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Trial on Low-Pass Filter Design for Bio-Signal Based on Nonlinear Analysis
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The nonlinearity of the mathematical model describing the cerebral blood flow dynamics and the body sway
in the prefrontal cortex was investigated experimentally. The measured bio-signal data were smoothed with each
low-pass filter. The signal was set to 0.1–2 Hz for the cerebral blood flow dynamics and to 0.1–20 Hz for the
body sway. Nonlinearity was observed in the biological signal when the cut-off frequency of the low-pass filtering
was 0.2 Hz or less, and while the body sway was 0.5 Hz or less, and was considered as a stochastic differential
equations.
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1. Introduction
In recent years, the burden on experimental subjects has

decreased because small size, non-restriction, and non-
invasive devices have become available with the develop-
ment of physical metering equipment. Therefore, compli-
cated measurements, such as the body sway while watching
a picture and the muscle potential at the time of exercise,
have been enabled. However, noise such as breathing and
body movement is not excluded from the measurement be-
cause the signal of the living body is feeble. Hence, pro-
cessing using a low pass filter has been successfully used to
address the mixture of noise. However, in noise processing
with a low-pass filter, there exists a problem whereby the
resulting changes greatly depend on the value of the cut-
off frequency. Therefore, it is important to set a cut-off
frequency band that is suitable to biological signal analy-
sis targets. Currently, the value of the cut-off frequency is
often empirically determined and differs according to the
experimenter. Therefore, this study investigated the value
of the low pass filter’s cut-off frequency, and aimed at ob-
jectively evaluating the cut-off frequency by concentrating
on the fact that the bio-signal properties change accord-
ing to the value of the cut-off frequency. The brain ac-
tivity during biofeedback (BF) and the body sway during
stereoscopic image viewing were considered as the bio-
signal. The brain activity was measured using near-infrared
spectroscopy (NIRS), which can non-invasively measure
changes in the cerebral blood flow of living bodies.

Biofeedback (BF) refers to technologies and phenomena
that can consciously control some physical activity by feed-
ing back physical activity that cannot be consciously con-
trolled, such as the heartbeat and body temperature. More-
over, BF is often used as a physical process to relieve ten-
sion and pain and to promote health. A BF instrument
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performs three tasks. First, it monitors (in some capacity)
a physiological process of interest. Secondly it measures
(quantifies) what is being monitored. Thirdly, it presents
what is being monitored or measured as meaningful infor-
mation. Electromyography (EMG) and BF handle motion
during treatment, and are often used concurrently. Addi-
tionally, BF training (BFT) does not only refer to techniques
that promote health, but is also thought to affect the de-
velopment and maintenance of brain functioning [1]. In
fact, progressive muscle relaxation is used to control anx-
iety and is thought to promote self-care and enhance overall
health [2]. Jacobsen (1938) developed progressive muscle
relaxation as an effective behavioral technique for the al-
leviation of neurotic tensions and many functional medical
disorders. He used crude electromyographic equipment to
monitor the levels of tension in the muscles of his patients
during treatment. The classification of and a historical per-
spective on biofeedback applications can be found in re-
ports by Gatchel and Price (1979) and Gaarder and Mont-
gomery (1981). Basmajian et al. (1989) comprehensively
reviewed the applications and historical perspectives of BF,
which are beyond the scope of this discussion [3–5]. BFT
is not only a technique used for health enhancement, but is
also thought to affect the development and maintenance of
brain functions [6, 7]. The connection between BFT and
brain functions will certainly attract more attention in the
future, seeing as current studies have reported that BFT
does not only involve the voluntary movement of the ex-
tremities and joints, but also receives input from the brain’s
high-level integrative functions.

