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gon to a specific diagonal thereof. These ratios also rep-
resent the length ratios between two diagonals of spe-
cific rhombuses, and each of such rhombuses constitutes
a specific group of rhombic polyhedron. These findings
are explained in Sec. 3. The five kinds of regular polyhe-
dron are classified into two groups; one is a square-root-
of-2 ratio group and the other is a golden ratio group.
Such classification is described in Sec. 4.

Section 6 reveals that plane-filling is realized by com-
bination of the golden rhombus and the “square-root-of-
2 square rhombus” and that another plane-filling becomes
possible with a combination of the “square-root-of-2
rhombus” and the new rhombus based on a new ratio.
The definition of these rhombuses is provided in Sec. 3.

2.  Relationship with the Diagonal of the Regular
Polygon

There exist several specific ratios of significance other
than the golden ratio and the square-root-of-2 ratio. All
these ratios are shown in Table 1 below. Except the square-
root-of-2 triplicate ratio, they are all equal to the length
ratio of one side of the regular polygon to a specific di-
agonal thereof. Yet, the golden ratio and the square-root-
of-2 ratio are considered exceptional in that they repre-
sent the sole such ratio inherent in the regular pentagon
and the regular tetragon, respectively. This is because
there exists only one kind of diagonal in these polyhedra.

The ratio 1: 2 3+  is derived from the dodecagon and,
for this reason, it is tentatively named the “dodecagon

ratio”. According to a common view, the ratio 1:1+ 2
represents the silver ratio. Note that the term “silver ra-

tio” sometimes means the ratio 1: 2 . But, in this paper
this definition is not used. Of these ratios, the golden ra-
tio, square-root-of-2 ratio, and silver ratio are self-ex-
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1.  Introduction
Until now, it has been the established fact that the golden

ratio is an independent ratio with no specific relationship
with other special ratios like the square-root-of-2 ratio.
Against it, however, the author puts forth the following
proposition based on careful research into three kinds of
rhombic polyhedron.

Proposition.  There exists a close relationship between
the ratios of the golden ratio group and those of the
square-root-of-2 ratio group. (Note: An explanation for
these two groups is given in Sec. 2.)

Good grounds for this proposition are shown in Sec. 5
and Sec. 6.

Section 5 deals with the agreement in the dihedral of
solids transformed from three kinds of rhombic polyhe-
dron, which provides evidence for this proposition. They
are rhombic dodecahedron, rhombic triacontahedron, and
rhombic enneacontahedron. A common property of these
solids is that they can all be built up from the regular
polyhedron. The rhombic triacontahedron and the rhombic
enneacontahedron are totally different from each other in
shape, face composition, etc. Nevertheless, transforma-
tions of these solids based on a simple specific principle
amazingly result in exactly the same shape.

Section 2 indicates that there are several specific ratios
of significance other than the golden ratio and the square-
root-of-2 ratio and that they belong to either a golden ra-
tio group or a square-root-of-2 ratio group. Except the
“square-root-of-2 triplicate ratio”, these ratios are all
equal to the length ratio of one side of the regular poly-
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planatory. Therefore, explanations are given to the other
ratios in Table 1.

The second ratio in Table 1 is expressed by AB:AD
shown in Fig. 1(a), which shows a regular decagon. Its
proof is given below.

The above calculation indicates that the dodecagon ra-
tio is equal to the length ratio of one side of the regular
dodecagon to its shortest diagonal.

The last two ratios in Table 1 are derived by the use of
Fig. 2 below, which is a regular octahedron. Shown in
Fig. 2 below is a regular octahedron projected to a XY-
plane with the Z-axis serving as 2-fold rotational sym-
metry axis. With the tetragon AHBC being a square-root-

of-2 rhombus, HO: AO = 1: 2 . Therefore, HO: AB  =

1:2 2 . This means that the square-root-of-2 triplicate
ratio is equal to the length ratio of one-half edge of the
regular octahedron to its space diagonal.

3.  Relationship with the Diagonals of Rhombuses
Various ratios mentioned above also represent the length

ratios between two diagonals of the following special
rhombuses, as shown in Table 2.

