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Stokes Flow around a Hypersphere in n-Dimensional Space
and Its Visualization
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We derived the Stokes equations and velocity potential around a hyperspherical obstacle in n-dimensional
space. The objectives of this study were to understand the hyperspace through the physics in the space and
to bring the analytical solution of fluid flow in hyperspace for numerical simulation. The equations were
obtained from the n-dimensional Navier-Stokes equation assuming the low Reynolds number flow. These were
generalized formulae from a 3-dimensional system to an n-dimensional one. Our results show that the effect of
the hyperspherical obstacle on the uniform flow is localized in higher dimensional spaces. We visualized the flow
using the collections of hypersections.
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1. Introduction
It is difficult to visualize hyperspace. As discussed in Ab-

bott’s “Flatland” [1], people occupying lower dimensional
spaces struggle to comprehend the existence of higher di-
mensional spaces. In this paper, we consider fluid flow in
n-dimensional space. By considering the flow of a fluid in
a higher dimensional space we can gain further insight into
the nature of hyperspace.

We derived the Stokes equations around a hypersphere
in n-dimensional space. There are two reasons to consider
fluid flow in hyperspace. First, understanding the physics of
an n-dimensional system can help improve our understand-
ing of the properties of hyperspace. Second, the analytical
results for the velocity potential and the flow equations are
useful for understanding the flow of a fluid in hyperspace.
Furthermore, the analytical solutions of the equations for
fluid flow give us an effective tool to examine the accuracy
of numerical schemes.

We generalized the formulae for a 3-dimensional system
to an n-dimensional one. This generalization is straightfor-
ward because the procedure for the derivation is the same
as that for the 3-dimensional case [4]. Five quantities need
to be derived to obtain the Stokes equations: 1) the velocity
potential for uniform flow, 2) the velocity potential for the
source doublet, 3) the velocity potential for the flow around
a hypersphere, 4) the stream function for a perfect fluid, 5)
the final form of the stream function for the Stokes flow.

It is known that the effect of obstacles for a Stokes flow
is very different to that for a perfect fluid [4]. The effect
of obstacles is broad for Stokes flow. The main difference
between potential flow and Stokes flow is the absence or
presence of viscosity. It is of interest whether such a broad
effect of the viscosity is observed in higher dimensions or
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not.

2. Potential Flow
We start our treatment of the Stokes equations with the

equation for the velocity potential in n-dimensional space
�n ,

∇2
n�n = 0, (1)

where the operator ∇n is defined by,

∇n =
(

∂

∂x1
,

∂

∂x2
, · · · , ∂

∂xn

)
. (2)

This means that we focus on stable flow with a low
Reynolds number [3]. Note that we use n-dimensional
Cartesian coordinates and denote them (x1, x2, · · ·, xn). The
derivation of Eq. (1) is summarized in Appendix B. Using
the velocity potential, the velocity field is defined by,

un = ∇n�n. (3)

Our goal is to obtain the exact form of the Stokes flow
function around a hyperspherical obstacle in n-dimensional
space. The situation is summarized as follows: A fluid
flows parallel to the xn axis from the negative xn direc-
tion with a velocity U , and a hyperspherical obstacle of ra-
dius a is placed with its center at the origin. Consequently,
the flow is axisymmetric with respect to xn . We introduce
cylindrical coordinates in n-dimensional space (y, θ2, θ3,
· · ·, θn−1, x) and match the x axis of the cylindrical coor-
dinate system with the xn axis of the Cartesian coordinate
system. We choose one of the rest coordinates (x1, · · ·,
xn−1), we suppose x1 in the following, as the y axis. The
y axis represents the radial distance from the origin of the
(n − 1)-dimensional spherical coordinate system and cor-
responds to a hypersection whose center is (0, 0, · · · 0, x)
in n-dimensional space. Rest variables which represent az-
imuthal angles (θ2, θ3, · · ·, θn−1) in the cylindrical coordi-
nate system can be ignored because of the symmetry. For
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this reason, we focus our consideration on the flow in x-y
coordinates in the following. The relations among the coor-
dinates are summarized in Appendix A. Here, un(x, y) and
vn(x, y) denote the x and y elements of the velocity in n-
dimensional space, respectively. Then, the velocity field for
the n-dimensional Cartesian coordinates is described by,

un(x1, x2, x3, · · · , xn) = un(xn, rn−1)en + vn(xn, rn−1)er ,

(4)
where en = (0, 0, · · · , 0, 1), er =
(x1, x2, · · · , xn−1, 0)/rn−1, and rn−1 =√

x2
1 + x2

2 + · · · + x2
n−1.

