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We consider the standard map. The stable and unstable manifolds of the saddle fixed point are proved to
intersect transversely at the primary homoclinic point u for any parameter value. For the proof, we use the
particular objects called the dominant axis (DA) and subdominant axis (SD), and symmetric periodic orbits that
have orbital points on these axes. The periodic orbit named 1/q-BE has the orbital point zk at the intersection
point of DA and SD. Let ξk be the slope of SD at zk . Take a sequence of zk accumulating at u as k → ∞. We
prove that the slope ξk monotonically decreases to the slope ξu(u) of the unstable manifold at u (the monotone
inclination property). Using Ushiki’s theorem, the hyperbolic region (HR) is constructed. It is proved that the
orbital point zk in HR is a saddle point with reflection. Using the monotone inclination property and the properties
of zk in HR, the transversality at u for any value of a (> 0) is proved.
Key words: Standard Map, Stable and Unstable Manifolds, Transversality, Ushiki’s Theorem, Dominant and
Subdominant Axes

1. Introduction
The transverse intersection of the stable and unstable

manifolds implies chaos. This is a famous result observed
by Poincaré (1890, 1899, 1993). This transversality is not
self-evident in the two-dimensional area-preserving maps.
In this paper, we prove the transversality of the standard
map T for the whole possible parameter range. Here, the
map T is defined on the infinite cylinder (MacKay, 1993)
as

T : yn+1 = yn + f (xn), xn+1 = xn + yn+1 (Mod 2π)

(1)

where 0 ≤ x < 2π , −∞ < y < +∞, and f (x) =
a sin x (a ≥ 0). At a > 0, there exist two fixed points
P = (0, 0) and Q = (π, 0) where P is a saddle fixed point
and Q is an elliptic fixed point at 0 < a < 4 and a saddle
one with reflection at a > 4.

The transversality has already been proved for infinites-
imally small a > 0 by Lazutkin et al. (1989). They used
the complex analysis to determine the splitting angle of the
stable and unstable manifolds at the primary homoclinic
point and derived the exponentially small splitting. For
a > ac = 4/3, we have shown the transversality (Yam-
aguchi and Tanikawa, 2000). In our approach, f (x) has
been assumed to be a C2-function. The slope and the cur-
vature of the unstable manifold at P are used to determine
ac. The invariant curves including the stable and unstable
manifolds do not satisfy the Lipschitz condition at a > ac

(Mather, 1984). Therefore, the unstable manifold is not a
graph. The possibility that the non-transverse intersection
may appear at a ≤ ac is not removed. So, the purpose of
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the present paper is to prove the transversality without the
restriction to the values of a.

Let us explain the behavior of the unstable and stable
manifolds of P . There exist two branches of the unstable
manifold separated by P . Let Wu(P) be the branch going
toward the upper-right direction. For convenience we cut
the cylinder vertically at P . Then, we obtain an infinite
rectangle extending to y → ±∞. We obtain a saddle P ′ =
(2π, 0) as a copy of P (Fig. 1). There exist two branches of
the stable manifold of P ′. Let Ws(P ′) be the branch coming
from the upper-left direction as displayed in Fig. 1. In Fig.
1, it is easy to observe the transverse intersections of Wu(P)

and Ws(P ′) at the primary homoclinic point u on the axis
x = π named SG(π) and at v on the axis y = 2(x − π)

named SH (π). The parameter value a = 3/2 of Fig. 1 is
larger than ac. So, we know that the transversality holds.
Our purpose is to prove Theorem 1.1.

Theorem 1.1. Let Wu(P) be the unstable manifold of P
and Ws(P ′) be the stable manifold of P ′. These intersect
at the primary homoclinic point u on the symmetry axis
SG(π) (x = π, y > 0). Let ξu(u) be the slope of Wu(P)

at u and ξs(u) be the slope of Ws(P ′) at u. The relations
0 < ξu(u) < a/2 < ξs(u) hold for any a > 0.

In §2, several notations and the properties used in this
paper are introduced. In §3, Theorem 1.1 is proved. In §4,
our results are summarized.