Out of these angles, the acute angle of the square-root-
of-2 rhombus (≈70°31′43.606″), obtuse angle of the
square-root-of-2 rhombus (≈109°28′16.394″), obtuse an-
gle of the golden rhombus (≈116°33′54.184″), obtuse
angle of the golden square rhombus (≈138°11′22.866″),
and obtuse angle of the square-root-of-2 triplicate rhom-
bus (≈141°03′27.212″) are respectively equal to the di-
hedral angles (those of two neighboring faces) of the regu-
lar tetrahedron, regular octahedron, regular dodecahedron,
regular icosahedron, and triangular bipyramid. The tri-
angular bipyramid is a type of hexahedron, being the first
in the infinite set of face-transitive bipyramids. It is the
dual of the triangular prism with 6 isosceles triangle faces.
Particularly, the obtuse angle of the square-root-of-2

Table 1.  Seven specific ratios of significance including the golden ratio and the square-root-of-2 ratio.

Fig. 1.  (a) Regular decagon; (b) Regular dodecagon.

The foregoing calculation indicates that the golden square
ratio is equal to the length ratio of one side of the regular
decagon to its 2nd shorter diagonal.

Shown in Fig. 1(b) is a regular dodecagon, which also
includes a regular tetragon (i.e. square) and a regular hexa-
gon. In fact, the right isosceles triangle ADG is equiva-
lent to one-half of a regular tetragon and the trapezoid
ACEG is equivalent to one-half of a regular hexagon. In
this figure, the triangle ACO is a regular triangle. There-

fore, AC  = AO = AG /2 . AC : AG  = 1:2. This means
that the “square-root-of-2 square ratio” is equal to the
length ratio of one side of the regular hexagon to its longer
diagonal.

Fig. 2.  Regular octahedron projected to a XY-plane with the Z-axis
serving as 2-fold rotational symmetry axis.
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rhombus (≈109°28′16.394″) is called the regular tetrahe-
dron angle (called Maraldi’s angle, also) in the field of
crystallography.

Here, it is to be noted that twice the acute angle of the
golden rhombus (≈63°26′05.816″) is equal to the obtuse
angle of the “square-root-of-2 square rhombus”
(≈126°52′11.632″) and that twice the acute angle of the
square-root-of-2 rhombus (≈70°31′43.606″) is equal to
the obtuse angle of the “square-root-of-2 triplicate rhom-
bus” (≈141°03′27.212″) and that twice the acute angle of
the “dodecagon ratio rhombus” (≈54°44′08.197″) is equal
to the obtuse angle of the square-root-of-2 rhombus
(≈109°28′08.197″).

Furthermore, these rhombuses constitute a specific
rhombic polyhedron as listed in Table 3 below. This fact
is studied in [1].

Of these poyhedra, the rhombic dodecahedron of the
2nd kind and the rhombic icosahedron are created from
the rhombic triacontahedron. This process is illustrated
in [3]. For reference purpose, this illustration is excerpted
and shown in Fig. 3 below. This means that the rhombic
dodecahedron of the 2nd kind, rhombic icosahedron and
rhombic triacontahedron all fall under the same category.

Figure 3 illustrates the process of making the rhombic
icosahedron and the rhombic dodecahedron of the 2nd
kind from the rhombic triacontahedron, (a) → (b) → (c)
→ (d) → (e) → (f). The rhombic icosahedron is created
by pulling out 10 rhombuses, i.e. shadowed portion of
(b), from the triacontahedron and by combining the up-
per portion with the lower portion. Further, the rhombic
dodecahedron of the 2nd kind is formed by pulling out 8
rhombuses, i.e. shadowed portion of (d), from the
icosahedron.

Table 2.  Length ratios between two diagonals of special rhombuses.

Table 3.  Special rhombuses constituting a specific rhombic polyhedron.

Fig. 3.  How to make the rhombic icosahedron and the rhombic dodecahedron of the 2nd kind from the rhombic triacontahedron.



4 H. Kimpara

4.  Relationship with the Regular Polyhedron
Five kinds of regular polyhedron are classified into two

groups: (1) square-root-of-2 ratio group; (2) golden ratio
group, as described in Table 4.

5.  Agreement in the Dihedral of Solids Trans-
formed from Rhombic Polyhedra

This section deals with the “Golden Transformation”
and the “Square-Root-of-2 Transformation”. The former
represents a process of replacing “square-root-of-2 rhom-
buses” with “golden rhombuses”, subsequently partition-
ing each of them into 2 congruent triangles. The latter
process comes in two types. One is to replace golden
rhombuses with square-root-of-2 rhombuses, subse-
quently partitioning them into two congruent triangles,
whereas the other is to replace “golden square rhombuses”

with “square-root-of-2 triplicate rhombuses”, subse-
quently partitioning them into two congruent triangles.
These processes result in the creation of a new polyhe-
dron. It is to be noted, however, that, such partitioning is
really required to have it closed.

