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A Decomposition of the Collatz Tree
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The Collatz tree, or the directed graph of the 3x + 1 problem, was demonstrated to be decomposed into three
different subgraphs. An arbitrary positive integer is assigned uniquely to a specific position of the nodes of either
of the three subgraphs. The manner of connecting a specific subgraph to its neighboring subgraphs is explicitly
given. A comparison with complete chaos synchronization was made.
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1. Introduction
The Collatz problem, or the 3x + 1 problem, is one

of the unsolved mathematical problems (Andaloro, 2002;
Chamberland, 2003). First, we defined the Collatz function
C(n) asC(n) = 3n + 1 (n/2) for an odd (even) numbern.
The Collatz conjecture states that for each positive integer
m, there is a positive integerk such thatC (k)(m) = 1, i.e.,
any positive integer will eventually iterate to 1, followed by
the cycle 4→ 2 → 1 → 4 → · · ·.

The mappingC(n) is similar to that introduced as an ana-
lytical model (Hata-Miyazaki, 1997; Miyazaki-Hata, 1998)
of intermittency caused by chaotic modulation (Fujisaka-
Yamada, 1985; 1986), also known as on-off intermit-
tency, which occurs when complete chaos synchronization
(Pikovsky et al., 2003) becomes slightly unstable. These
intermittent time series have self-similar structure. At a
slightly stable side of the vicinity of the critical point be-
tween complete chaos synchronization and on-off intermit-
tency, a transient time from the initial values of the state
variables leading to the attractor of the complete chaos syn-
chronization depends self-similarly on the state point of the
initial condition in the phase space (Inoue-Nishi, 1996).
Whether the Collatz problem has such self-similarity re-
lated to complete chaos synchronization was the main focus
of this paper.

This iteration is represented by a directed graph called the
Collatz tree or Collatz graph, whose node denotes a positive
integer. An even number 2N (N = 1, 2, · · ·) is iterated to
N and is shown as 2N → N . An odd number 2M − 1
(M = 1, 2, · · ·) is iterated to 3(2M − 1) + 1 = 6M − 2 and
is shown as 2M −1 → 6M −2. ForN = 6M −2, i.e., for a
positive integer given by 4 mod 6, both 12M −4 and 2M −1
are iterated to 6M − 2, and shown as a dichotomous branch
12M−4 → 6M−2 ← 2M−1. The even number 6M−2 is
further iterated to 3M − 1 such that the Collatz tree always
exhibits dichotomous branching at a positive integer given
by 4 mod 6, and the input degree and output degree are
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equal to 2 and 1, respectively, at the node 6M −2. The other
positive integers 0, 1, 2, 3, and 5 mod 6 are represented
by the node whose input and output degrees are both equal
to 1. In this paper, we discuss the structure between the
neighboring dichotomous branching nodes.

We considered the distance between the neighboring di-
chotomous branching nodes. Starting from 6M − 2 (posi-
tive integer 4 mod 6), we traced the backward iteration until
the preceding positive integers were reached. There exist
only three cases, which are distinguished by the remain-
der M when divided by 3, asM = 3n − 2, 3n − 1, 3n
(n = 1, 2, · · ·).
Quadruplet:M = 3n − 2 (1 mod 3)
⇒ 6(12n − 9) − 2(the left nearest neighbor junction)

→ 6(6n−4)−4 → 6(3n−2)−2 ← 6n−5 ← 6(2n−1)−4
← 6(4n − 3) − 2 ⇔ (the right nearest neighbor junction)

Triplet: M = 3n (0 mod 3)
⇒ 6(12n − 1) − 2(the left nearest neighbor junction)

→ 6(6n) − 4 → 6(3n) − 2 ← 6n − 1
← 6(2n) − 2 ⇔ (the right nearest neighbor junction)

Doublet: M = 3n − 1 (2 mod 3)
⇒ 6(12n − 5) − 2(the left nearest neighbor junction)