2. Mathematical Tools
2.1 Periodic orbits and the symmetric axes

At a > 0, there are periodic orbits which move round
cylinder. The existence of these orbits is guaranteed by
the Poincaré-Birkhoff theorem (Poincaré, 1912; Birkhoff,
1913, 1927). Let p/q be an irreducible fraction. For every
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Fig. 1. The unstable manifold Wu(P) of the saddle fixed point P = (0, 0) and the stable manifold Ws(P ′) of the saddle fixed point P ′ = (2π, 0) are
displayed at a = 1.5. Here, SG(0), SH (0), SG(π) and SH (π) represent the symmetry axes. Two intersection points u and v of Wu(P) and Ws(P ′)
are the primary homoclinic points. Two arcs γu = [v, T u]Wu (P) and γs = [u, v]Ws (P ′) are also displayed.

rotation number p/q , a pair of saddle and elliptic orbits ex-
ist in the standard map. Since these orbits satisfy the order
preservation, these are called the monotone periodic orbits
or the Birkhoff periodic orbits (Yamaguchi and Tanikawa,
2007). Here, the order preservation means that for any pair
of points in an orbit, the order of the x-coordinates of their
iterates does not alter on the universal cover. We use the
notation p/q-BE for the order preserving symmetric ellip-
tic periodic orbit of rotation number p/q .

Through the linear stability analysis, the eigenvalues λ±
of the linearized matrix M are determined. If these are
complex conjugate, i.e., λ± = α ± iβ (|λ±| = 1), we call
the periodic orbit the elliptic periodic orbit. If these satisfy
the conditions λ− < −1 < λ+ < 0, the periodic orbit is
a saddle periodic orbit with reflection. If these satisfy the
conditions 0 < λ− < 1 < λ+, the orbit is a saddle periodic
orbit.

If a map is represented by the product of involutions,
we say that the map has the reversibility in the meaning of
Birkhoff (1927). The standard map T is reversible. Using
the involutions G and H , we represent T as T = H ◦ G
where H ◦ H = G ◦ G = id and det∇ H = det∇G = −1.
Here, we give the actions of G and H .

G

(
y
x

)
=

(
y + f (x)

−x (Mod 2π)

)
, (2)

H

(
y
x

)
=

(
y

y − x (Mod 2π)

)
. (3)

The set of fixed points of involution is called the symme-
try axis. Let SG be the symmetry axis of G and SH be the
symmetry axis of H . We give the representations for them
on cylinder (see Fig. 1).

SG(0) = {(x, y) : x = 0}, SG(π) = {(x, y) : x = π},
(4)

SH (0) = {(x, y) : y = 2x},
SH (π) = {(x, y) : y = 2(x − π)}. (5)

Definition 2.1 An orbit is symmetric if and only if it has a
point on the symmetry axis.

Proposition 2.2 A periodic orbit is symmetric if and only if
it has two of the points on the symmetry axis or axes.

By proposition 2.2, a 1/(2k + 1)-BE has one point z0 on
SH (0) and the other point zk on SG(π).

2.2 Involutions for T 2k+1

Using the two involutions G and T 2k H (k ≥ 0), we
express T 2k+1 as

T 2k+1 = T 2k H ◦ G. (6)

Let ST 2k H be the symmetry axis of T 2k H . Thus, T 2k+1 has
two symmetry axes ST 2k H and SG(π). Greene (1979) named
SG(π) the dominant axis (DA). In this paper, we call ST 2k H

the subdominant axis (SD). The initial point z0 is on SH (0)

and zk on SG(π). We remark that zk is the intersection point
of DA and SD.

The representation of SD is T k SH . In fact,

T 2k H(T k SH ) = T 2k T −k H SH = T k SH .

Let us operate T −(2k+1) to ST 2k H .

T −(2k+1)ST 2k H = G(H T −2k ST 2k H )

= G(T 2k H ST 2k H ) = GST 2k H . (7)

The operation G to ST 2k H is equivalent with that of T −(2k+1)

to ST 2k H .
We use the following representation of involution G

whose symmetry axis is SG(π).

G

(
y
x

)
=

(
y + f (x)

2π − x

)
. (8)
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Fig. 2. The slopes of inclined thin lines are 1.

Fig. 3. The point zk ∈ SG(π) is the orbital point of 1/(2k + 1)-BE. The
configuration among the dominant axis SG(π), the subdominant axis
ST 2k H , the image T 2k+1 SG(π) and the image GST 2k H in the vicinity of
zk on cylinder.