Three kinds of polyhedron, i.e. rhombic dodecahedron,
rhombic triacontahedron, and rhombic enneacontahedron,
undergo these processes. They are all built up from a spe-
cific regular polyhedron. This fact is studied in [1]. It is
to be pointed out here that such regular polyhedron is clas-
sified into either the square-root-of-2 ratio group or the
golden ratio group as shown in Table 4. Accordingly, the
polyhedron of the square-root-of-2 ratio group is supposed
to undergo the Golden Transformation and the one of the
golden ratio group is supposed to undergo the Square-
Root-of-2 Transformation.

Table 4.  Five kinds of regular polyhedron classified into two groups.
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rhombic dodecahedron has two kinds of cross section.
One is the square and the other is the regular hexagon.
Shown in Fig. 4 left is the latter.

According to Watanabe and Betsumiya [1], it is built
up from either the regular tetrahedron or regular hexahe-
dron (cube) that belong to the square-root-of-2 ratio group.
For this reason, it is supposed to undergo the Golden
Transformation.

Each face of the rhombic dodecahedron is replaced with
two isosceles triangles arising from the partition of golden
rhombus mountain-folded by the longer diagonal. Then,
a convex polyhedron composed of 24 congruent isosce-
les triangles is created. In terms of the number of faces,
edges, vertices, the face type, and the vertices by type, its
shape is basically the same as the triakis octahedron. For
this reason, this new solid is tentatively named “Triakis
Octahedron of the 2nd kind”. It can be seen as a regular
octahedron with a regular triangular pyramid covering
each face. There are a couple of differences. One differ-
ence is in the internal angle of the isosceles triangle and
the other is in the dihedral. In the case of the triakis octa-

hedron, the obtuse angle is equal to cos–1(1/4 – 2 /2) ≈
117.12′2.06″ and the acute angle is equal to cos–1(1/2 +

2 /4) ≈ 31.23′58.97″. Its dihedral is equal to cos–1{–

(3+8 2 )/17} ≈ 147.21′0.36″. In the case of the new poly-
hedron, on the other hand, the obtuse angle is equal to

tan–1{(1+ 5 )/2} ≈ 116.33′54.184″ and the acute angle is

tan–1{2/(1+ 5 )} ≈ 31.43′2.91″. Refer to Figs. 7(a) and
(b). Its dihedral is calculated below. Provided in Figs. 8(a)
and (b) are illustrations of this pyramid.

Fig. 4.  Rhombic dodecahedron.

Fig. 5.  Cuboctahedron.

Fig. 6.  Triakis octahedron.

Fig. 7.  Triakis octahedron of the 2nd kind: (a) top view; (b) diagrammatic perspective view.

Fig. 8. (a) Perspective illustration of the pyramid; (b) Pyramid projected to a plane perpendicular to CF .

5.1  Solids Transformed from the Rhombic Dodecahe-
dron

The rhombic dodecahedron is composed of 12 square-
root-of-2 rhombuses and is the dual solid of
cuboctahedron, one of quasi-regular polyhedra. The
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triakis icosahedron shown in Fig. 11. For this reason, this
new solid is tentatively named “Triakis Icosahedron of
the 2nd kind”. It can be seen as an icosahedron with a
regular triangular pyramid covering each face.

There are a couple of differences. One difference is in
the internal angle of the isosceles triangle and the other
is in the dihedral. In the case of the triakis icosahedron,
the obtuse angle is equal to cos–1(–3φ/10) ≈ 119.02′21.66″
and the acute angle is equal to cos–1{(φ+7)/10} ≈

30.28′49.17″. Its dihedral is equal to cos–1{–(3+8 2 )/
17) ≈ 160.36′45.19″. In the case of the new polyhedron,
on the other hand, the obtuse angle is equal to approxi-
mately 109°28′16.394″ and the acute angle is equal to
approximately 35°15′51.803″. Refer to Figs. 12(a) and
(b). Its dihedral is calculated below.

Provided in Fig. 13(a) is a perspective illustration of
this pyramid. Three sides of its base make up a regular
triangle and each of its lateral faces is equivalent to one-
half of the square-root-of-2 rhombus partitioned into two
congruent triangles by the longer diagonal.