Recently, it was shown that the mass of hip flexor mus-
cles, which are used to bend the hip joint when walking,
rapidly reduces with age. Hip joint flexors, which include
the femoral rectus and abdominal muscles, have been im-
plicated in falling incidents involving elderly people. The
blood flow in the cerebrum can easily contain artifacts such
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as those produced by physical exercise and cardiovascular
activity. Therefore, in this study, the effect of local exercise
was evaluated for sitting subjects, and the average rectified
EMG of the femoral rectus muscles performed during the
BFT of the dominant leg was investigated. BF techniques
allow subjects to observe the EMG signals or signal-derived
outputs so as to encourage the self-control of a specific mus-
cle. This technique has been used to develop a local exercise
technique for muscles, including the femoral rectus, and
thus contributed to fall prevention and health enhancement
for elderly individuals. Instructions are frequently provided
using a visual or auditory signal.

Brain functional imaging using NIRS is a technique that
has been developed in recent years and is used for the non-
invasive measurement of brain activity. Owing to develop-
ments such as the miniaturization of diagnostic equipment,
brain science is rapidly being developed and various brain
activities are being defined [8–10]. In brain activity mea-
surements using NIRS, the prefrontal cortex (related to the
working memory, attention control, cognition, and emotion)
and the premotor cortex (related to motion planning and
preparation) are activated during low-load full-body move-
ment such as walking [11]. In fact, studies have reported
that the cognitive functioning of elderly people improves
through walking exercise [12]. Moreover, previous work
by the authors has demonstrated that it is possible for spe-
cific local movement (masticatory movement in this case)
to stimulate activity in the prefrontal cortex [13].

This study used EMG and NIRS simultaneously to make
measurements in the femoral rectus of healthy young sub-
jects, whose physiological properties are not markedly dif-
ferent from those of healthy elderly subjects, so as to reveal
the effect of BFT on the brain and particularly on the pre-
frontal cortex. Additionally, the effect of BFT exercise tasks
on the local cerebral blood flow was investigated.

2. Material and Methods
Typically, we do not recognize the body regulation with

involuntary movement; however, visualization using the
electromyogram (EMG) and electrocardiogram (ECG) has
revealed teacher signal in the BFT. Apart from mental relax-
ation training, BFT has also been applied to patients with
intractable epilepsy and used for gait training [6, 7]. The
objective of the BFT is to recover the functioning of the
body.
2.1 Experiment 1

NIRS requires less restraint on the subject compared with
other techniques such as functional magnetic resonance
imaging (fMRI) and positron emission tomography (PET)
[14–16]. NIRS measures the changes in the concentration
of hemoglobin (Hb) in the blood. Although there exists a
limitation in the wavelength range at which near infrared
light is absorbed into the body [17], near infrared light scat-
tered into the brain tissue from above the scalp can still
reach the cerebral cortex [18]. Moreover, the cerebral cor-
tex is located at a depth of 15–20 mm from the scalp and ex-
hibits close correlation between the neural activity and the
capillary constriction or dilation. Therefore, the cerebral
cortex is suitable for measuring changes in the intracere-
bral hemoglobin concentration associated with brain activ-

ity. Furthermore, the cerebral cortex is also critically linked
to movement, sensation, language, and cognition. During
the NIRS for the cerebral cortex, the activity is measured
using multichannel reflection measurements from the scalp.
Briefly, light-emitting probes and light-receiving probes are
placed on the scalp, and then near infrared light (wavelength
of 700–900 nm) with high permeability into the bio-tissue
is emitted from these light-emitting probes. Then, the light-
receiving probes detect light that is scattered and reflected
by the cerebral cortex.