Suppose that the curve represented by y = F(x) passes
through z = (x, y) ∈ SG(π). The image of y = F(x) with
respect to involution G is

y = F(2π − x) − f (x) ≡ FG(x). (9)

At z = (x, y), let ξ(z) = d F(x)/dx be the slope of F(x)

and ξG(z) = d FG(x)/dx be the slope of FG(x) at z. We
obtain the relation:

ξ(z) + ξG(z) = a. (10)

Differentiating T with respect to xn , we obtain the map
to determine the relation between the slope ξn = dyn/dxn

and ξn+1 = dyn+1/dxn+1.

ξn+1 = (ξn + f ′(xn))

(ξn + f ′(xn) + 1)
(11)

where f ′(xn) = a cos xn . We note the following relations.

dyn+1

dxn
= dyn+1

dxn+1

dxn+1

dxn
= ξn+1(ξn + f ′(xn) + 1).

Differentiating Eq. (11) with respect to xn , we obtain the
map for the second derivative ηn = dξn/dxn .

ηn+1 = (ηn − f (xn))

(ξn + f ′(xn) + 1)3
. (12)

Here f ′′(xn) = − f (xn) = −a sin xn is used.

2.3 Properties of the subdominant axis
We remark that 1/(2k + 1)-BE has one orbital point zk

which is the intersection point of DA and SD. Let us discuss
the relative disposition of the dominant and subdominant
axes in the vicinity of zk . The discussion is done on the
universal cover: −∞ < x < +∞, −∞ < y < +∞
restricted to 0 ≤ y ≤ 2π . The image T k SH (0) is a
curve connecting (0, 0) and ((2k + 1)π, 2π), and passes
through zk ∈ SG(π). The image T k SH (0) is the graph of
a monotone increasing function in 0 ≤ x ≤ π as is easily
shown by the use of T . Thus, T k SH (0) is the graph in the
vicinity of zk . For example, the vertical line passing through
z0 leans to the right direction under the operation of T and
the slope of image is one. This movement is displayed in
Fig. 2.

From the relations T 2k+1SG(π) = (T 2k H)(GSG(π)) =
(T 2k H)SG(π), we obtain that the subdominant axis ST 2k H

is sandwiched by SG(π) and its image T 2k+1SG(π) (Fig. 3).
Next, we give the relation of the subdominant axis and

the period-doubling bifurcation.

Proposition 2.3. Let zk ∈ SG(π) be the orbital point
of 1/(2k + 1)-BE. Let ξ(zk) and ξG(zk) respectively be
the slopes of the subdominant axis T k SH (0) and its image
GT k SH (0) at zk . Then, there exists a critical parameter
value ac(1/(2k+1)) of the period-doubling bifurcation such
that (i)–(iii) hold.
(i) ξG(zk) < a/2 < ξ(zk) for 0 < a < ac(1/(2k + 1)), and
zk is an elliptic point;
(ii) ξG(zk) = a/2 = ξ(zk) at a = ac(1/(2k + 1)); and
(iii) ξG(zk) > a/2 > ξ(zk) for a > ac(1/(2k + 1)), and zk

is a saddle point with reflection.

Proof. We restrict SH (0) to 0 ≤ x ≤ π and call it with
the same name. Then, its left and right end points are
P = (0, 0) and R0 = (π, 2π). The left and right points
of T k SH (0) are P and Rk = ((2k + 1)π, 2π). Let zk
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Fig. 4. (a) Before the period-doubling bifurcation of 1/5-BE. a = 0.8. (b) Bifurcation point. a = ac(1/5) = 1.047938. (c) After the bifurcation.
a = 1.25. (d) After the bifurcation. a = 1.5.

be the intersection point of T k SH (0) and SG(π). We note
that G P = P ′ = (2π, 0) and G Rk = (−(2k − 1)π, 2π).
The image GT k SH (0) is the curve connecting G Rk and P ′,
and passes through zk = (π, yk). The slope of SH (0) is
2 which is of course smaller than that of the vertical line
containing z0. The image of the vertical line containing
zm (0 ≤ m < k) under T has slope 1. Then the slope of
T m+1SH (0) at zm+1 is less than 1. From this fact, we have
the relation ξ(zk) < 1 (see Fig. 2).

From Eq. (10), we have ξG(zk) = a−ξ(zk). At a = 0, we
have ξ(zk) = 2/(2k + 1) > 0 and ξG(zk) = −ξ(zk) < 0.
For a ≥ 2, we have ξG(zk) = a − ξ(zk) > 1 > ξ(zk).
From this fact, there exists a value of a (> 0) such that
the relation ξG(zk) = ξ(zk) holds. Let this critical value be
a∗(1/(2k + 1)).