It is to be noted here that this angle θ1 represents the
dihedral of the pyramid against its base, which is just equal
to one-half of the acute angle of the golden square rhom-
bus.

Figure 9(a) provides a view of this polyhedron (with
24 faces) projected to a XY-plane with the Z-axis serving
as 2-fold rotational symmetry axis. The dihedral of the
regular octahedron δ1 is equal to approximately
109°28′16.394″. Therefore, the new dihedral�ECD is
calculated by adding 2θ1 to 109°28′16.394″, i.e.

�ECD = 109°28′16.394″ + (20°54′18.567″)·2 =
151°16′53.528″.

The above-mentioned polyhedron has a convex surface.
If the triangle pyramids are replaced by concave ones,
shown in Fig. 9(b), a new nonconvex polyhedron is cre-
ated. It is tentatively named “Triakis Octahedron of the
3rd kind”. The angle δ1 in this case is expressed as

δ1 = 109°28′16.394″ – (20°54′18.567″)·2
= 67°39′39.260″.

5.2  Solids Transformed from the Rhombic
Triacontahedron

The rhombic triacontahedron is composed of 30 golden
rhombuses and is the dual solid of icosidodecahedron,
one of quasi-regular polyhedra. According to Watanabe
and Betsumiya [1], it is built up from the regular
icosahedron that belongs to the golden ratio group; ac-
cordingly, it is supposed to undergo the Square-Root-of-
2 Transformation.

Replacing all golden rhombuses of this polyhedron with
square-root-of-2 rhombuses partitioned into two congru-
ent triangles results in the creation of a new polyhedron
with 60 faces. Solids thus transformed come in two types.
One has a shape of the regular icosahedron with a regular
triangular pyramid stuck on each of its face (Fig. 12),
and the other has a shape of the regular dodecahedron
with a pentagonal pyramid stuck on each of its face (Fig.
19).
5.2.1  Icosahedron with Regular Triangular Pyramids
Stuck on Its Faces

Each face of the rhombic triacontahedron is replaced
with two isosceles triangles arising from the partition of
the square-root-of-2 rhombus valley-folded along the
longer diagonal. Then, a nonconvex polyhedron composed
of 60 congruent isosceles triangles is created. In terms of
the number of faces, edges, vertices, the face type, and
the vertices by type, its shape is basically the same as the

Given in Fig. 13(b) is a view of the pyramid projected

to a plane perpendicular to CF . The angle θ2 is the dihe-
dral of the pyramid against its base.

Each lateral face of this regular triangular pyramid is
equivalent to one-half of the square-root-of-2 rhombus
based on dual-partitioning by the longer diagonal. It is to
be noted here that this dihedral θ2 is just equal to one-
half of the acute angle of the square-root-of-2 rhombus.

Provided in Fig. 14(a) is a view of this polyhedron (with
60 faces) projected to a XY-plane with the Z-axis serving
as 2-fold rotational symmetry axis. The dihedral of the
regular icosahedron δ2 is approximately equal to
138°11′22.866″. Therefore, the dihedral created by the
longer diagonal of the square-root-of-2 rhombus is cal-
culated by adding 138°11′22.866″ to the aforementioned
dihedral 35°15′51.803″ multiplied by 2.

138°11′22.866″ + (35°15′51.803″)·2 = 208°43′06.472″
= 360° – 151°16′53.528″.

This means that the convex portion of the Triakis Octa-
hedron of the 2nd kind with the dihedral being approx.
151°16′53.528″ tightly fits into the concave portion of
the Triakis Icosahedron of the 2nd kind with the dihedral
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being approx. 208°43′06.472″, achieving local space-fill-
ing. (Refer to Fig. 15.)

In the case of the “Triakis Icosahedron of the 2nd kind”,
square-root-of-2 rhombuses are valley-folded along the
longer diagonal. If they are mountain-folded, a stellated
nonconvex polyhedron is created. It is very similar to the
great dodecahedron, one of the Kepler-Poinsot polyhe-
dra, which is a nonconvex regular polyhedron. It can be
seen as a “Triakis Icosahedron of the 2nd kind” with the
vertices directed inward and, accordingly, it is tentatively
named “Triakis Icosahedron of the 3rd kind”. Refer to
Figs. 16(a) and (b). Only differences between the great
dodecahedron and the Triakis Icosahedron of the 3rd kind
lie in the angles of the isosceles triangle that constitutes
the polyhedron. Its vertex angle and basic angle are re-
spectively 108° and 36° in the case of the great dodeca-
hedron, whereas they are approximately equal to
109°28′16.394″ and 35°15′51.803″, respectively, in the
case of the “Triakis Icosahedron of the 3rd kind”.