Consider a uniform flow whose magnitude of velocity is
U . As mentioned above, the fluid flows parallel to the x
axis from negative x to positive x . Therefore, the velocity
potential of the flow is expressed by,

�n = U x, (5)

and the velocity field is,

un = ∂�n

∂x
= U, vn = ∂�n

∂y
= 0. (6)

We introduce the velocity potential for the source dou-
blet. As shown in Eq. (C.2), the velocity potential for a
point source is described by,

�n = − m

n − 2

1

rn−2
, (7)

where r =
√

x2 + y2. Then we obtain the formula for the
velocity potential for the source doublet at the origin. We
also suppose that the dipole moment is parallel to the x axis
from negative to positive x . That is,

�n = −γ
x

rn
, (8)

as shown in Eq. (C.6). The negative sign indicates that
the fluid flows from the field for negative x to the field for
positive x . The coefficient γ is the strength of the dipole
moment. Derivations of Eqs. (7) and (8) are summarized in
Appendix C.

In the case of a perfect fluid, the potential function for
the flow around the hyperspherical obstacle is described by
the combination of the two velocity potentials: the uniform
flow and the source doublet whose dipole moment is di-
rected from positive x to negative x . That is,

�n = U x + γ
x

rn
. (9)

Substituting γ = Uan/(n − 1) into the equation, we obtain
the final form of the velocity potential for the flow of perfect
fluid around a hypersphere as,

�n(x, y) = U x + 1

n − 1
U

(a

r

)n
. (10)

Consequently, the elements of the velocity field are,

un = ∂�n

∂x

= U

(
1 −

(a

r

)n
(( x

r

)2
− 1

n − 1

( y

r

)2
))

, (11)

vn = ∂�n

∂y
= −U

(
1 + 1

n − 1

) (a

r

)n xy

r2
. (12)
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Fig. 1. n dependence of the maximum velocity of the potential flow.

The inner product of (x , y) and (un , vn) obtained by
substituting three relations r = a, x = a cos φ, and y =
a sin φ, equals zero for any value of φ. This means that
the flow does not penetrate the hypersphere. Therefore, we
conclude that Eq. (10) describes the flow of a perfect fluid
around a hypersphere of radius a whose center is located on
the origin.

The velocity along the y axis is obtained by the substi-
tution of x = 0 into Eqs. (11) and (12). The fluid flows
parallel to the x axis because vn is zero on the axis. Then,
the velocity becomes,

un = U

(
1 +

(
1

n − 1

) (
a

y

)n)
. (13)

From this equation, the velocity profile along the y axis has
a maximum magnitude of un at (0, ±a) because |y| ≥ a.
That is,

un =
(

1 + 1

n − 1

)
U. (14)

This is also the maximum value of the magnitude of the
velocity across the whole field. Figure 1 shows the n de-
pendence of the velocity ratio un/U of Eq. (14). The value
monotonically decreases and tends towards unity with in-
creasing n.

3. Stokes Flow
We generalized the Stokes flow equations to n-

dimensional space. As shown in Eq. (B.12), the equation
of continuity in cylindrical coordinates is described by,

∂un

∂x
+ 1

yn−2

∂

∂y

(
yn−2vn

) = 0. (15)

From this equation, we define the flow function �n as,

un = 1

yn−2

∂�n

∂y
, vn = − 1

yn−2

∂�n

∂x
. (16)

This equation satisfies Eq. (15). Note that the multipliers
are generalized from 1/y in the 3-dimensional system to
1/yn−2 in the n-dimensional system. Using a combination
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Fig. 2. Comparisons of stream lines around a hypersphere between potential flow (L.H.S.) and Stokes flow (R.H.S.) for 3, 4, and 10 dimensions.

of these definitions and Eqs. (11) and (12), we derive the
formula for the flow function as,

�n(x, y) = 1

n − 1
U yn−1

(
1 −

(a

r

)n)
. (17)