Suppose the situation that ξG(zk) > ξ(zk) holds. G Rk

and P ′, respectively, are in the upper and lower region of
{(x, y) : −(2k − 1)π ≤ x ≤ (2k + 1)π, 0 ≤ y ≤ 2π}
divided by T k SH (0). Thus, of course, GT k SH (0) connect-
ing P ′ and G Rk intersects T k SH (0) at least at one point.
The orbital point zk is one of the intersection points. Due to
ξG(zk) > ξ(zk), the arc of GT k SH (0) connecting zk and P ′

intersects T k SH (0) in the region satisfying x > π . Let the
intersection point be w. The arc of GT k SH (0) connecting
zk and G Rk also intersects T k SH (0) in the region satisfying
x < π . Let the intersection point be w∗. We remark that the
relation w∗ = Gw holds and the relations T (2k+1)w = w∗

and T (2k+1)w∗ = w hold. Therefore, w and w∗ are the
points of the periodic orbit with period 2(2k +1). This orbit
does not exist if ξG(k) < ξ(k) when parameter a is small.
Consequently, this orbit is born at some value of a when

ξG(k) = ξ(k) through period-doubling bifurcation. We de-
note the value of a by ac(1/(2k + 1)) = a∗(1/(2k + 1)).

The above bifurcation process implies that point zk is an
elliptic point before the bifurcation, and is a saddle point
with reflection after the bifurcation. Thus, Proposition is
proved.

We introduce the example to understand Proposition 2.3.
The bifurcation process of 1/5-BE are depicted in Fig. 4
where SD (T 2SH (0)) and its image GT 2SH (0) are also
shown. From z2, the daughter periodic points w2 and w7 are
born. The relation w2 = Gw7 holds. Let the slope of SD at
z2 be ξ(z2) and that of the image be ξG(z2). We can confirm
the relations : ξG(z2) < a/2 < ξ(z2) in Fig. 4(a) before the
period-doubling bifurcation, ξG(z2) = a/2 = ξ(z2) in Fig.
4(b) at the bifurcation point and ξG(z2) > a/2 > ξ(z2) in
Figs. 4(c) and (d) after the bifurcation.

3. Proof of Theorem 1.1
3.1 Preparations

Let z = (x, y) be any point in region D = {(x, y) :
0 < x < π and y > 0}, and T z = (x ′, y′) be its image.
Let πx (z) be the x-coordinate of z and πy(z) be the y-
coordinate. Let [A, B]C be a closed arc on a curve or
a one dimensional manifold C where A, B ∈ C. Thus,
for example, [A, B]Wu(P) is a closed arc on the unstable
manifold Wu(P). We similarly define an arc of Ws(P ′).

From the fact f (x) > 0 for z = (x, y) ∈ D, the relation
y′ = y+ f (x) > y is derived. From the relation x ′ = x+y′,
we obtain the relation x ′ > x . As a result, the image T z
locates to the upper-right of z. Thus, we obtain Proposition
3.1.
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Fig. 5. Proof of the order preservation of left-right.

Fig. 6. Two situations satisfying the condition that the relation πy(T −1 A) < πy(T −1 B) holds.

Proposition 3.1. If z is in D = {(x, y) : 0 < x <

π and y > 0}, T z is to the upper-right of z. If z is on
SG(π), then T z = (π + πy(z), πy(z)).

Let z be the point of Wu(P), and be close to P along
Wu(P). From Property 3.1, T k z for some k > 0 will
be in the region x > π and y > 0. This implies the
existence of the first intersection point u of Wu(P) with
SG(π). Let us introduce Proposition 3.2 (Yamaguchi and
Tanikawa, 2000).

Proposition 3.2. The slope of �u = [P, u]Wu(P) is positive
and its curvature is negative.

Here we define two arcs γu and γs (see Fig. 1).

Definition 3.3.

γu = [v, T u]Wu(P), (13)

γs = [u, v]Ws (P ′). (14)

where γs = Hγu .

Proposition 3.4. Suppose that A and B locate in D satis-
fying the conditions πx (A) < πx (B) and πy(A) > πy(B).
The relation πx (T −1 A) < πx (T −1 B) holds.