Figure 14(b) represents a view of “Triakis Icosahedron
of the 3rd kind” projected to a XY-plane with the Z-axis
serving as 2-fold rotational symmetry axis. Accordingly,
the dihedral created by the longer diagonal of the square-
root-of-2 rhombus is figured out by subtracting the afore-
mentioned dihedral multiplied by 2 from 138°11′22.866″.

138°11′22.866″ – (35°15′51.803″)·2 = 67°39′39.260″.

This dihedral exactly coincides with the dihedral of the
Triakis Octahedron of the 3rd kind.

5.2.2  Dodecahedron with Pentagonal Pyramids Stuck on
Its Faces

Each face of the rhombic triacontahedron shown in Fig.
17 is replaced with two isosceles triangles arising from
the partition of the square-root-of-2 rhombus mountain-
folded by the shorter diagonal. Then, a convex polyhe-
dron composed of 60 congruent isosceles triangles is cre-
ated. In terms of the number of faces, edges, vertices, the
face type, and the vertices by type, its shape is basically
the same as the pentakis dodecahedron shown in Fig. 18.
For this reason, this new solid is tentatively named
“Pentakis Dodecahedron of the 2nd kind”. It can be seen
as a dodecahedron with a pentagonal pyramid covering
each face.

There are a couple of differences. One is the internal
angle of the isosceles triangle, which makes another dif-
ference in the dihedral. In the case of the pentakis do-

(a) (b)

Fig. 9.  (a) Triakis Octahedron of the 2nd kind; (b) Triakis Octahedron of the 3rd kind projected to a XY-plane with the Z-axis serving as 2-fold
rotational symmetry axis.

Fig. 10. Triakis Octahedron of the 3rd kind: (a) top view; (b) diagrammatic perspective view.

Fig. 11.  Triakis icosahedron.
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decahedron, the obtuse angle is equal to

sin–1( 58 18 5+ /12) ≈ 55°41′26.3″ and the acute angle

is equal to cos–1( 58 18 5+ /12)·2 ≈ 68°36′67.4″. Its di-

hedral is equal to cos–1{–(80 + 9 5 )/109} ≈
156°43′6.79″. In the case of the new polyhedron, on the
other hand, the obtuse angle is equal to approximately
54°44′08.197″ and the acute angle is equal to approxi-
mately 70°31′43.606″. Refer to Figs. 19(a) and (b). Its
dihedral is calculated upper right.

Provided in Fig. 20(a) is a perspective illustration of
the pentagonal pyramid. Five sides of its base make up a
regular pentagon and each of its lateral faces is equiva-
lent to one-half of the square-root-of-2 rhombus parti-
tioned into two congruent triangles by the shorter diago-
nal. Figure 20(b) illustrates the pentagonal pyramid pro-

jected to a plane perpendicular to CD .

Fig. 12.  Triakis Icosahedron of the 2nd kind: (a) top view; (b) diagrammatic perspective view.

Fig. 13.  (a) Perspective illustration of the pyramid; (b) Pyramid projected to a plane perpendicular to CF .

Fig. 14.  (a) Triakis Icosahedron of the 2nd kind; (b) Triakis Icosahedron of the 3rd kind projected to a XY-plane with the Z-axis serving as 2-fold
rotational symmetry axis.

This angle θ3 is the dihedral θ3 (≈13°16′57.092″) of the
pentagonal pyramid against its base. It is to be noted here
that this dihedral is just equal to one-fourth of the acute
angle of the square-root-of-2 square rhombus
(≈53°07′48.368″).

Figure 20(a) represents a view of “Pentakis Dodecahe-
dron of the 2nd kind” projected to a XY-plane with the Z-
axis serving as 2-fold rotational symmetry axis. The di-
hedral of the regular dodecahedron δ3 is approximately
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equal to 116°33′54.184″. Accordingly, the dihedral cre-
ated by the shorter diagonal of the square-root-of-2 rhom-
bus is figured out by adding 116°33′54.184″ to the afore-
mentioned dihedral 13°16′57.092″ multiplied by 2.

