re-
quired to visualize the convection structure. Using an opti-
cal microscope, one can observe the spatiotemporal struc-
ture of convection as a temporal change u(x, y, t) in the
gray-scale value of a two-dimensional (2D) image*1. One
can observe large systems that exclude cumbersome influ-
ences from lateral boundaries with time scales suitable for
the experiments.

Image analysis is an important tool to enable a further
reduction of the spatiotemporal chaos observed as a time-
dependent pattern u(x, y, t). In this article, we introduce
several methods of image analysis that provide information
reduction for three types of spatiotemporal chaos appearing
in nematic electroconvection [2].

2. Soft-Mode Turbulence
Soft-mode turbulence is a type of spatiotemporal chaos in

which the direction of the convection roll structure changes
irregularly in time and space. A perfect static periodic
pattern (called normal rolls) (Fig. 1) in which the convection
rolls are parallel to the y-direction, that is, the wavevector
is q = (q0, 0), is expressed as

u(x, y, t) = R0 cos(q0x + α0). (1)

In contrast, the essential part of soft-mode turbulence
(Fig. 2(a)) with q = (qx , qy) can be expressed as

u(x, y, t) = R0 cos[qx (x, y, t)x + qy(x, y, t)y], (2)

qx (x, y, t) = q0 cos ψ(x, y, t), (3)

qy(x, y, t) = q0 sin ψ(x, y, t). (4)

∗1The basic equations of fluid dynamics for nematic liquid crystals are
composed of functions of (x, y, z, t) of two vector quantities, flow velocity
and molecular orientation. Therefore, at this point, the first-step reduction
to u(x, y, t) is done.
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Fig. 1. Normal rolls. White lines correspond to convective rolls.

Therefore, soft-mode turbulence can be described by
ψ(x, y, t) through information reduction.

The procedure to obtain ψ(x, y) from a snapshot of soft-
mode turbulence u(x, y) is described as follows. First, the
bandpass filter using Fourier spectral analysis is applied to
u(x, y) so that it approaches the form of Eq. (4). Specifi-
cally, after applying the Fourier transformation to u(x, y),
the inverse transformation is applied to only those compo-
nents with wavenumbers of magnitude of around q0. Fig-
ure 2(b) shows the image after applying the filter to (a). Fur-
thermore, focusing on the fact that the convective periodic
structure is kept locally, one can obtain ψ(x, y) as follows.
First, a small 2D square area s2 centered at a point (x, y) is
selected from the whole system. The size of � on one side
of s2 is much smaller than the system size L and is suffi-
ciently larger than the basic period, i.e., the size of a roll
pair λ0 = 2π/q0. If a spot centered at (q0 cos ψs, q0 sin ψs)

appears in the 2D spectrum of u in s2, ψ(x, y) = ψs. One
can obtain ψ(x, y) in the whole system by finding ψs in this
way by shifting s2

*2. Figure 2(c) presents ψ(x, y) obtained
by this method. Since q and −q cannot be distinguished,
ψ(x, y) is defined in −90◦ < ψ(x, y) ≤ 90◦.

The problem of this method is that the resolution of ψs

is low, because with the extraction of s2 the wavenumber
space is small. The method using the gradient of u(x, y)

was adopted for other similar patterns [4]. The resolution
of the result by this method is certainly high. However, de-
sirable results for soft-mode turbulence cannot be obtained
with this method, because it is difficult to find many neces-
sary preprocessing and postprocessing tools.

3. Spatiotemporal Intermittency
In spatiotemporal intermittency, ordered regions coexist

with turbulent regions. They are separated by clear bound-
aries that change with time. In nematic electroconvection,
two types of spatiotemporal intermittency appear. One is
a type that appears by partly collapsing the “defect lattice”
into a turbulent state (Fig. 3(a)) [5,6], and the other is a type
that appears by the partial change of turbulence into a “grid
pattern” (Fig. 4(a)) [7]. The patterns of spatiotemporal in-

∗2Actually, the spot is spread around (q0 cos ψs, q0 sin ψs). The spread in
the azimuthal direction is regarded as an error for ψs.

Fig. 2. (a) Soft-mode turbulence. (b) Image after applying the bandpass
filter to (a). (c) Gray-scale plot of ψ(x, y) obtained from (b). White and
black correspond to ψ = π/2 and −π/2, respectively.

termittency can be described by the variable δ(x, y), which
takes 1 in the ordered region and 0 in the turbulent region.

δ(x, y) for the defect-lattice type is obtained by the fol-
lowing method [5,6]. A one-dimensional small area s1 cen-
tered at a point (x, y) is selected from the whole system as
a role pair corresponds to the basic period of the defect lat-
tice. The pattern u(x ′) in s1 is expanded as a Fourier series

u(x ′) =
∑

q

Ãq exp(iqx ′) + c.c.. (5)

The amplitude | Ãq0 | of the wavenumber q0 corresponding to
a roll pair becomes large in the ordered region, and becomes
small in the turbulent region. Therefore, if | Ãq0 | ≥ a, the
small area s1 is taken to be an ordered state. Here, a is an
appropriate threshold. By performing such evaluations,

δ(x, y) =
{

1 (| Ãq0(x, y)| ≥ a)

0 (| Ãq0(x, y)| < a)
(6)
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Fig. 3. Spatiotemporal intermittency of a defect-lattice type. (a) u(x, y).
(b) δ(x, y) obtained from (a). The ordered area (defect lattice) where
δ(x, y) = 1 is colored white, and the turbulent area where δ(x, y) = 0
is colored black.

with shift s1, δ(x, y) of the whole system can be obtained.
Figure 3 shows a typical example of δ(x, y) of the defect-
lattice type. In contrast, for the grid-pattern type, a similar
evaluation is made for a 2D small area, because the fun-
damental order structure is a section of the grid. Figure 4
shows a typical example of δ(x, y) of the grid-pattern type.