Proof. Assume that the relation πx (T −1 A) > πx (T −1 B)

holds. This configuration is depicted in Fig. 5. In Fig.
5(a), the situation satisfying the condition πy(T −1 A) >

πy(T −1 B) is shown. The length of solid vertical arrow is
equal to that of solid horizontal one. While the length of
dotted vertical arrow is less than that of dotted horizontal
one. This contradicts the property of T . The same con-
tradiction is derived for the situation shown in Fig. 5(b).
For the situation satisfying the condition πx (T −1 A) =
πx (T −1 B), using the reason mentioned above, the contra-
diction is derived.

Proposition 3.5. Suppose that A and B locate on
T −n SG(π) ∈ D for n ≥ 1 where the relation πx (A) <

πx (B) holds. Two images T −1 A and T −1 B locate on
T −n−1SG(π) ∈ D. Thus, (i)–(iii) hold.
(i) πy(A) > πy(B).
(ii) πx (T −1 A) < πx (T −1 B) (Order preservation of left-
right).
(iii) πy(T −1 A) > πy(T −1 B).
Proof of (i). First, we consider the case with n = 1. The
image T −1SG(π) ∈ D is represented as

y = π − x − f (x) (> 0). (15)
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Fig. 7. The appropriate configuration.

The slope dy/dx = −1− f ′(x) is negative for T −1SG(π) ∈
D. Thus, (i) for n = 1 is proved. We remark that the second
derivative d2 y/dx2 = − f ′′(x) = f (x) is positive. The
curvature of T −1SG(π) ∈ D is positive.
Proof of (ii). From Proposition 3.4, (ii) is derived.
Proof of (iii). In order to prove (iii), we prove that the slope
of T −2SG(π) ∈ D is negative. We derive the contradic-
tion if the relation πy(T −1 A) < πy(T −1 B) holds. From the
assumption, there exists a portion of T −2SG(π) ∈ D satis-
fying the condition that the slope is positive. This situation
is displayed in Fig. 6.

This situation displayed in Fig. 6(a) includes two con-
tradictions. The first fact is the existence of two turning
points t and t ′. The second one is the existence of portion
whose curvature is negative. For example, the curvature of
[T −1 A, t]T −2 SG (π) is negative. In Fig. 6(b), the turning point
does not exist but there exists the portion whose curvature
is negative (see [T −1 B, T −2u]T −2 SG (π)).

We have the relation.

ξ(T t) = (ξ(t) + f ′(xt ))

(ξ(t) + f ′(xt ) + 1)
. (16)

Suppose that ξ(t) diverges and the image T t locates on
T −1SG(π) ∈ D. Thus, we have that the slope ξ(T t) =
1 is positive. This contradicts the fact that the slope of
T −1SG(π) ∈ D is negative.

In T −1SG(π) ∈ D, there is no maximum point at which
the slope is zero and is no turning point at which the slope
diverges. Combining these facts and ξ(T t) < 0, we obtain
that the denominator of Eq.(16) is positive and the numera-
tor is negative.

Next, we use the following relation:

η(T t) = (η(t) − f (xt ))

(ξ(t) + f ′(xt ) + 1)3
. (17)

Since the denominator is positive, and η(T t) and f (xt ) are
positive, we have the relation η(t) > f (xt ) > 0. This
implies that the curvature of T −2SG(π) ∈ D is positive.

Fig. 8. Non-transverse intersection of Wu(P) and Ws(P ′) at u.

The situation satisfying the relation πy(T −1 A) <

πy(T −1 B) has a contradiction. The same contradiction
is derived for the case satisfying the relationπy(T −1 A) =
πy(T −1 B). Thus, (iii) is proved.

Repeating the above mentioned procedure for n =
2, 3, · · · , Proposition 3.5 is proved.

The appropriate configuration for A, B, T −1 A and T −1 B
is illustrated in Fig. 7.

Proposition 3.6. Let �k be [P, zk(2k + 1)]T k SH (0) (k ≥ 1).
In the limit k → ∞, �k accumulates at �u .

Proof. Suppose the contrary that points zk(2k +1) accumu-
late at u∗ which is above u on SG(π) and �k accumulates
Arc[P, u∗] which is the invariant curve passing through P .
By linear stability analysis, it is proved that there exist the
stable manifold Ws(P) and the unstable manifold Wu(P).
There is no invariant curve passing through P except these
manifolds. The existence of Arc[P, u∗] contradicts this
fact. Thus, Arc[P, u∗] is �u .

