Anomalous Period-Doubling Bifurcation of the Elliptic Fixed Point in the Area-Preserving Maps

Yoshihiro Yamaguchi1 and Kiyotaka Tanikawa2

¹2-4-14, Kokubunjidai-chuo, Ichihara, Chiba 290-0193, Japan ²National Astronomical Observatory, Mitaka 181-8588, Japan E-mail address: chaosfractal@icloud.com; tanikawa.ky@nao.ac.jp

(Received August 31, 2021; Accepted October 27, 2021)

In 1968, Moser reported a new bifurcation through which the periodic orbits with period-3 or -4 appear. At present, this bifurcation is called the anomalous rotation bifurcation (ARB). The examples of ARB have been already known. Why the anomalous period-doubling bifurcation (APDB) of the elliptic fixed point does not happen in the area-preserving maps? In order to answer this question, we introduce the area preserving map T defined by C^n ($n \ge 1$) mapping function and derive the conditions that APDB happens.

Key words: Anomalous Rotation/Period-Doubling Bifurcation, Area-Preserving Map

1. Introduction

In 1968, Moser reported a new bifurcation through which the periodic orbits with period-3 or -4 appear (Moser, 1968). At present, we say this bifurcation "the anomalous rotation bifurcation" (ARB). The examples of ARB have been already known (Dullin-Meiss-Sterling, 2005) (see also Appendix A). The bifurcation through which the periodic orbit with period-2 appears from the elliptic fixed point is named the period-doubling bifurcation. The following question arises naturally. Does the anomalous period-doubling bifurcation of the elliptic fixed point happen? In oder to answer this question, we introduce the area-preserving map T.

$$T : y_{n+1} = y_n + f(x_n), \ x_{n+1} = x_n + y_{n+1}.$$
(1)

The mapping function f(x) is defined as follows.

$$f(x) = \begin{cases} f_l(x) = a(x - x^2) \ (x \le 1), \\ f_r(x) = a(x - x^2) - b(x - 1)^m \ (x \ge 1). \end{cases}$$
(2)

Here, a > 0, $b \ge 0$, and $m \ge 2$. The map T is included in the Hénon family (Hénon, 1969). There are two fixed points P = (0, 0) and Q = (1, 0). The point P = (0, 0)is a saddle fixed point. The other one Q = (1, 0) is an elliptic fixed point at 0 < a < 4 and is a saddle fixed point with reflection at a > 4. At a = 4, the period-doubling bifurcation of the fixed point Q occurs. In this paper, we study this period-doubling bifurcation of Q.

Here, using Fig. 1(a), we explain the regular perioddoubling bifurcation. If the regular period-doubling bifurcation of the elliptic fixed point Q happens, two daughter periodic points z_0 and z_1 appear from Q. The relations $z_1 = Tz_0$ and $z_0 = Tz_1$ hold. Thus, the period of these points is 2. The mother point Q becomes the saddle point with reflection.

Next, we explain the anomalous period-doubling bifurcation (see Fig. 1(b)). The rotation number in the vicinity of Q is less than 1/2. As the orbital point moves away from Q, its rotation number increases, becomes 1/2 and decreases. As a result, the saddle points and the elliptic points appear through the saddle-node bifurcation at the region that the rotation number is 1/2. The period of these points is 2. Let $a_c^{\rm sn}$ be the critical value at which the saddle node bifurcation happens. We increase a from a_c^{sn} . Two saddle points move to Q. These points are absorbed into Q at $a = a_c^{pd}$. On the other hand, two elliptic points recede from Q. The interval $[a_c^{sn}, a_c^{pd}]$ is the anomalous parameter one. We remark that Q is a saddle with reflection at $a > a_c^{pd}$. Our aim is to derive the condition that the anomalous period-doubling bifurcation of Q happens. Our results are summarized as Theorem 1.

Theorem 1.

(1) If the mapping function f(x) satisfies the condition m = 2, the anomalous period-doubling bifurcation of the fixed point Q occurs at b > 0.

(2) If the mapping function f(x) satisfies the condition m = 3, the regular period-doubling bifurcation of the fixed point Q occurs at $0 < b \le 16$ and the anomalous period-doubling bifurcation of Q occurs at b > 16.

(3) If the mapping function f(x) satisfies the condition $m \ge 4$, the regular period-doubling bifurcation of the fixed point Q occurs.