Blood contains two types of hemoglobin with differ-
ent absorption spectra, namely, oxygenated hemoglobin
(Oxy-Hb) bound to oxygen and deoxygenated hemoglobin
(Deoxy-Hb) that is not bound to oxygen [17]. This study
considered this characteristic to measure the Oxy-Hb con-
centration (Co) and Deoxy-Hb concentration (Cd) using the
continuous wave (CW) method, based on the attenuation
of detected light versus the intensity of the near infrared
light reflection at two wavelengths, namely, λ1 and λ2. The
CW method is based on the modified Lambert-Beer (MLB)
method and measures the concentration change from the
beginning of recording multiplied by the optical path [17,
19]. This method is useful because the human body strongly
scatters light, which means that the direct optical path from
emission to detection cannot be reliably measured; thus,
the obtained values do not represent the absolute Hb levels.
Measurements using NIRS assume neurovascular coupling
in the same manner as other measuring techniques [19].
Neurovascular coupling in the brain refers to the blood ves-
sels dilating near the active nerves, such that arterial blood
containing high levels of oxygen and glucose can be sup-
plied with associated changes in Oxy-Hb and Deoxy-Hb
[20]. Additionally, the active states in the brain regions can
be estimated by measuring the changes in the cerebral blood
flow. In fact, it has been demonstrated that the increase and
decrease of localized Hb (Co, Cd) reflect the cerebral ac-
tivity [21, 22]. Biometric data for the femoral rectus mus-
cle were obtained from ten healthy young individuals (24.7
± 4.5 years) with no abnormalities in their extremities and
without previous medical history of ear or nervous system
disease. All subjects were of approximately average size,
and their body mass index (BMI) was distributed from 18 to
25 kg/m2. The experiment was fully explained to the sub-
jects beforehand, and their written consent was obtained.
Additionally, the experiment was approved by the Ethics
Committee of the Department of human and artificial intel-
ligent systems, Graduate School of Engineering University
of Fukui (No. 2).

Surface EMG tests were carried out by connecting an
EMG transformation box (AP-U027, TEAC Co., Tokyo) to
a commercially available portable multi-purpose bio-signal
amplifier-embedded collection device (Polymate AP1532,
TEAC Co., Tokyo) and by using dedicated bipolar EMG
electrodes with pre-amps (20 dB). Additionally, AP Mon-
itor (NoruPro, Tokyo), which is a software that simulta-
neously displays the teacher signal of the BFT and the
smoothed EMG sequences for the subjects, was used for
recording on a personal computer at a sampling frequency
of 2 kHz to show the muscle activity of the subjects in real
time. The process was fully explained to the subjects prior
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Fig. 1. Biofeedback training experiment for rectus femoris muscle.

to the tests and consent was obtained in writing.
The following outline summarizes the experimental pro-

cess:
Step 1: The subjects were asked to sit back on a chair

(with four fixed legs) and kick with their dominant leg
against a belt attached to the lower part of the chair (Fig.
1).

Step 2: Away from the center of the femoral rectus,
AMG electrodes were placed at intervals of a few centime-
ters and the subjects were asked to perform their maximum
voluntary contraction. The average integral waveform of
the surface EMG was calculated for this period of muscle
contraction. Then, the muscular activity corresponding to
α = 75% (third quartile) of the maximum voluntary con-
traction was estimated.

Step 3: The muscular activity corresponding to α% of
the maximum voluntary contraction was presented to the
subject as the instruction signal. Five cycles of intermittent
signals were provided for 40 seconds of contraction (grad-
ual build-up during the first 20 seconds), which will here-
after be referred to as the transient period (TP). This was
followed by 20 seconds of constant muscle activity, which
will hereafter be referred to as the muscle contraction pe-
riod (MCP). Subsequently, relaxation was allowed for 40
seconds (the first 20 seconds are referred to as pre-rest and
the last 20 seconds are referred to as post-rest). This series
of flows was carried out five consecutive times (Fig. 2).

The EMG waveforms obtained over 400 seconds were
rectified and smoothed in real time at 0.1-second integra-
tion intervals. Subsequently, these integral waveforms were
shown to the subjects (in addition to the instruction signals).
The cut-off frequency for the high and low range cut-off
filters was set to 1 kHz and 16 kHz, noise was removed
from the surface EMG by inserting an AC removal filter,
and evaluation was performed through a sensor output sig-
nal evaluation system.