�DCE = 116°33′54.184″ + (13°16′57.092″)·2 =
143°07′48.368″.

In the case of the “Pentakis Dodecahedron of the 2nd
kind”, square-root-of-2 rhombuses are mountain-folded
by the short diagonal. If they are valley-folded, a new
nonconvex polyhedron with the vertices directed inward
is created. It is tentatively named “Pentakis Dodecahe-
dron of the 3rd kind” as shown in Figs. 22(a) and (b).

Figure 21(b) provides a view of the “Pentakis Dodeca-
hedron of the 3rd kind” projected to a XY-plane with the
Z-axis serving as 2-fold rotational symmetry axis. The
dihedral created by the shorter diagonal of the square-
root-of-2 rhombus is given as follows

�FCG = 116°33′54.184″ – (13°16′57.092″)·2 = 90°.

5.3  Solids Transformed from Rhombic
Enneacontahedron

The rhombic enneacontahedron is composed of 60
square-root-of-2 rhombuses and 30 golden square rhom-
buses (90 faces in total). According to Watanabe and
Betsumiya [1], it is built up from the regular dodecahe-
dron that belongs to the golden ratio group. Accordingly,
it is supposed to undergo the Square-Root-of-2 Transfor-
mation. In this case, only golden square rhombuses are
all replaced with the square-root-of-2 triplicate rhom-
buses. The solid thus transformed come in two types. One
has a shape of the regular icosahedron with a regular tri-
angular pyramid stuck on each of its face; the other has a
shape of the regular dodecahedron with a pentagonal pyra-
mid stuck on each of its face.
5.3.1  Regular Icosahedron with Regular Triangular Pyra-
mids Stuck on Its Faces

Sixty square-root-of-2 rhombuses are partitioned into

Fig. 15.  Triakis Octahedron of the 2nd kind (upper) and Triakis Icosahedron of the 2nd kind (lower) tightly fit into each other.

Fig. 16.  Triakis Icosahedron of the 3rd kind: (a) top view; (b) diagrammatic perspective view.

Fig. 17.  Rhombic triacontahedron. Fig. 18.  Pentakis dodecahedron.



10 H. Kimpara

two by the longer diagonal mountain-folded and 30
square-root-of-2 triplicate rhombuses are partitioned into
two by the shorter diagonal valley-folded. Then, a
nonconvex polyhedron composed of 120 obtuse isosce-
les triangles and 60 acute isosceles triangles is created. It
is shown in Fig. 23 below. Figure 24(a) is a perspective
illustration of this triangular pyramid. The base of this
pyramid BCD is a regular triangle and its three lateral
faces ABC, ABD, and ACD are all congruent isosceles
triangles. The pyramid’s oblique edges AB, AC, AD are
all equal to the longer diagonal of the square-root-of-2
rhombus.

Figure 24(b) shows the isosceles triangle ABC. The
angle BAC consists of two halves of acute angle of the
square-root-of-2 rhombus and one acute angle of the
square-root-of-2 triplicate rhombus. Accordingly,

�BAC ≈ 35°15′51.803″ + 35°15′51.803″ +
38°56′32.788″ = 109°28′16.394″.

It is equal to the obtuse angle of the square-root-of-2
rhombus. This means that the isosceles triangle ABC has
the same shape as one-half of the-square-root-of 2 rhom-
bus partitioned by the longer diagonal. Therefore, the
pyramid’s dihedral against its base θ3 is the same as the
one of the aforementioned Triakis Icosahedron of the 2nd
kind. θ3 = 35°15′51.803″. The dihedral of this polyhe-
dron is calculated in the same way as the Triakis
Icosahedron of the 2nd kind.

138°11′22.866″ + (35°15′51.803″)·2 = 208°43′06.472″
= 360° – 151°16′53.528″.

Fig. 19.  Pentakis Dodecahedron of the 2nd kind: (a) top view; (b) diagrammatic perspective view.

Fig. 20. (a) Perspective illustration of the pentagonal pyramid; (b) Pentagonal pyramid projected to a plane perpendicular to CD .

Fig. 21.  (a) Pentakis Dodecahedron of the 2nd kind; (b) Pentakis Dodecahedron of the 3rd kind projected to a XY-plane with the Z-axis serving
as 2-fold rotational symmetry axis.
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This angle precisely agrees with the dihedral of the above-
mentioned “Triakis Octahedron of the 2nd kind” and
“Triakis Icosahedron of the 2nd kind”.