(4) If the mapping function f(x) is the analytic (b = 0), the regular period-doubling bifurcation of the fixed point Q occurs.

In $\S2$, the mathematical tools and several notations used in $\S3$ are introduced. In $\S3$, Theorem 1 is proved. In $\S4$, we give the conclusion and propose the problem to be solved.

Copyright © Society for Science on Form, Japan.

Fig. 1. (a) The situation after the regular period-doubling bifurcation ($z_1 = Tz_0$, $z_0 = Tz_1$). (b) The configuration around Q when the anomalous period-doubling bifurcation happens. Here, ν represents the rotation number.

Fig. 2. (a) Analytic function (b = 0). (b) C^1 -class function (m = 2, b = 16). (c) C^2 -class function (m = 3, b = 16). (d) C^3 -class function (m = 4, b = 16). The dotted line in the region x > 1 represents $y = a(x - x^2)$. $a = a_c^{pd} = 4$.

2. Preliminaries

2.1 Properties of the mapping function

The properties of the mapping function f(x) are summarized. The function f(x) with b = 0 is analytic and f(x) with b > 0 is of C^{m-1} -class.

For example, consider f(x) with m = 2 and b > 0. We have $f'_l(1) = -a = f'_r(1)$ and $f''_l(1) = -2a \neq f''_r(1) = -2a - 2b$. Thus, f(x) with m = 2 is of C^1 -class.

Several mapping functions are depicted in Fig. 2. Fig. 2(a) represents the analytic function. The mapping functions with m = 2, 3, and 4 are displayed in Figs. 2(b)–(d). The dotted line in the region $x \ge 1$ is $y = a(x - x^2)$. Here, we increase the value of *m* at the fixed value of b > 0 and observe that the mapping functions accumulate at the analytic one.

2.2 Critical value of the period-doubling bifurcation

The first derivative of f(x) is continuous at x = 1. Thus, we can use it for the linear stability analysis. The linearized matrix M_Q at Q = (1, 0) is obtained as

$$M_Q = \begin{pmatrix} 1 & -a \\ 1 & 1-a \end{pmatrix}.$$
 (3)

The determinant of M_Q is 1. This means that the map is area and orientation preserving. The eigenvalues are determined by the following characteristic equation.

$$\lambda^2 - (2 - a)\lambda + 1 = 0.$$
 (4)

We have the discriminant $D = a^2 - 4a$. The fixed point Q is a stable elliptic point at 0 < a < 4 and is a saddle point with reflection at a > 4. Thus, a = 4 is the critical value a_c^{pd} at which the period-doubling bifurcation of Q happens.

2.3 Involutions and symmetry axes

If a map is represented by the product of involutions, we say that the map has the reversibility in the sense of Birkhoff (Birkhoff, 1927). The map *T* is reversible. Using the involutions *g* and *h*, we represent *T* as $T = h \circ g$ where $h \circ h = g \circ g = \text{id}$ and det $\nabla h = \text{det}\nabla g = -1$.

$$g\begin{pmatrix} y\\ x \end{pmatrix} = \begin{pmatrix} -y - f(x)\\ x \end{pmatrix}, \ h\begin{pmatrix} y\\ x \end{pmatrix} = \begin{pmatrix} -y\\ x - y \end{pmatrix}.$$
 (5)

The set of fixed points of involution is called the symmetry axis. Let S_g be the symmetry axis of g and S_h be the symmetry axis of h. Here, we define the portions of S_g (y = -f(x)/2) and S_h (y = 0).

$$S_g^+$$
: $y = -f(x)/2 \ (x \ge 1),$ (6)

$$S_g^-$$
: $y = -f(x)/2 \ (0 < x \le 1),$ (7)

$$S_h^+$$
: $y = 0 \ (x \ge 1),$ (8)

$$S_{h}^{-}$$
: $y = 0 \ (0 < x < 1).$ (9)

In this paper, x = 1 is included in S_g^{\pm} and in S_h^{\pm} .