This function can also be expressed as,

�n(r, θ) = 1

n − 1
U

(
rn−1 − an

r

)
sinn−1 θ, (18)

by introducing the variable θ = sin−1(y/r).
In order to introduce the flow function for Stokes flow

around a hypersphere, we add another term called the
Stokes pole to Eq. (18). We write the new flow function
as,

�n(r, θ) =
(

1

n − 1
Urn−1 − β

r
− λr

)
sinn−1 θ, (19)

where the third term in the parentheses is the Stokes pole.
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We set the boundary conditions such that the velocity on
the hypersurface of the hypersphere is zero. The boundary
conditions are,

�n(a, θ) = 0, (20)

for the tangential element and,

∂�n

∂r

∣∣∣∣
r=a

= 0, (21)

for the normal element. Solving the simultaneous Eqs. (20)
and (21) for β and λ, we obtain,

β = − n − 2

2(n − 1)
Uan, λ = n

2(n − 1)
Uan−2. (22)

Finally, the flow function is derived by substitution of Eq.
(22) into Eq. (19),

�n(r, θ) = 1

2(n − 1)
·

U

(
2rn−1 + (n − 2)

an

r
− nan−2r

)
sinn−1 θ.

(23)

The flow function for 4-dimensional space becomes,

�4(r, θ) = 1

3r
U (r − a)2 (r + a)2 sin3 θ, (24)

for example. Consequently, we obtained the velocity com-
ponents of the field as,

un(x, y) = 1

yn−2

∂�n

∂y

= U

(
1 + n − 2

2

(a

r

)n
− n

2

(a

r

)n−2

−n(n − 2)

2(n − 1)

(a

r

)n
y2

(
1

a2
− 1

r2

))
, (25)

vn(x, y) = − 1

yn−2

∂�n

∂x

= U
n(n − 2)

2(n − 1)

(a

r

)n−2 (a

r
− 1

) xy

r2
. (26)

Figure 2 shows comparisons of stream lines for a poten-
tial flow (Eqs. (11) and (12)) and a Stokes flow (Eqs. (25)
and (26)) in 3, 4, and 10 dimensions. The effect of the hy-
perspherical obstacle on the uniform flow tends to be local-
ized as the number of dimensions increases in both cases.
The obstacle affects the field more widely in the case of
Stokes flow (presence of viscosity) than in the case of po-
tential flow in the same dimension. The effect, however, is
localized as the number of dimensions increases.

We considered the velocity profiles on the y axis of the
Stokes flow for different dimensions. For those cases, vn

equals zero so that the fluid flows parallel to the x axis. The
equation for the velocity profile is,

un(0, y)

= U

(
1 − n − 2

2(n − 1)

(
a

y

)n

− n

2(n − 1)

(
a

y

)n−2
)

.

(27)
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Fig. 3. Velocity profiles along the y axis of the Stokes flow for different
dimensions.

Figure 3 shows the velocity profile along the y axis obtained
from Eq. (27). An abrupt increase in velocity is observed
near the hypersurface of the hypersphere for high dimen-
sions. This indicates that the effect of hyperspherical obsta-
cles decreases with an increasing number of dimensions.

4. Visualization
We tried to visualize the 4-dimensional flow using Ab-

bott’s description of a sphere [1]. He explained the shape
of a sphere by the continuous change of a circle’s radius to
a fictional inhabitant of a two-dimensional flatland. Sim-
ilar to the Abbott method, we made sections of 3- and 4-
dimensional spaces and displayed the velocity field in each
section. The velocity field is obtained from Eq. (4). The
field is described by,

u3(x1, x2, x3) =




v3

(
x3,

√
x2

1 + x2
2

)
x1√

x2
1 + x2

2

v3

(
x3,

√
x2

1 + x2
2

)
x2√

x2
1 + x2

2

u3

(
x3,

√
x2

1 + x2
2

)




T

,

(28)
for 3-dimensional flow and,

u4 =




v4

(
x4,

√
x2

1 + x2
2 + x2

3

)
x1√

x2
1 + x2

2 + x2
3

v4

(
x4,

√
x2

1 + x2
2 + x2

3

)
x2√

x2
1 + x2

2 + x2
3

v4

(
x4,

√
x2

1 + x2
2 + x2

3

)
x3√

x2
1 + x2

2 + x2
3

u4

(
x4,

√
x2

1 + x2
2 + x2

3

)




T

,

(29)
for 4-dimensional flow.