4. Defect Turbulence
Defect turbulence (Fig. 5(a)) is a type of spatiotemporal

chaos in which topological defects are generated as a result
of fluctuations of the normal rolls. This is regarded as the
state in which the position of convection rolls in the normal
roll is fluctuating in the x-direction. The pattern of defect
turbulence can be described as

u(x, y, t) = R0 cos[q0x + α(x, y, t)], (7)

because the position of the roll is represented by the phase.
Actually, the amplitude is also a function of (x, y, t). How-
ever, it can be regarded as the constant R0 in Eq. (7), be-
cause the amplitude is nearly constant except that it be-
comes zero at a defect. Thus, important properties of defect
turbulence are included in α(x, y). A topological defect
generated as a consequence of roll fluctuations corresponds
to a singular point of the phase α(x, y).

α(x, y) can be obtained by a method called “complex
demodulation”. The details are described in Appendix

Fig. 4. Spatiotemporal intermittency of a grid-pattern type. (a) u(x, y).
(b) δ(x, y) obtained from (a). The ordered area (grid pattern) where
δ(x, y) = 1 is colored white, and the turbulent area where δ(x, y) = 0
is colored black.

Fig. 5. (a) Defect turbulence. (b) sin(x, y) obtained from (a). This is
displayed in gray-scale with sin(x, y) = 1 as white and sin(x, y) = 0
as black.
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[8]. By this method, R(x) and α(x) can be obtained from
u(x) = R(x) cos(q0x + α(x)). One can obtain α(x, y) by
calculating α(x) for all y, as evident from Fig. 5(b).

5. Discussion
Using the dynamics of these reduced variables

ψ(x, y, t), δ(x, y, t), and α(x, y, t), comparisons of
the present spatiotemporal chaos with well-known models
can be performed [2]. ψ(x, y) of soft-mode turbulence can
be compared with the two-dimensional XY model (also
called planar rotor model) [9]. The so-called Kosterlitz-
Thouless transition occurs in the two-dimensional XY
model [10], but order-disorder transition occurs in soft-
mode turbulence [11]. α(x, y) of defect turbulence also
can be compared with the two-dimensional XY model. In
defect turbulence, a defect which corresponds to a singular
point of α(x, y) is always generated due to the nonlin-
ear phase instability [12]. Therefore, a no-defect state
corresponding to the lower temperature phase below the
Kosterlitz-Thouless transition point in the two-dimensional
XY model cannot appear in defect turbulence. δ(x, y, t)
of spatiotemporal intermittency can be compared with the
directed percolation model [13]. The switching dynamics
between the two states of δ(x, y, t) in spatiotemporal
intermittency of nematic electroconvection is not a Poisson
process [7]. This behavior is different from that in the
directed percolation. Thus, differences generated from
the model reveal the properties inherent in each type of
spatiotemporal chaos.

Furthermore, we can try to create phenomenological
models for the spatiotemporal chaos using these variables.
These models may present new perspectives for spatiotem-
poral chaos.
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Appendix A.
From a one-dimensional profile

u(x) = R(x) cos[q0x + α(x)], (A.1)

R(x) and α(x) are demodulated in the following way.
Equation (A.1) is rewritten as

u(x) = Re{R(x) exp[iα(x)] exp(iq0x)}
= Re[A(x) exp(iq0x)]

= 1

2
[A(x) exp(iq0x) + A∗(x) exp(−iq0x)](A.2)

with R(x) exp[iα(x)] ≡ A(x). X∗ is the complex conjugate
of X . The Fourier transform of u(x) of Eq. (A.2) is

J0(k) =
∫ ∞

−∞
u(x) exp(−ikx)dx

= 1

2

{∫ ∞

−∞
A(x) exp[−i(k − q0)x]dx

+
∫ ∞

−∞
A∗(x) exp[−i(k + q0)x]dx

}

= 1

2
[B(k − q0) + B∗(−(k + q0))], (A.3)

where B(k) is the Fourier transform of A(x). Low-pass fil-
tering is applied to J0(k), because only the low wavenumber
components are essential. After filtering, only the second
term of Eq. (A.3) remains,

J (k) = 1

2
B(k − q0). (A.4)

Using Eq. (A.4), the inverse Fourier transform of B(k), i.e.,
A(x), can be obtained as follows,

A(x) = 1

2π

∫ ∞

−∞
B(k) exp(ikx)dk

= 1

2π

∫ ∞

−∞
2J (k + q0) exp(ikx)dk.

Therefore, with J (k + q0) ≡ J ′(k + q0) + iJ ′′(k + q0),

A(x) = 1

2π

[
2

∫ ∞

−∞
J ′(k + q0) exp(ikx)dk

+2i
∫ ∞

−∞
J ′′(k + q0) exp(ikx)dk

]

= 2[I ′
r (x) + iI ′

i (x) + iI ′′
r (x) − I ′′

i (x)], (A.5)

where I ′
r (x) and I ′

i (x) are the real and imaginary parts,
respectively, of the inverse Fourier transform of J ′(k + q0).
Similarly I ′′

r (x) and I ′′
i (x) are the real and imaginary parts

of the inverse Fourier transform of J ′′(k+q0). Finally, from
Eq. (A.5),

R(x) =
√

[ReA(x)]2 + [ImA(x)]2

= 2
√

[I ′
r (x) − I ′′

i (x)]2 + [I ′
i (x) + I ′′

r (x)]2

and

α(x) = arctan

[
ImA(x)

ReA(x)

]

= arctan

[
I ′
i (x) + I ′′

r (x)

I ′
r (x) − I ′′

i (x)

]

can be obtained.
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