3.2 Monotone inclination property
Let us consider 1/qk-BE where qk = 2k + 1 (k ≥ 1)

is the period. Let S+
H (0) be the part of the symmetry axis

y = 2x with y > 0. Let z0(qk) ∈ S+
H (0) and zk(qk) ∈

SG(π) be the orbital point of 1/qk-BE. We remark that
the orbital points z j (qk) (1 ≤ j ≤ k − 1) locate in the
region sandwiched by SH (0) and SG(π) with y > 0. For
simplicity, the abbreviation ξ j (qk) for the slope ξ(z j (qk)) at
z j (qk) (0 ≤ j ≤ k) will be used in the following discussion.

Proposition 3.7. For qk = 2k + 1 (k ≥ 1), the following
relations hold.

ξk(qk) > ξk+1(qk+1), (18)

lim
k→∞

ξk(qk) = ξu(u). (19)

Proof of Eq. (18).

We are going to prove the inequality by induction. The
relations πy(z1(3)) > πy(z2(5)) > πy(z3(7)) > · · · >

πy(zk(2k + 1)) > · · · hold on SG(π) by Proposition 3.6.
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Fig. 9. Two arcs γ ′
u and γ ′

s exist in the region −π < x < 0, γu and γs in the region π < x < 2π and γ ′′
u and γ ′′

s in the region 3π < x < 4π on the
universal cover.

Fig. 10. Configuration of orbital points zk(2k + 1) (k = 1, 2, 3),
T k+1γ ′

u (k = 1, 2, 3, 4) and u for a large a > 0 on the universal cover.

First, we discuss the slopes of the images of symmetry axis.
Take, for qk = 2k + 1, two points z0(qk) and z0(qk+1) on
SH (0). Here, these points are the points of 1/qk-BE and
1/qk+1-BE. Trivially, ξ0(qk) = ξ0(qk+1) = 2. The slope
ξ1(qk+1) is determined by the relation (see Eq. (11)).

ξ1(qk+1) = ξ0(qk+1) + f ′(x0)

ξ0(qk+1) + f ′(x0) + 1
= 2 + f ′(x0)

3 + f ′(x0)
. (20)

where z0(qk) = (x0(qk), y0(qk)), and x0 = x0(qk+1).
f ′(x) ≡ d f (x)/dx is the slope of the graph of function
f (x) at x .

The point (π/3, 2π/3) on SH (0) is mapped by T to the
point (π + √

3a/2, 2π/3 + √
3a/2) out of D with x >

π , whereas points z j (qk) (0 ≤ j ≤ k − 1) stay in D.

Thus, we have 0 < x0 < π/3 because the initial point
z0(qk) ∈ SH (0) is below (π/3, 2π/3). This implies that the
numerator 2+a cos x0 and the denominator 3+a cos x0 are
positive, hence 0 < ξ1(qk+1) < 1. From this relation, we
obtain the relation ξ0(qk) = 2 > ξ1(qk+1) > 0.

Next, suppose that the relation ξ j−1(qk) > ξ j (qk+1)

holds. The slopes ξ j (qk) and ξ j+1(qk+1) are derived as fol-
lows.

ξ j (qk) = ξ j−1(qk) + f ′(x j−1)

ξ j−1(qk) + f ′(x j−1) + 1
= B

A
, (21)

ξ j+1(qk+1) = ξ j (qk+1) + f ′(x j )

ξ j (qk+1) + f ′(x j ) + 1
= D

C
. (22)

where x j−1 = x j−1(qk) and where x j = x j (qk+1).
From Eq. (21), T k SH (0) is vertical at x j (qk) if A = 0,

while T k SH (0) is horizontal at x j (qk) if B = 0. Therefore,
B is positive for sufficiently large k > 0 because the slope
x j (qk) becomes close to the slope of Wu(P) which is posi-
tive. Hence we have A > 0. In a similar manner, we derive
that C and D are positive.

We calculate the difference

ξ j (qk) − ξ j+1(qk+1) = BC − AD

AC
(23)

where AC > 0 and

BC − AD = (ξ j−1(qk) − ξ j (qk+1)) + ( f ′(x j−1) − f ′(x j )).

(24)

From the induction hypothesis, the first term in Eq. (24)
is positive. The second term is positive because the order
preservation of left-right (Proposition 3.5(ii)) gives x j−1 <

x j in D and hence f ′(x j−1) > f ′(x j ). As a result, ξ j (qk) >

ξ j+1(qk+1) is proved. Here, we let j = k and obtain Eq.
(18).
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Fig. 11. Relations among T 2γ ′
u , T 3γ ′

u and z1(3) ∈ SG(π) on the universal cover.