→ 6(6n − 2) − 4 → 6(3n − 1) − 2 ←
6n − 3 ← 6(2n − 1) ← 6(2n − 1) × 21 ←
6(2n − 1) × 22 ← · · · (the Sharkovskii branch)

The first three examples in the three cases are listed be-
low, where the number in parentheses indicates the dichoto-
mous branching node belonging to the nearest neighbor
subgraph.
Quadruplet:
⇒ (16) → 8 → [4 ← 1 ← 2 ← 4] (loop)
⇒ (88) → 44 → 22 ← 7 ← 14 ← (28) ⇔
⇒ (160) → 80 → 40 ← 13 ← 26 ← (52) ⇔
Triplet:
⇒ (64) → 32 → 16 ← 5 ← (10) ⇔
⇒ (136) → 68 → 34 ← 11 ← (22) ⇔
⇒ (208) → 104→ 52 ← 17 ← (34) ⇔
Doublet with the Sharkovskii branch:
⇒ (40) → 20 → 10 ← 3 ← 6 ← 12 ← 24 ← · · ·
⇒ (112) → 56 → 28 ← 9 ← 18 ← 36 ← 72 ← · · ·

31



32 S. Miyazaki

⇒ (184) → 92 → 46 ← 15 ← 30 ← 60 ← 120 ← · · ·
The distance between the neighboring branching nodes is

either 2 or 3 in the quadruplet case, always 2 in the triplet
case, and either 2 or ∞ in the doublet case, such that the
distances 2, 3, and ∞ appear at a ratio of 4 : 1 : 1. Positive
integers 1, 5, and 3 mod 6 appear only in the quadruplet,
triplet, and doublet case, respectively. A multiple of 6 (0
mod 6) can be uniquely factorized into the form 6(2n −
1) × 2p (p = 0, 1, · · ·) and appears only in the doublet
case, which we termed the Sharkovskii branch because the
sequence resembles Sharkovskii’s sequence (Sharkovskii,
1964). Positive integers 2 mod 6 are further classified into
6(6n−4)−4, 6(6n−2)−4, 6(6n)−4 and 6(2n−1)−4. The
even quotient 6(6n−4)−4 and the odd quotient 6(2n−1)−4
appear in the left and the right branch in the quadruple case,
respectively. The single odd number 6n − 5 appears in
the right branch of the quadruple case, and 6(6n) − 4 and
6(6n − 2)− 4 appear in the left branch of the triplet and the
doublet case, respectively.

In summary, every positive integer corresponds to a spe-
cific position in either the quadruplet, triplet, or doublet case
such that the nodes of the Collatz tree cover the entirety of
positive integers. Thus, the three cases are represented by
three different V-shaped subgraphs and the entire Collatz
tree can be constructed by the combination of the above-
mentioned subgraphs, where the node 6M − 2 (4 mod 6) is
a junction point. Note that the seemingly complicated Col-
latz tree, as shown in Fig. 1 of (Andaloro, 2002) or Fig.
2 of (Chamberland, 2003), can be decomposed into only
pieces, which may be assigned to three different V-shaped
subgraphs.

Next, we pieced a puzzle together. We omitted all inte-
gers except for 6M −2 (4 mod 6) and reduced the represen-
tation of the quadruplet, triplet, and doublet cases with the
right and left nearest neighbor junctions respectively as

⇒ Ql(n) → Q(n) ← Qr (n) ⇔,

⇒ Tl(n) → T (n) ← Tr (n) ⇔,

⇒ Dl(n) → D(n) ← (the Sharkovskii branch),

where

Q(n) = 18n − 14 = 6(3n − 2) − 2,

T (n) = 18n − 2 = 6(3n) − 2,

D(n) = 18n − 8 = 6(3n − 1) − 2,

Ql(n) = 72n − 56 = 6(3(4n − 3)) − 2

= 4Q(n) = T (4n − 3),

Qr (n) = 24n − 20 = 6(4n − 3) − 2

=




18(4k − 3) − 14 = Q(4k − 3)