Figure 4 shows the velocity fields for Stokes flow in 3-
dimensional space obtained using Eqs. (25), (26) and (28).
The fluid flows from left to right. Each figure shows the
velocity field for x2 = 0.0, 0.3, 0.6, and 0.9. The color
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(a) (b)

(c) (d)

Fig. 4. 3-dimensional Stokes flow on 2-dimensional planes. a: x2 = 0.0, b: x2 = 0.3, c: x2 = 0.6, and d: x2 = 0.9.

denotes the magnitude of the x2 element of the velocity
field. In other words, the color represents the amount of
fluid that goes to or from another dimension. For x2 = 0.0,
the fluid flows along the section so that the color of all
arrows in this section are same. On the other hand, the
fluid also flows into and from another dimension (x3) so
that the color is dependent on the position. Red denotes a
large magnitude for the velocity and obviously the area of
red increases with increasing x2.

Figure 5 shows the velocity fields for Stokes flow in 4-
dimensional space using the same method. The figures
show the hypersections of x3 = 0.0, 0.3, 0.6, and 0.9. The
color denotes the magnitude of the x3 element of the veloc-
ity field. For the 3-dimensional case, the fluid goes to or
comes from another dimension. The fluid moves to another
dimension (x4) in front of the sphere and returns behind the
sphere. We can see how such phenomena disperse in 3-
dimensional space in the figures. The redirection to another
dimension is dispersed across the 3-dimensional space so
that the total amount of fluid that is redirected to other di-
mensions is large compared to that for 3-dimensional flow.

As a result, fluid that is relatively far from the obstacle does
not move between dimensions to avoid it.

5. Hagen-Poiseuille Flow
We also obtained the velocity profile for a Hagen-

Poiseuille flow (the velocity profile in the hypercylinder) in
n-dimensional space. We supposed that the hypercylinder
consisted of a hyperspherical section whose radius is a and
a longitudinal wall. We denote the velocity distribution of
the fluid un(r), where r is the distance to the axis of the hy-
percylinder. The velocity on the wall is zero so that un(±a)

is zero. The length of the hypercylinder is l and the pres-
sure difference between the input and output is 	p. From
Eq. (B.3), the equation for u(r) is expressed as,

1

rn−1

d

dr

(
rn−1 dun

dr

)
= −	p

µl
, (30)

where 	p/ l represents a pressure gradient. We introduce a
new notation k = 	p/µl in the following. The solution to
this equation for the given boundary conditions is,

un(r) = k

2(n − 1)
(a2 − r2). (31)
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(a) (b)

(c) (d)

Fig. 5. 4-dimensional Stokes flow on the 3-dimensional hypersection. a: x3 = 0.0, b: x3 = 0.3, c: x3 = 0.6, and d: x3 = 0.9.

This solution indicates that the velocity profile in the hyper-
cylinder is always quadratic and the dimension is the only
coefficient of the polynomial. Figure 6 shows the profiles
for the same value of k. The velocity distribution tends to
be smaller and flatter with increasing dimensions. Note that
the pressure has dimensions of force per unit facet so that
the coefficient itself has different interpretations depending
on n.

6. Discussion
The effect of the hyperspherical obstacle is localized with

increasing number of dimensions n, for both the potential
flow and the Stokes flow. For this reason, we conclude that
the effect of a hyperspherical obstacle decreases with in-
creasing dimensions. This is because the fluid can avoid
the obstacle by moving between dimensions. The visualiza-
tion of the flow in 4-dimensional space revealed how such
evasion occurs. Similar behavior is observed in the Hagen-
Poiseuille flow.

The visualization of the flow in four-dimensional space,
however, does not improve our understanding of hyper-
space. The information obtained from the visualization of
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Fig. 6. Velocity profiles for Hagen-Poiseuille flow for different n.

four-dimensional Stokes flow can be predicted based on
three-dimensional one. One of the reasons is that we con-
sider an axisymmetric flow which shows the same charac-
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teristics for different axes. Vector plots in 3-dimensional
space are not useful because vectors on the near side of
the obstacle hide those on the far side. Furthermore, this
method cannot be applied to the cases where the number of
dimensions is higher than four.