Fig. 12. A parallelogram A1 B1C1 D1 represents the hyperbolic region Z1/3 on the universal cover.

Proof of Eq. (19)
In the limit k → ∞, the orbital points z j (qk) accumulate

at u (see the proof of Proposition 3.6). Suppose that Eq.
(19) does not hold. There exists an integer n such that
T n SH (0) intersects Wu(P) in the vicinity of u. This implies
that SH (0) intersects Wu(P) in the vicinity of P . This is a
contradiction. Thus, Eq. (19) is proved.

3.3 Proof of Theorem 1.1
We know that ξu(u) < a/2 < ξs(u) for a ≥ 4/3 (Yam-

aguchi and Tanikawa, 2000). We may have ξu(u) > a/2 >

ξs(u) for some a < 4/3. In that case we should have
ξu(u) = ξs(u) = a/2 at some a = a∗ (0 < a∗ < 4/3). We
display the disposition of Wu(P) and Ws(P ′) for a = a∗

in Fig. 8. At a = a∗, the elliptic points of 1/qk-BEs ac-
cumulate at u since the relations ξk(qk) > a/2 for k � 1
holds (see Propositions 2.3). In the following, we assume

ξu(u) = ξs(u) = a/2 at a = a∗ and derive a contradiction.
Here, Ushiki’s theorem (Ushiki, 1980) is introduced. In

our proof, Ushiki’s theorem is essential.

Theorem 3.8 (Ushiki’s theorem). The biholomorphic map
f : Cn → Cn(n ≥ 2) can not have a one-dimensional
compact smooth invariant manifold. Such a map defined
in the plane can not have a homoclinic connection or a
heteroclinic connection.

The standard map T defined on the universal cover is
biholomorphic. Therefore, the saddle connection between
P and P ′ does not exist. This implies that the unstable
manifold Wu(P) and the stable manifold Ws(P ′) intersect
at u transversely or non-transversely. We plot Fig. 8 taking
into account Ushiki’s theorem. The existence of arcs γs and
γs is guaranteed by Ushiki’s theorem (see Fig. 1).
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Fig. 13. Schematic illustration of hyperbolic region Z1/qk (gray region) on cylinder.

Fig. 14. Schematic illustration of the hyperbolic region Z1/qk (gray region), T qk Z1/qk and T −qk Z1/qk on cylinder.

In the following, we use the forward images of γu and the
backward images of γs . These arcs are defined even if the
intersections at u is not transverse. The information on the
neighborhood of end points of γs and γu is not used. We
remark that two arcs γ ′

u and γ ′
s exist in the region −π <

x < 0 and γ ′′
u and γ ′′

s exist in the region 3π < x < 4π on
the universal cover (see Fig. 9).

We first take a large a > 0, and gradually decrease the
value. We consider the parameter region of a such that
T −1γs intersects SH (0). We claim that point zk(2k + 1)

is sandwiched by the points T k+1γ ′
u ∩ SG(π) and T k+2γ ′

u ∩
SG(π) for k ≥ 1. The situation for k = 1, 2, 3 is shown in
Fig. 10.

In this situation, T −2γs also intersects SH (0) (see Fig.
11). The relations H T −nγs = T nγ ′

u and Hγs = γ ′
u hold

where the symmetry axis of H is SH (0). The intersection
points T nγ ′

u ∩ T −nγs (n ≥ 1) locate on SH (0). Let one
of intersection points of T γ ′

u ∩ T −1γs be α and one of
intersection points of T 2γ ′

u ∩ T −2γs be β. These points
are displayed in Fig. 11. The image T α ∈ γs locates
in the region π < x < 2π and Tβ ∈ T −1γs in the
region 0 < x < π . This implies that Arc[Tβ, T α]T SH (0)

intersects SG(π). This intersection point is the orbital point
of 1/3-BE. The point is z1(3). Repeating the method used
here, we obtain the relative configuration among T k+1γ ′

u
and zk(2k + 1) for k ≥ 1. Thus, our claim is proved.
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Let us construct the hyperbolic region Z1/3 of z1(3) (see
Fig. 12). We consider the situation such that T 2γ ′

u intersects
T −4γ ′′

s . Let one of the intersection points be A1 and the
lower intersection point of T 2γ ′