2.4 Several maps

Differentiating the map with respect to x_n , the map of the slope $\xi_n = dy_n/dx_n$ is derived.

$$\xi_{n+1} = \frac{\xi_n + f'(x_n)}{\xi_n + f'(x_n) + 1}.$$
(10)

The following relation is used.

$$\frac{dy_{n+1}}{dx_n} = \frac{dy_{n+1}}{dx_{n+1}}\frac{dx_{n+1}}{dx_n} = \xi_{n+1}(\xi_n + f'(x_n) + 1). \quad (11)$$

We let $x_n = 1$ and have the one-dimensional map.

$$\xi_{n+1} = \frac{\xi_n - a}{\xi_n - a + 1}.$$
 (12)

Differentiating Eq.(10) with respect to x_n , the map of the second derivative $\eta_n = d^2 y_n / dx_n^2$ is obtained. We set $x_n = 1$.

$$\eta_{n+1} = \frac{\eta_n - 2a}{(\xi_n - a + 1)^3}.$$
(13)

Differentiating Eq.(10) with respect to x_n twice, the map of the third derivative $\zeta_n = d^3 y_n / dx_n^3$ is obtained. We set $x_n = 1$.

$$\zeta_{n+1} = \frac{\zeta_n}{(\xi_n - a + 1)^4} - 3\frac{(\eta_n - 2a)^2}{(\xi_n - a + 1)^5}.$$
 (14)

Here, we explain how to use Eq.(12). The slope of S_g^- at x = 1 is a/2. Using the initial condition $\xi_0 = a/2$, we calculate ξ_1 which is the slope of the image TS_g^- at x = 1. Let us consider the situation satisfying the condition $\xi_1 = a/2$.

$$\xi_1 = \frac{(a/2 - a)}{(a/2 - a + 1)} = \frac{a}{2}.$$
 (15)

Solving this equation, we have the solution a = 4 satisfying the condition a > 0. This is the critical value at which the period-doubling bifurcation of Q occurs. Thus, Property 2 is derived.

Property 2. The orbital points of period-2 appearing through the period-doubling bifurcation of Q locate on S_g .

3. Proof of Theorem 1

3.1 Two criteria

The anomalous period-doubling bifurcation in the case with m = 2 and b = 32 is displayed in Fig. 3.

Fig. 3(a) represents the configuration of the symmetry axis S_g^+ (dashed line) and the image TS_g^- (solid line) at the critical situation of the saddle-node bifurcation ($a = a_c^{sn} = 3.483623$). The image TS_g^- touches S_g^+ at s_1 . At $a > a_c^{sn}$, point s_1 changes into two points z_1 and w_1 where z_1 is the orbital point of the elliptic period-2 and w_1 is that of the saddle period-2. Here, we increase the value of a to a = 4. Two saddle points w_1 and w_0 (not displayed) move to Q (Fig. 3(b) and Fig. 3(c)). At a = 4, these points are absorbed into Q (Fig. 3(d)).

Before proceeding further, we give a remark about Arc $\gamma = (w_1, z_1)_{TS_g^-}$ in Fig. 3(c). Arc γ locates to the right of arc $\Gamma = (w_1, z_1)_{S_g^+}$. Suppose that $u_0 \in \Gamma$ and $u_1 = Tu_0 \in \gamma$. The rotation angle on the points of the arc connecting w_1 to u_0 is greater than π .

From the observation of Fig. 3(d) at a = 4, Property 3 is obtained.

Property 3.

At a = 4, (i) the slope of the image TS_g^- at Q is equal to that of the

symmetry axis S_g^+ at Q and (ii) the image $T \tilde{S}_g^-$ locates below S_g^+ in the right neighborhood of Q.

Using (ii) and the continuity of the image TS_g^- , the image TS_g^- intersects the symmetry axis S_g^+ outside the neighborhood of Q. The intersection point z_1 locates away from Q. This fact means that the point z_1 appears through the anomalous period-doubling bifurcation. If the image TS_g^- locates above S_g^+ in the right neighborhood of Q, there is no intersection points in the right neighborhood. Therefore, the regular period-doubling bifurcation occurs at a = 4.

Suppose that the image TS_g^- is represented y = F(x) in the neighborhood of x = 1. The symmetry axis S_g^+ is represented $y = F_s(x)$ (= $-f_r(x)/2$). Using these, we have Criterion 4.

Criterion 4.

Consider the ϵ -neighborhood of x = 1 at the critical situation $a = a_c^{\text{pd}} = 4$.

(1) If the relation $F_s(x) < F(x)$ (x > 1) holds, the regular period-doubling bifurcation occurs.

(2) If the relation $F_s(x) > F(x)$ (x > 1) holds, the anomalous period-doubling bifurcation occurs.