In the case of this polyhedron, all the-square-root-of-2

rhombuses are mountain-folded by the longer diagonal
and all the square-root-of-2 triplicate rhombuses are val-
ley-folded along the shorter diagonal. If all the square-
root-of-2 rhombuses are valley-folded along the longer

(a) (b)

Fig. 22.  Pentakis Dodecahedron of the 3rd kind: (a) top view; (b) diagrammatic perspective view.

Fig. 23.  Nonconvex polyhedron transformed from the rhombic enneacontahedron: (a) top view; (b) diagrammatic perspective view.

Fig. 24.  (a) Perspective illustration of the triangular pyramid; (b) Isosceles triangle ABC.

Fig. 25.  (a) Lateral face of the pentagonal pyramid; (b) Perspective illustration of the pentagonal pyramid; (c) Pentagonal pyramid projected to

a plane perpendicular to CD .
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diagonal and if all the square-root-of-2 triplicate rhom-
buses are mountain-folded along the shorter diagonal, a
stellated nonconvex polyhedron is created. It has a shape
being the same as “Triakis Icosahedron of the 3rd kind
(see Fig. 16)”, which is very much similar to the great
dodecahedron. Therefore, the pyramid’s dihedral against
its base θ3 is also the same, i.e. θ3 ≈ 35°15′51.803″. The
dihedral of this polyhedron is calculated in the same way
as the “Triakis Icosahedron of the 3rd kind”.

138°11′22.866″ – (35°15′51.803″)·2 = 67°39′39.260″.

This angle exactly agrees with the dihedral of the above-
mentioned “Triakis Octahedron of the 3rd kind” and
“Triakis Icosahedron of the 3rd kind”.
5.3.2  Regular Dodecahedron with Pentagonal Pyramids
Stuck on Its Faces

Sixty square-root-of-2 rhombuses and 30 square-root-
of-2 triplicate rhombuses are both partitioned into two
by the longer diagonal and mountain-folded. Then, a con-
vex polyhedron composed of 180 obtuse isosceles trian-
gles is created. It is a polyhedron with a pentagonal pyra-
mid stuck on each face of the regular dodecahedron and
with the vertices all directed outward.

Shown in Fig. 25(b) is a perspective illustration of this
pentagonal pyramid.

The base ABCDE is a regular pentagon and its five lat-
eral faces ABF, BCF, CDF, DEF, AEF are all congruent
isosceles triangles. The triangle’s oblique edges and base
edges are respectively equal to the side and the shorter
diagonal of the square-root-of-2 rhombus. Figure 25(c)
illustrates the pentagonal pyramid projected to a plane

perpendicular to CD .
Figure 25(a) indicates a lateral face of the pentagonal

pyramid ABF. Its vertex angle AFB is composed of two
halves of the square-root-of-2 rhombus; its base angle
FAB and FBA both consist of one-half of the acute angle
of the square-root-of-2 rhombus and one-half of the acute
angle of the square-root-of-2 triplicate rhombus.

�AFB = 35°15′51.803″ + 35°15′51.803″ =
70°31′43.606″.

�FAB = �FBA =35°15′51.803″ + 19°28′16.394″ =
54°44′08.197″.

This means that the triangle ABF is equivalent to one-
half of the square-root-of-2 rhombus partitioned by the
shorter diagonal. Accordingly, the dihedral of the pen-
tagonal pyramid against its base is the same as the one of
the pentagonal pyramid of the Pentakis Dodecahedron of

Fig. 26. (a) Plane filling by the golden rhombus & the square-root-of-2 square rhombus; (b) Plane filling by the square-root-of-2 rhombus & the
dodecagon ratio rhombus.

(a) (b)

Table 5.  Two sets of dihedral of the solids being in perfect agreement.
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the 2nd kind. It means that the dihedral θ3 is approxi-
mately equal to 13°16′57.092″. The dihedral of this poly-
hedron, therefore, is figured out in the same way as
Pentakis Dodecahedron of the 2nd kind.

116°33′54.184″ + (13°16′57.092″)·2 = 143°07′48.368″.

This angle precisely agrees with the dihedral of the above-
mentioned Pentakis Dodecahedron of the 2nd kind.