Step 4: In conjunction with Step 3, the optical brain
function imaging device LABNIRS (Shimadzu Corpora-
tion, Kyoto) was used to measure Co and Cd at a sampling
frequency of 17.5 Hz [19, 23]. A holder was placed on

Fig. 2. Experimental protocol: (a) procedure for single task; (b) series of
procedures for repeated tasks.

Fig. 3. Array of irradiation and light-receiving probes.

the subject’s head, with light-emitting/receiving probes ar-
ranged based on the international 10–20 sensor placement,
as shown in Fig. 3. The changes in the cerebral blood
flow concentrations were measured for the frontal lobe in
54 channels (Fig. 3).
2.2 Experiment 2

Ten healthy male volunteers (mean ± standard deviation:
22.6 ± 0.8 years) participated in this study. Stabilome-
try was carried out while viewing stereoscopic video clips
with augmented reality (AR) technology. Additionally, in
this experiment, fNIRS and ECG were simultaneously mea-
sured.

The subjects viewed stereoscopic video clips through
the transmission type of the head-mounted display (HMD;
MOVERIO BT-200, EPSON, Nagano). The stabilograms
were recorded using the Wii Balance Board (Nintendo, Ky-
oto), and the sampling frequency was set to 100 Hz.

The experiment was conducted in a dark room. The
subjects stood on the Wii Balance board in the Romberg
posture and wore the transmission type of the HMD. All
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(a)

(b)

Fig. 4. Video clips: (a) VC1 and (b) VC2.

subjects provided informed consent prior to their participa-
tion. The following subjects were excluded from the study:
subjects working the night shift, subjects with alcoholism
problems, subjects who consumed alcohol and caffeine-
containing beverages after waking up and less than 2 h af-
ter meals, subjects who had been using prescribed drugs,
and subjects who may have previously suffered from otorhi-
nolaryngologic or neurological diseases. This study was
approved by the research ethics committee of the Depart-
ment of Human and Artificial Intelligent Systems, Graduate
school of Engineering, University of Fukui (No. 2018010).

In peripheral viewing, stereoscopic video clips were ex-
posed to the subjects (Fig. 4), who viewed the ordinal
stereoscopic video clip (VC1) for the first 60 s after the on-
set of the measurement, then viewed the other video clip
(VC2) for the next 60 s while the visual field was con-
stricted, and were at a position of static standing for the
last 30 s. In this study, the abovementioned protocol was
repeated five times.

3. Analysis
Based on the Fourier-Shuffle surrogate method, we in-

vestigated whether the mathematical models describing the
cerebral hemodynamics and body sway were nonlinear. Ad-
ditionally, the time series data were smoothed using low-
pass filtering to investigate whether the cut-off frequency in
common was suitable for nonlinear analysis. The surrogate
sequences were obtained from the inverse transform of the
Fourier spectrum, whose phase components were shuffled
at random.
3.1 Experiment 1

For each subject, standardization was performed using
the average Co in the pre-rest period for each BFT cycle
and the standard deviation. Standardized sequences were
obtained for the pre-rest, TP, MCP, and post-rest periods.

(a)

(b)

Fig. 5. Standardized variations of local cerebral blood flow: typical graph
of time series of Co for (a) 8 ch and (b) 36 ch.

In this study, we analyzed the time sequences of the Co
for 8 channels. The time series were smoothed using low-
pass filtering, whose cut-off frequency f0 was set to 0.1, 0.2,
0.3, 0.5, 1, 1.5, and 2 Hz, respectively. Additionally, it was
possible to measure the degree of determinism for the math-
ematical model of the time series {x(t)}. The translation er-
rors Etrans [23] and the sequences of their temporal differ-
ences were estimated for each time series using the Double-
Wayland algorithm [23, 24]. Additionally, we compared
the Etrans of the abovementioned time series with their sur-
rogate sequences generated using the Fourier shuffle (FS)
algorithm [25, 26]. The length of the time series must be
2n because this algorithm performs fast Fourier transforma-
tion (FFT). In this study, the length of the time sequences
was set to 256 (n = 8), and the time sequences extracted
from the onset time (0 s) to 15 s/6 s to 20 s were defined as
the first half period and latter half period, respectively. The
value of Etrans was estimated as the average of the first half
and latter half period values.