(if n = 3k − 2)

18(4k − 2) − 8 = D(4k − 2)

(if n = 3k − 1)

18(4k − 1) − 2 = T (4k − 1)

(if n = 3k),

Tl(n) = 72n − 8 = 6(3(4n) − 1) − 2

= 4T (n) = D(4n),

Tr (n) = 12n − 2 = 6(2n) − 2

=




18(2k − 1) − 8 = D(2k − 1)

(if n = 3k − 2)

18(2k) − 14 = Q(2k) (if n = 3k − 1)

18(2k) − 2 = T (2k) (if n = 3k),

Dl(n) = 72n − 32 = 6(3(4n − 1) − 2) − 2

= 4D(n) = Q(4n − 1),

where k = 1, 2, · · ·. For example, Q(n) = Qr (m) is sat-
isfied for (n, m) = (5, 4) such that the n-th quadruplet is
connected at the right nearest neighbor junction of the m-th
quadruplet, which corresponds to the original Collatz se-
quence Q(5) = 76 → 38 → 19 → Q(4) = 58 → · · ·.
The quotients of Q(n), T (n), and D(n) when divided by 6
are 3n − 2, 3n, and 3n − 1, respectively. On the other hand,
the quotients of Ql(m), Tl(m), and Dl(m) when divided by
6 are 3(4m − 3), 3(4m) − 1, and 3(4m − 1) − 2, respec-
tively. The remainders of these numbers when divided by
3 determine three possible combinations Q(n) = Dl(m),
T (n) = Ql(m), and D(n) = Tl(m) for specific posi-
tive integers n and m. Furthermore, six more combina-
tions, Q(n) = Qr (m), Q(n) = Tr (m), T (n) = Qr (m),
T (n) = Tr (m), D(n) = Qr (m), and D(n) = Tr (m), are
possible for specific positive integers n and m. The rela-
tionship is summarized as follows:

Q(n) = Dl(m) for (n, m) = (3, 1), (7, 2), (11, 3), · · · ,
Q(n) = Qr (m) for (n, m) = (1, 1), (5, 4), (9, 7), · · · ,
Q(n) = Tr (m) for (n, m) = (2, 2), (4, 5), (6, 8), · · · ,
T (n) = Ql(m) for (n, m) = (1, 1), (5, 2), (9, 3), · · · ,
T (n) = Qr (m) for (n, m) = (3, 3), (7, 6), (11, 9), · · · ,
T (n) = Tr (m) for (n, m) = (2, 3), (4, 6), (6, 9), · · · ,
D(n) = Tl(m) for (n, m) = (4, 1), (8, 2), (12, 3), · · · ,
D(n) = Qr (m) for (n, m) = (1, 1), (3, 4), (5, 7), · · · ,
D(n) = Tr (m) for (n, m) = (2, 2), (6, 5), (10, 8), · · · ,

where (n, m) in all cases are given by double arithmetic
progressions. The first three relations, including Q(n), im-
ply that the quadruplet is connected to the quadruplet, the
triplet, and the doublet at a ratio of 1:2:1. In a similar man-
ner, both the triplet and doublet are connected to the quadru-
plet, the triplet, and the doublet at a ratio of 1:1:0. These
connections from nodes Q(n), T (n), and D(n) to the next
junctions are expressed by the following transition matrix:
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 .