In the case of this polyhedron, all the-square-root-of-2
rhombuses and all the square-root-of-2 triplicate rhom-
buses are partitioned into two congruent triangles by the
longer diagonal mountain-folded. If all the square-root-
of-2 rhombuses are valley-folded while all the square-
root-of-2 triplicate rhombuses are mountain-folded, a
nonconvex polyhedron consisting of 180 obtuse isosce-
les triangles is created. It is a polyhedron with a pentago-
nal pyramid stuck on each face of the regular dodecahe-
dron and with the vertices all directed inward. The dihe-
dral of the pentagonal pyramid against its base is the same
as the above-mentioned “Pentakis Dodecahedron of the
3rd kind”. That is, the dihedral θ3 is approx. equal to
13°16′57.092″. The dihedral of this polyhedron, there-
fore, is figured out in the same way as Pentakis Dodeca-
hedron of the 3rd kind.

116°33′54.184″ – (13°16′57.092″)·2 = 90°.

This angle also agrees precisely with the dihedral of
“Pentakis Dodecahedron of the 3rd kind”.

5.4  Two Sets of Dihedral Being in Perfect Agreement
It has become apparent that there exist two sets of di-

hedral of the solids being in perfect agreement. These
solids are created through transformation from three kinds
of rhombic polyhedron. Such dihedrals are listed in Ta-
ble 5. The foregoing discussion clearly indicates that there
exists a close relationship between the ratios of the golden
ratio group and those of the square-root-of-2 ratio group,
specifically between the golden ratio and the square-root-
of-2 ratio, and between the golden square ratio and the
square-root-of-2 triplicate ratio.

6.  Plane Filling
There also exists a close relationship between the golden

ratio and the square-root-of-2 square ratio and between
the square-root-of-2 ratio and the dodecagon ratio. These
ratios are linked by the following formulae:

• [Obtuse angle of the golden rhombus 116°33′54.184″ ×
2]
+ [Obtuse angle of the square-root-of-2 square rhombus
126°52′11.635″] = 360°

• [Obtuse angle of the square-root-of-2 rhombus
109°28′16.394″]
+ [Obtuse angle of the dodecagon ratio rhombus
125°15′51.803″ × 2] = 360°

These formulae indicate that a combination of two kinds

of rhombus enables two separate sets of plane filling. One
is the combination of the golden rhombus and the square-
root-of-2 square rhombus and the other is the combina-
tion of the square-root-of-2 rhombus and the dodecagon
ratio rhombus. Refer to Figs. 26(a) and (b).

7.  Summary
The fruits of the above-mentioned study are summa-

rized below.
• Until now, it has been the established theory that the
golden ratio is an independent ratio with no specific rela-
tionship with other special ratios like the square-root-of-
2 ratio. It has been found, however, that dihedrals of sol-
ids transformed from three kinds of rhombic polyhedron
are in perfect agreement and that there exist two sets of
such dihedrals. They are the rhombic dodecahedron,
rhombic triacontahedron, and rhombic enneacontahedron.
The processes used for such transformation are: (1) golden
transformation and (2) square-root-of-2 transformation,
which are both very simple.
• The rhombic triacontahedron, and the rhombic
enneacontahedron are totally different from each other in
shape, face composition, etc. Nevertheless, the square-
root-of-2 transformation of these solids has amazingly
resulted in exactly the same shape.
• Plane-filling is realized by the combination of the
golden rhombus and the square-root-of-2 square rhom-
bus. Another plane-filling becomes possible with the com-
bination of the square-root-of-2 rhombus and the dodeca-
gon ratio rhombus.
• The foregoing discussion clearly indicates that there
exists a close relationship between the ratios of the golden
ratio group and those of the square-root-of-2 ratio group,
specifically between the golden ratio and the square-root-
of-2 ratio and between the golden square ratio and the
square-root-of-2 triplicate ratio, and between the golden
ratio and the square-root-of-2 square ratio.
• There are several specific ratios of significance other
than the golden ratio and the square-root-of-2 ratio, which
however belong to either a golden ratio group or a square-
root-of-2 ratio group.
• Except the square-root-of-2 triplicate ratio, these ratios
are all equal to the length ratio of one side of the regular
polygon to a specific diagonal thereof. Only the square-
root-of-2 triplicate ratio is equal to the length ratio of one-
half side of the regular octahedron to its space diagonal.
• They also represent the length ratios between two di-
agonals of specific rhombuses, and such rhombuses con-
stitute specific rhombic polyhedron.
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