From Criterion 4, Criterion 5 is derived. In the representation of Criterion 5, $F_s^{(k)}(1)$ means the *k*-th derivative of $F_s(x)$ at x = 1 and $F^{(k)}(1)$ means the *k*-th derivative of F(x) at x = 1.

Criterion 5. At $a = a_c^{\text{pd}} = 4$, the relation $F'_s(1) = F'(1)$ holds.

(1) If the relation $F_s^{(2)}(1) < F^{(2)}(1)$ holds, the regular period-doubling bifurcation occurs. If the relation $F_s^{(2)}(1) > F^{(2)}(1)$ holds, the anomalous period-doubling bifurcation occurs.

(2) Case with $F_s^{(2)}(1) = F^{(2)}(1)$. If the relation $F_s^{(3)}(1) < 1$

Fig. 3. Example of the anomalous period-doubling bifurcation. m = 2. b = 32. (a) $a = a_c^{sn} = 3.483623$. (b) a = 3.5. (c) a = 3.7. (d) $a = a_c^{pd} = 4$. The solid line represents the image TS_g^- and the dashed one the symmetry axis S_g^+ .

 $F^{(3)}(1)$ holds, the regular period-doubling bifurcation occurs. If the relation $F_s^{(3)}(1) > F^{(3)}(1)$ holds, the anomalous period-doubling bifurcation occurs.

3.2 **Proof of Theorem 1**

The relations of the image TS_g^- and S_g^+ around x = 1 are studied. First, the case with m = 2 is considered. In oder to determine η_1 , we put $\xi_0 = a/2$, $\eta_0 = a$ and a = 4 in Eq.(13) where ξ_0 is the slope of S_g^- at x = 1 and η_0 is the second derivative of S_g^- at x = 1. Thus, $\eta_1 = 4$ (= $F^{(2)}(1)$) is obtained. Here, Eq.(13) is used. The second derivative of S_g^+ at x = 1 is $F_s^{(2)}(1) = 4 + b$. The following relation holds.

$$F_s^{(2)}(1) > F^{(2)}(1).$$
 (16)

From Criterion 5(1), it is obtained that the anomalous period-doubling bifurcation occurs in this case. Thus, Theorem 1(1) is proved.

Next, $\eta_1 = 4$ holds in the case with m = 3. The second derivative of S_g^+ at x = 1 is also 4. Thus, we have to determine the third order derivatives. We input $\xi_0 = a/2$, $\eta_0 = a$, $\xi_0 = 0$ and a = 4 in Eq.(14) and have $\xi_1 = 48$ (= $F^{(3)}(1)$). On the other hand, the third order derivative of S_g^+ at x = 1 is $3b \ (= F_s^{(3)}(1))$. From Criterion 5(2), the anomalous period-doubling bifurcation occurs if the condition b > 16 holds. If the condition b < 16 holds, the regular period-doubling bifurcation occurs

We prove that the regular period-doubling bifurcation occurs in the case with b = 16. In the following, we let a = 4. Suppose that the initial point $t_0 = (x_0, y_0)$ locates on S_g^- .

$$x_0 = t, \ y_0 = -2(t - t^2).$$
 (17)

Here, we set $t = 1 - \epsilon$ ($\epsilon > 0$) and obtain the position of

the image $t_1 = (x_1, y_1)$.

$$x_1 = 1 + \epsilon - 2\epsilon^2, \ y_1 = 2(1 - \epsilon)\epsilon.$$
 (18)

In order to determine the *y*-coordinate (y_s) of S_g^+ at $x = x_1$, we let b = 16.

$$y_s = 2\epsilon (1 - \epsilon - 20\epsilon^3 + 48\epsilon^4 - 32\epsilon^5).$$
(19)

The difference $d = y_1 - y_s$ is obtained.

$$d = y_1 - y_s = 64\epsilon^4((\epsilon - 3/4)^2 + 1/16) > 0.$$
 (20)

From Criterion 4, it is obtained that the regular perioddoubling bifurcation occurs. Thus, Theorem 1(2) is proved.

The relation $\zeta_1 = 48 = F^{(3)}(1)$ holds in the cases with $m \ge 4$. But, the third derivative of S_g^+ at x = 1 is $F_s^{(3)}(1) = 0$. As a result, we have the relation $F_s^{(3)}(1) < F^{(3)}(1)$. From Criterion 5(2), it is obtained that the regular period-doubling bifurcation occurs. Thus, Theorem 1(3) is proved.