Its right eigenvalue (a, b, c)T corresponding to the unit
eigenvalue satisfies a : b : c = 0.4 : 0.5 : 0.1, which
implies that the quadruplets, triplets, and doublets appear at
a ratio of 0.4 : 0.5 : 0.1 in a long Collatz sequence start-
ing from a fixed positive number. For example, the Col-
latz sequence starting from 27 is given in Table 1, where
Q R(QL), T R(T L), and DR(DL) indicate that the number
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on the left belongs to the right(left) branch of the quadru-
plet, the triplet, and the doublet, respectively. Note that
the odd number belongs to the right branches only and that
this sequence contains many right branches. The number of
the dichotomous branching node of the quadruplet, triplet,
and doublet nodes are equal to 16, 28, and 5, respectively.
The estimation from the transition matrix 0.4 : 0.5 : 0.1
was a good approximation of the ratio 16 : 28 : 5 =
0.326530612 : 0.571428571 : 0.102040816.

We clarified how many odd numbers appear from an
initial positive integer to 1. In a long Collatz sequence, the
ratio of visiting Qr (n) = 24n − 20 and Ql = 72n − 56
is 24 : 72 = 1/4 : 3/4. In a similar manner, the ratio of
visiting Tr (n) = 12n − 2 and Tl = 72n − 8 is 12 : 72
= 1/7 : 6/7. Taking into account the visiting frequency
of the quadruplet and triplet, we estimated the ratio of the
right branch to the whole of the quadruplet and triplet as
4/10 × 1/4 + 5/10 × 1/7 = 6/35. Next, we considered
the relative ratio of the initial numbers on the Sharkovskii
branch 6(2n − 1) × 2p (p = 0, 1, · · ·). The ratio of the odd
number 3(2n − 1) = 6n − 3 of the doublet to the initial
numbers between 1 and N was given by (N/6)/N = 1/6
for n 
 N . The largest number on the Sharkovskii branch
was estimated as 6(2n − 1)× 2pmax = N , leading to pmax ∝
log N for n 
 N , which is much less than N/6. Ignoring
the case of the initial number located at the Sharkovskii
branch aside from the single odd number, the ratio of the
initial number coinciding with the odd number 6n − 3 was
equal to 1/6, and 5/6 otherwise. In the latter case, the ratio
of choosing the right branches including odd numbers was
6/35, as shown above. Thus, the ratio of odd numbers to
the stopping time from the initial number to 1 was equal
to 5/6 × 6/35 + 1/6 = 13/42 ≈ 0.31. Starting from
power-of-two numbers n p = 2p, we had n p(1/2)T = 1
for the stopping time T , i. e., T = log n p/ log 2. Starting
from an arbitrary initial number, we had n pλ

T = 1 for the
roughly estimated stopping time T , where λ was estimated
as λ = 42−13

42 (− log 2) + 13
42 log 3 ≈ −0.139. The former

and latter corresponded to the contribution from the even
and the odd number, respectively. This averaged behavior
was underestimated because we ignored the additional part

Fig. 1. The stopping time is plotted against the initial number with
symbol + and that of the moving average over the succeeding 20 plots
with symbol �. The shortest stopping time for power-of-two numbers
(dashed line) and the rough averaged stopping time (solid line) are
shown.

1 of 3x + 1 of the iteration of an odd number x . The
stopping time (symbol +), that of the moving average over
the preceding 20 points (symbol �), the shortest stopping
time for power-of-two numbers (dashed line), and the rough
averaged stopping time (solid line) are shown in Fig. 1.

The quadruplets, triplets, and doublets seem randomly
arranged on the Collatz tree. However, for a specific di-
chotomous branching node 54M − 38 (positive integer 16
mod 54), there always exists a periodic backward sequence
in order of the quadruplet, triplet, and doublet tracking the
left-most branches Ql , Tl , and Dl . The periodic sequence
located at the nearest neighbor of the final loop 4 → 2 → 1
→ 4 is given by · · · → 262144 = D(14564) → 65536 =
T (3641) → 16384 = Q(911) → 4096 = D(228) →

Table 1. Collatz sequence from 27 to 4.