These translation errors were compared with each other
by carrying out the Welch-Aspin test to evaluate the non-
linearity of the mathematical model describing the cerebral
hemodynamics. The significance level was set to 0.05.
3.2 Experiment 2

As stated in Subsection 2.2, this protocol was repeated
five times; however, the FS method was used in the first ex-
perimental period. The time series data for each component
were smoothed using low-pass filtering, and their cut-off
frequency f0 was set to 0.1, 0.15, 0.2, 0.3, 0.5, 1, 1.5, 2,
3, 5, 10, 15, and 20 Hz; the translation error was estimated
from each set of data.
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(a)

(b)

Fig. 6. Statistical comparison between Etrans estimated from standardized
time series smoothed using low-pass filtering and Etrans obtained from
surrogate sequences: translation errors Etrans for (a) MCP and (b)
post-rest periods.

4. Results
4.1 Experiment 1

BFT was carried out for 10 subjects, and the records of
the muscle performance in the BFT were confirmed using
the sensor output evaluation system. For all subjects, the
smoothed integral signal of the rectified EMG was ade-
quately fitted to the teacher signal. Time series data were
also recorded for the local cerebral blood flow in the frontal
lobe at 54 channels (Fig. 3).

In this study, we focused on the period of the fourth task
(Fig. 5a), which is comparatively stable compared with the
other periods. Standardized sequences were extracted for
the fourth task, as shown in Fig. 5a. Data analysis was
conducted and the time series was smoothed using low-
pass filtering, whose f0 was set to 0.1, 0.2, 0.3, 0.5, 1,
1.5, and 2 Hz, respectively. Considering the differences
between the time series data, Etrans was estimated as {x(t +
τ) − x(t)} for the time series data of Co and the sequences
of their temporal differences; the delay time τ is the time
required until the auto-correlation function of each time
series data becomes less than 1/e [27]. The growth of
Etrans monotonically increased according to the increase
of the cut-off frequency f0 for the bounded domain (at
least ≤2 Hz). Additionally, a gentle decrease was observed
without the finite domain. Based on these Etrans values for
f0 ≥ 0.2 Hz, it can be solidly argued that, in the MCP and

(a)

(b)

Fig. 7. Statistical comparison between Etrans estimated from sequences
of temporal differences and Etrans obtained from surrogate sequences:
translation errors Etrans for (a) MCP and (b) post-rest periods.

post-rest periods, the cerebral hemodynamics are described
by a stochastic process. The next section discusses this
assumption in more detail.

By setting the following statistical hypotheses, Etrans

was compared with the surrogate sequences of each time
series, which were generated by the FS algorithm [27].

Null hypothesis H0: the time series are generated by a
linear mathematical model.

Alternative hypothesis H1: the time series are generated
by a non-linear mathematical model.

For the MCP, statistical significances were observed
when the translation errors estimated from the standard-
ized time series that was smoothed using low-pass filtering
( f0 = 0.1, 0.2) were compared with those obtained from
their surrogate sequences, respectively (Fig. 6a). Statistical
significances were also observed by comparing the transla-
tion errors estimated from the sequences of temporal dif-
ferences ( f0 = 0.1, 0.2, 1) with those obtained from their
surrogate time series, respectively (Fig. 7a).

In these cases, the null hypothesis was rejected as shown
in Fig. 6 (p < 0.05).