Appendix A. Coordinates
We introduced three types of coordinates: Cartesian,

spherical, and cylindrical. We denote the Cartesian coor-
dinates by (x1, x2, · · ·, xn), the spherical coordinates by (rn ,
θ2, · · ·, θn), and the cylindrical coordinates by (rn−1, θ2, · · ·,
θn−1, xn). Note that the cylindrical coordinates consist of a
combination of the (n − 1)-dimensional hyperspherical co-
ordinates and the 1-dimensional Cartesian coordinates, be-
cause a cylinder in an n-dimensional system consists of a
hyperspherical section and its length. The relation between
the Cartesian coordinates and spherical coordinates is sum-
marized [2] by,

rk−1 = rk sin θk, xk = rk cos θk, x1 = r2 sin θ2, (A.1)

where rk is defined by,

r2
k =

k∑
i=1

x2
i . (A.2)

Figure A.1 shows the relation between the cylindrical
coordinates and the variables in 2-dimensional and 3-
dimensional space, for example. It is notable that the Carte-
sian coordinates and the cylindrical ones are identical in
a case of 2-dimensional space because of the lack of az-
imuthal angles.

The formula for the Laplacian depends on both n and the
coordinate system. We denote the Laplacian for the Carte-
sian coordinates by ∇2

n , ∇2
n,s for the spherical coordinates,

and ∇2
n,c for the cylindrical coordinates. For example, the

Laplacian for the spherical coordinates in 4-dimensional
space is written as,

∇2
4,s = 1

r3
4

∂

∂r4

(
r3

4
∂

∂r4

)
+ 1

r2
4 sin2 θ4 sin2 θ3

(
∂2

∂θ2
2

)

+ 1

r2
4 sin2 θ4 sin θ3

(
∂

∂θ3

(
sin θ3

∂

∂θ3

))

+ 1

r2
4 sin2 θ4

(
∂

∂θ4

(
sin2 θ4

∂

∂θ4

))
.

In general, the Laplacian for the n-dimensional spherical
coordinates is written as,

∇2
n,s = 1

rn−1
n

∂

∂rn

(
rn−1

n

∂

∂rn

)
+ 1

r2
	Sn−1 , (A.3)

where 	Sn−1 is the spherical Laplace operator in (n − 1)-
dimensions [2]. The spherical Laplace operator consists of
variables of azimuthal angles and does not include rn . For
cylindrical coordinates, the Laplacian is a combination of
those for (n − 1)-dimensional spherical coordinates and for
one dimensional Cartesian coordinates,

∇2
n,c = ∇2

n−1,s + ∂2

∂x2
n

. (A.4)

Appendix B. Basic Formulae
The formulae for continuity and the Navier-Stokes equa-

tions can be generalized to n-dimensional space as,

∇n · un = 0, (B.1)

and,

∂un

∂t
+ (un · ∇n) un = − 1

ρ
∇n p + µ

ρ
∇2

n un + 1

ρ
K, (B.2)

where ρ is the density, p is the pressure, µ is the viscosity,
and K is the external force. We used the following assump-
tions: low Reynolds number, steady flow, and absence of
external force. These are the same as the assumptions for
the 3-dimensional Stokes flow. Under these assumptions,
the equations are simplified to,

µ∇2
n un = ∇n p. (B.3)

The homogeneous solution to Eq. (B.3) can be written in
terms of the velocity potential �n ,

un = ∇n�n =
(

∂�n

∂x1
,
∂�n

∂x2
, · · · , ∂�n

∂xn

)
, (B.4)

where �n satisfies the Laplace equation,

∇2
n�n = ∂2�n

∂x2
1

+ ∂2�n

∂x2
2

+ · · · + ∂2�n

∂x2
n

= 0. (B.5)

This is the same as the equation presented at the beginning
of this paper, Eq. (1).

We consider the equation of continuity B.1 for the cylin-
drical coordinates. We introduce new notations for the vari-
able ξi whose relations to other variables is defined by,

(ξ1, ξ2, · · · , ξn) = (rn−1, θ2, θ3, · · · , θn−1, xn). (B.6)

Using the new variables, the equation of continuity is ex-
pressed as,

∇n · un = 1∏n
i=1 hi

n∑
i=1

(
∂

∂ξi

(∏n
k=1 hk

hi
vi

))
, (B.7)

where vi is the i-th element of the velocity in the cylindrical
coordinate system and hk is defined by,

hk =
√√√√ n∑

i=1

(
∂xi

∂ξk

)2

. (B.8)