27 DR 445 QR 1154 QR

82 D(5) 1336 Q(75) 577 QR

41 TR 668 DL 1732 Q(97)

124 T(7) 334 D(19) 866 QR

62 QR 167 TR 433 QR

31 QR 502 T(28) 1300 Q(73)

94 Q(6) 251 TR 650 QR

47 TR 754 T(42) 325 QR

142 T(8) 377 TR 976 Q(55)

71 TR 1132 T(63) 488 DL

214 T(12) 566 QR 244 D(14)

107 TR 283 QR 122 QR

322 T(18) 850 Q(48) 61 QR

161 TR 425 TR 184 Q(11)

484 T(27) 1276 T(71) 92 DL

242 QR 638 QR 46 D(3)

121 QR 319 QR 23 TR

364 Q(21) 958 Q(54) 70 T(4)

182 QR 479 TR 35 TR

91 QR 1438 T(80) 106 T(6)

274 Q(16) 719 TR 53 TR

137 TR 2158 T(120) 160 T(9)

412 T(23) 1079 TR 80 QL

206 QR 3238 T(180) 40 Q(3)

103 QR 1619 TR 20 DL

310 Q(18) 4858 T(270) 10 D(1)

155 TR 2429 TR 5 TR

466 T(26) 7288 T(405) 16 T(1)

233 TR 3644 QL 8 QL

700 T(39) 1822 Q(102) 4 Q(1)

350 QR 911 TR

175 QR 2734 T(152)

526 Q(30) 1367 TR

263 TR 4102 T(228)

790 T(44) 2051 TR

395 TR 6154 T(342)

1186 T(66) 3077 TR

593 TR 9232 T(513)

1780 T(99) 4616 QL

890 QR 2308 Q(129)
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1024 = T (57) → 256 = Q(15) → 64 = D(4) →
16 = T (1) →, which is termed the quarter sequence be-
cause the number is multiplied by 1/4 along the Collatz
sequence. In a similar manner, there exists a Sharkovskii
branch 2p(6×1−3) (p = 0, 1, · · ·) connected to 10 = D(1)

followed by the triplet 16 = T (1). The variety of branches
are extending between the quarter and Sharkovskii branches
of the Collatz tree. A countable number of V-shaped sub-
graphs consisting of the right Sharkovskii and left quarter
branches are embedded in the Collatz tree. The Sharkovskii
branch located at the second nearest neighbor of the final
loop is given by 2p(6 × 13 − 3) (p = 0, 1, · · ·) connected
to 226 = D(13), followed by the triplet 340 = T (19). The
corresponding quarter branch is given by · · · → 87040 =
D(4836) → 21760 = T (1209) → 5440 = Q(303) →
1360 = D(76) → 340 = T (19). The V-shaped structure
located at the third and fourth nearest neighbors of the final
loop leads to 70 = T (4) and 7252 = T (403), respectively.
The first, second, and third V-shaped combinations of the
quarter and Sharkovskii branches (SB) are as follows:

262144 87040 1120 SB
| | | /
65536 21760 280 46
| | | /
16384 5440 SB (70)
| | / |
4096 1360 226 106
| | / /
1024 (340) 160
| / /
256 40 SB
| | /
64 10
| /
(16)

The figures in parentheses indicate the beanching nodes
between the quarter and Sharkovskii branches.

To sum up our main results, the Collatz tree can be
decomposed into three pieces, which were referred to as
the quadruplet, triplet, and doublet with the Sharkovskii
branch in this paper. An arbitrary positive integer is as-
signed uniquely to a specific position of the nodes of either
of the three subgraphs. The manner of connecting a spe-
cific subgraph to its neighboring subgraphs was explicitly
discussed in this paper. As for comparison with chaos syn-
chronization, the value λ ≈ −0.139, which corresponds
to the transverse Lyapunov exponent in this research field,
suggests that this system is located at a deeply stable region
far from the critical point λ = 0. Thus, we concluded that
self-similar structure in the context of chaos synchroniza-
tion is hardly observable in the Collatz problem.
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