For the post-rest period, statistical significances were
observed when comparing the translation errors estimated
from the standardized time series that was smoothed using
low-pass filtering ( f0 = 0.1, 0.2) with those obtained from
their surrogate sequences, respectively (Fig. 6b). However,
statistical significance was not found when comparing the
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(a)

(b)

Fig. 8. Lateral translation errors for each stabilogram component while
viewing VCs: (a) translation error estimated from time series body sway
data and (b) translation error estimated from sequences of their temporal
differences.

translation errors estimated from the sequences of temporal
differences with those obtained from their surrogate time
series (Fig. 7b).
4.2 Experiment 2

The translation errors were estimated from the time series
body sway data for the X component (lateral direction) and
Y component (anterior/posterior direction) while viewing
VC1 and VC2, respectively. Significance was not observed
in the translation error values estimated from the time se-
ries data. For the lateral direction, by setting the cut-off fre-
quency of the low-pass filtering to 1.5 and 2 Hz, significant
differences were observed in the values of the translation er-
ror Etrans’ estimated from the differences between the time
series data recorded while viewing VC1 and those recorded
while viewing VC2 (Fig. 8).

When the cut-off frequency of the low-pass filtering was
set to 1–10 Hz, the values of the translation error Etrans’ that
were recorded while viewing VC1 tended to be different
from those recorded while viewing VC2. However, statisti-
cal significance was not found in the the anterior/posterior
direction.

The translation error values estimated from the surrogate
data were compared with those obtained from each stabilo-
gram component while viewing the VCs (Fig. 9).

By setting the cut-off frequency of the low-pass filter-
ing to 0.1–0.5, 5, and 10 Hz, significant differences were

(a)

(b)

Fig. 9. Lateral translation errors estimated from each stabilogram com-
ponent and their surrogate data (a) while viewing VC1 and (b) while
viewing VC2.

observed between the values of the translation error while
viewing VC2. Additionally, by setting the cut-off frequency
of the low-pass filtering to 1, 1.5, 10, and 15 Hz, signifi-
cant differences tended to exist between the translation er-
ror values (Fig. 9b). Hence, the nonlinearity of the mathe-
matical body sway model could only be determined if the
cut-off frequency was set to the abovementioned condition.
Moreover, the nonlinearity of the mathematical model of
the body sway while viewing the VC1 (Fig. 9a) could not be
found in the results of statistical comparisons while viewing
the VC2 (Fig. 9b).

5. Discussion
This study conducted nonlinear analysis for the cere-

bral hemodynamics and body sway. Additionally, we suc-
cessfully determined the cut-off frequency of the low-pass
filtering, from which the nonlinear stochastic differential
equations were obtained as the mathematical models of
the abovementioned bio-signals. Generally, the cut-off fre-
quency in common was considered to be suitable for non-
linear analysis.

The BFT is also known as a countermeasure for patients
with intractable epilepsy and as a method of reducing men-
tal stress [28, 29]. Although an objective evaluation method
has not yet been established, subjective evaluation has been
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carried out and the relevant findings have been reported by
a previous study. Additionally, the cerebral hemodynamics
and the investigation of the cerebral blood flow regulation
during the BFT have not been previously evaluated. Ac-
cording to our previous bio-signal consideration, it is nec-
essary to evaluate the robustness of the bio-system using
mathematical models because the changes in the system
can hardly be detected. Moreover, it is important to set the
cut-off frequency and denoise the bio-signal, particularly in
brain function analysis. However, the cut-off frequency has
not been previously defined based on mathematical consid-
erations. Therefore, this study focused on mathematically
designing the cut-off frequency of the low-pass filtering.

To evaluate the degree of determinism for the mathemat-
ical model of frontal lobe hemodynamics, the translation
errors were estimated for each time series along with their
temporal difference sequences by considering the differ-
ences between the time series data. The translation errors
estimated in the MCP and post-rest periods were less than
those in the other experimental periods. Although this was a
relative evaluation, the stationarity in the cerebral hemody-
namics was confirmed for the MCP and post-rest periods.
The BFT may affect the cerebral hemodynamics, particu-
larly in the frontal lobe and prefrontal cortex, wherein the
degree of determinism is enhanced by the regularity of this
exercise protocol. Hence, it is important to measure/analyze
the cerebral hemodynamics during these experimental peri-
ods.