For 3 ≤ k ≤ n − 1, h2
k is obtained by,

h2
k =

n∑
i=1

(
∂xi

∂ξk

)2

=
k∑

i=1

(
∂xi

∂θk

)2

=
k−1∑
i=1

(
cos θk

sin θk
xi

)2

+
(

− sin θk

cos θk
xk

)2

=
(

cos θk

sin θk

)2 k−1∑
i=1

x2
i + (rk sin θk)

2

=
(

cos θk

sin θk

)2

r2
k−1 + r2

k sin2 θk

= r2
k (cos2 θk + sin2 θk) = r2

k . (B.9)
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Fig. A.1. Definitions of the cylindrical coordinates and the variables in the cylindrical coordinates.

Using similar procedures, we obtain the equations for hi ,

h1 = 1, h2 = r2, h3 = r3, · · · , hn−1 = rn−1, hn = 1.

(B.10)
For the axisymmetric case, the right-hand side of Eq. (B.7)
is written as,

1

rn−2
n−1 f (θ1, · · · , θn−2)

{
∂

∂rn−1

(
rn−2

n−1 f (θ1, · · · , θn−2)

h1
v1

)

+ ∂

∂xn

(
rn−2

n−1 f (θ1, · · · , θn−2)

hn
vn

)}

= 1

rn−2
n−1

∂

∂rn−1

(
rn−2

n−1 v1
) + ∂vn

∂xn
, (B.11)

where f (θ1, · · · , θn−2) is
∏n−2

i=2 (hi/rn−1) and is not depen-
dent on rn−1 or xn . Therefore, under the notation used in
this study, the equation of continuity for the n-dimensional
axisymmetric flow is written as,

1

yn−2

∂

∂y

(
yn−2vn

) + ∂un

∂x
= 0. (B.12)

Appendix C. Single Source and Source Doublet
We consider a point source of strength m, located at the

origin. The behavior of the point source is dependent on the
sign of m: it is a source for m > 0 and a sink for m < 0. The
potential function for the point source is obtained from the
Laplace equation in n-dimensional spherical coordinates
Eq. (A.3) by,

1

rn−1
n

d

drn

(
rn−1

n

d�n

drn

)
= 0. (C.1)

The potential function for a point source depends on only
the radial variable rn so that the partial differential in Eq.
A.3) is replaced by the ordinary differential and the second
term vanishes. The solution to Eq. (C.1) is,

�n = − m

n − 2

1

rn−2
n

. (C.2)

We acquired the n-dimensional source doublet whose
dipole direction is in the positive x direction. The potential

is the limit of the sum of the potentials of point source A and
point sink B when the distance between the two points goes
to zero. We located A and B on the xn axis: negative xn for
the source and positive xn for the sink. The distance from
the origin to each point is ε, and their locations in Cartesian
coordinates are (0, 0, · · ·, −ε) and (0, 0, · · ·, ε), respectively.
First, we take arbitrary point P and denote the distances of
the point source and the point sink from P as rnA and rnB,
respectively. The velocity potential at P is written as,

�n = − m

n − 2

1

rn−2
nA

+ m

n − 2

1

rn−2
nB

= m

n − 2

rn−2
nB − rn−2

nA

rn−2
nA rn−2

nB

.

(C.3)
Using the theorem of cosines, rnA and rnB are approximated
by,

r2
nA = r2

n + ε2 + 2rnε cos θ � r2
n

(
1 + 2ε

rn
cos θ

)
, (C.4)

r2
nB = r2

n + ε2 − 2rnε cos θ � r2
n

(
1 − 2ε

rn
cos θ

)
, (C.5)

where rn is the distance of the point P from the origin and
θ is the angle between the xn axis and the position vector
for P. We substitute these equations into Eq. (C.3) and take
the limit as ε → 0, where µ = 2mε is constant. Then we
obtain the formula for the velocity potential of the source
doublet as,

�n = lim
ε→0


− µ

2ε(n − 2)


 rn−2

n (2 ε
rn

(n − 2) cos θ)

(1 − ε2

r2
n
(n − 2)2 cos2 θ)r2n−4

n







= −µ
1

rn−1
n

cos θ = −µ
x

rn
n

, (C.6)

and we use the formula (1 + aε)k � 1 + kaε for small ε.
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