u and SG(π) be B1. We
obtain the relation T −3γ ′′

s ∩ T 3γ ′
u �= ∅ from ∅ �= G(T 2γ ′

u ∩
T −4γ ′′

s ) = T −2γ ′′
s ∩T 4γ ′

u . Let one of the intersection points
of T −3γ ′′

s ∩ T 3γ ′
u be C1 and the upper intersection point

of T 3γ ′
u and SG(π) be D1. As a result, a closed region

A1 B1C1 D1 of the form of parallelogram (gray region in Fig.
12) is constructed. We name it the hyperbolic region Z1/3

of z1(3).
In general, for a given a > 0, there is an integer k0 > 0

such that T k+1γ ′
u intersects T −k−3γ ′′

s for k > k0. It is to be
noted that we have k0 → ∞ when a → 0. Consequently,
we need to treat the hyperbolic regions for a large k > 0
if a > 0 is small. Now, T k+1γ ′

u intersects SG(π) and
the orbital point zk(2k + 1) is sandwiched by T k+1γ ′

u and
T k+2γ ′

u . We can construct the hyperbolic region Z1/qk of
zk(2k + 1) on the universal cover. Rewriting γ ′

u as γu and
γ ′′

s as γs , the hyperbolic region Z1/qk on cylinder is obtained
(see Fig. 13).

Since the hyperbolic region Z1/qk includes zk(2k + 1),
the relations Z1/qk ∩ T qk Z1/qk �= ∅ holds. By T qk , Z1/qk

is stretched in the longitudinal direction and is compressed
to the vertical direction. It is noted that ArcT qk Bk T qk Ck

is a portion of γs and ArcT qk Dk T qk Ak is that of T −1γs .
Comparing the original region Ak BkCk Dk with image
T qk Ak T qk Bk T qk Ck T qk Dk , we can confirm that the region
in the vicinity of zk(2k + 1) rotates by about 180 degree
around zk(2k + 1). The rotation is clockwise (see Fig. 3).

The region Z1/qk is stretched in the vertical direction
and is compressed to the longitudinal direction under T −qk .
It is noted that ArcT −qk Ak T −qk Bk is a portion of T −1γu

and ArcT −qk Ck T −qk Dk is that of γu . The region in the
vicinity of zk(2k + 1) rotates by about 180 degree around
zk(2k + 1) counterclockwise. Summarizing the results, we
have that the orbital point zk(2k+1) is the saddle point with
reflection. The stable manifold Ws(zk) and the unstable
manifold Wu(zk) are also displayed in Fig. 14 where Wu(zk)

(Ws(zk)) is an abbreviation of Wu(zk(2k + 1)) (Ws(zk(2k +
1))).

3.4 Proof of the transversality
Suppose that the non-transverse intersection appears at

a = a∗ (< 4/3). At a = a∗, the elliptic points accumulate
to u. In §3.3, the following (i) and (ii) are proved.
(i) The hyperbolic regions in the vicinity of u exist at a =
a∗.
(ii) There exist an integer k such that the saddle point with
reflection of 1/qk-BE exists in the vicinity of u at a = a∗.

As a result, the accumulation of elliptic points to u at
a = a∗ contradicts (i) and (ii). There exists an integer n
such that the relation ξn(qn) < a/2 holds. From Eqs. (18)
and (19), the relation ξu(u) < a/2 is derived. This implies
the relations ξu(u) < a/2 < ξs(u). The proof completes.

4. Conclusion
First, the monotone inclination property (Proposition 3.7)

is derived. Next, using Ushiki’s theorem, the hyperbolic re-

gion Z1/qk is constructed. The hyperbolic region includes
the orbital point of 1/qk-BE which is the saddle point with
reflection. Combining these facts, Theorem 1.1 is proved.
In the proof, we use the properties of periodic points accu-
mulating to u from the upper region of u on SG(π) and do
not use the slope of Wu(P) at u. In this sense, our proof is
new.

Finally, we give the problems to be solved.
(1) The monotone inclination property plays an essential
role in our proof. What phenomena happens in the map that
the monotone inclination property does not hold?
(2) Elucidate the properties of periodic points accumulating
to u from the lower region of u on SG(π). The orbits of
these points rotate around Q.
(3) The transversality affects the stability of periodic points
around the homoclinic point. Determine the relation of
the transversality and the dominant axis property (Greene,
1979).
(4) What conditions are needed to appear the non-transverse
intersection satisfying the relation ξs(u) = ξu(u) or the
situation satisfying the relation ξs(u) < a/2 < ξu(u)

(Tanikawa and Yamaguchi, 2001)?
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