Generally, it can be solidly argued that the Etrans val-
ues are less than 0.1, as estimated from the deterministic
process of the numerical solution to the ordinal differential
equations for the embedding dimension ≤10 dim [30]. In
the MCP and post-rest periods, the cerebral hemodynamics
were considered as a stochastic process because the Etrans

values were not less than 0.1, as estimated from the stan-
dardized time series that was smoothed using low-pass fil-
tering for f0 ≥ 0.2 Hz. However, the Etrans values were sat-
urated for the bounded f0-value (≥0.2 Hz), and decreased
without low-pass filtering as f0 → ∞. This occurred owing
to the existence of rhythmic artifacts such as the cardiovas-
cular bio-signal or body motion within the BFT.

Moreover, the Etrans values estimated from the standard-
ized time series that was smoothed by this low-pass filtering
were lower than those obtained from the temporal differ-
ence sequences. According to the concept of the Double-
Wayland algorithm, the stochastic generators enhance the
degree of complexity in the temporal difference sequences.

In the standardized time series smoothed by the low-pass
filtering ( f0 < 1 Hz), the artifacts could be reduced be-
cause the growth of Etrans monotonically increased accord-
ing to the increase of the cut-off frequency f0. By setting
the cut-off frequency in the low-pass filtering to less than
0.2 Hz, the noise reduction was considered to be more ef-
fective compared with the rest of the abovementioned cases.
However, the cerebral blood flow in the frontal lobe is not
always generated through a stochastic process [27].

The nonlinearity of the mathematical cerebral hemody-
namics model was investigated. By setting the abovemen-
tioned null hypothesis H0, the Etrans for each time series
(including the temporal difference sequences) was com-

pared with their surrogate sequences generated by the FS
algorithm (Figs. 7 and 8). For the MCP period, statistical
significances were observed by comparing the translation
errors estimated from the standardized time series (includ-
ing the temporal difference sequences) with those obtained
from their surrogate sequences ( f0 = 0.1, 0.2), as shown
in Figs. 7a and 8a. In these cases, the null hypothesis was
rejected, and the nonlinearity in the cerebral hemodynamics
could be statistically demonstrated for f0 < 0.3. By setting
the cut-off frequency of the low-pass filtering to f0 ≤ 0.2
Hz in the time series analysis, it was considered that the
cerebral blood flow is generated by the nonlinear mathe-
matical model. Based on stochastic theory, a mathematical
model can be derived from the set of stochastic differential
equations including the nonlinear group only if the cut-off
frequency of the low-pass filtering is set to 0.2 Hz in the
analysis of the cerebral blood flow hemodynamics.

However, in the post-rest period, common significance
was not observed when comparing the temporal difference
sequences with those obtained from their surrogate time se-
ries for each cut-off frequency (Fig. 8b), because the trans-
lation errors estimated from the temporal difference se-
quences are more sensitive when the complexity is evalu-
ated during the motion process, compared with those ob-
tained from the time series data.

According to the nonlinear analysis of body sway when
viewing the video clip while the visual field is constricted,
there were no significant changes with regard to the de-
gree of determinism in the mathematical model of the
anterior/posterior motion process. However, remarkable
changes in the degree of determinism were observed in
the mathematical model of the lateral motion process only
when the cut-off frequency of the low-pass filtering was set
to 1–10 Hz (Fig. 9). Thus, it is considered that the influence
of the peripheral viewing on the body can be measured dur-
ing the lateral motion process. Moreover, in the lateral mo-
tion process, when viewing the video clip while the visual
field was constricted, nonlinearity was only observed when
the cut-off frequency of the low-pass filtering was set to less
than 0.5 Hz.
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