Finally, the case with b = 0 is studied. Using the reason for the cases with $m \ge 4$, we obtain the same result that the regular period-doubling bifurcation occurs. The details are omitted. Thus, Theorem 1(4) is proved.

3.3 Examples of period-2

The orbital points of period-2 appearing through the anomalous period-doubling bifurcation are displayed in Fig. 4 (m = 2) and in Fig. 5 (m = 3). The anomalous parameter intervals are $a \in [3.852747, 4)$ (m = 2) and $a \in [3.924018, 4)$ (m = 3). The large disks represent the orbital points of elliptic period-2 and the small disks represent those of saddle ones.

Fig. 4. m = 2. b = 8. $a_c^{sn} = 3.852747$. (a) a = 3.853. (b) a = 3.855. (c) a = 3.9. (d) a = 4.

Fig. 5. $m = 3. b = 64. a_c^{sn} = 3.924018$. (a) a = 3.925. (b) a = 3.95. (c) a = 3.975. (d) a = 4.

3.4 Remark

Using the Poincaré index (Guckenheimer and Holmes, 1983), we explain the fact that two saddle points absorbed into Q are not emitted from Q at a > 4. After the saddle-node bifurcation, the elliptic period-2 points and the saddle ones appear. Under the operation of T^2 , there exist two orbital points of the elliptic period-2 and the saddle one. Thus, the Poincaré index of the elliptic points is $2 \times (+1)$. The Poincaré index of the saddle points is $2 \times (-1)$. Under the operation of T^2 , Q is the elliptic point. The index is (+1). Thus, the summation of the Poincaré indices is (+1) = (+1) + (+2) + (-2). Before the saddle-node bifurcation, only Q exists. Thus, the summation is (+1). The summation of Poincaré indices are preserved.

Next, we study the situation that two saddle points are absorbed into Q. This is the situation at a > 4. Thus, Qis the saddle point under the operation of T^2 and the index of Q is (-1). Under the operation of T^2 , there exist two daughter elliptic points appeared from Q at a > 4. The Poincare index of two daughter points is $2 \times (+1)$. Suppose that two saddle points are emitted from Q at a > 4. The Poincare index of two saddle points is $2 \times (-1)$. Thus, we have the summation (-1) = (-1) + (+2) + (-2). But, before the emission of two saddle points, the summation is (+1). The contradiction is derived.

Fig. 6. (a) $a = a_c^{sn} = 0.9942834$. (b) a = 0.997. (c) $a = a_c(1/4) = 1$. (d) a = 1.1.

4. Conclusion

We derive the conditions that the regular/anomalous period-doubling bifurcation of T happens. The results are summarized as Theorem 1. Theorem 1 says that the loss of smoothness of the mapping function causes the anomalous period-doubling bifurcation.

In this paper, we do not discuss the anomalous rotation bifurcation of the periodic orbit with the rotation number p/q (0 < p/q < 1/2). In the cases with m = 1, 2 and p/q (0 < p/q < 1/2), it is needed to determine the conditions at which the anomalous rotation bifurcation occurs. We leave it as a future problem.

Acknowledgments. The authors are grateful to the referee for useful comments.

Appendix A. The anomalous rotation bifurcation of period-4

We introduce the example of the anomalous rotation bifurcation of period-4. Here, the mapping function f(x) is defined.

$$f(x) = a(x - x^3) (a > 0).$$
 (A.1)

The anomalous parameter interval is $[a_c^{sn} = 0.9942834, a_c(1/4) = 1)$. The image $T^2 S_g^{-1}$ touches

the symmetry axis S_g^+ at $a = a_c^{\text{sn}}$. The tangent point s_2 locates apart from Q (see Fig. 6(a)). The two intersection points z_2 and w_2 are observed in Fig. 6(b) where z_2 is the elliptic point and w_2 is the saddle point. The saddle points w_j ($0 \le j \le 3$) move to Q and these are absorbed into Q (Fig. 6(c)) at a = 1. The monotone twist property (Birkhoff, 1927) does not hold in the vicinity of Q at $a \in [a_c^{\text{sn}}, a_c(1/4))$. At a > 1, the saddle points are emitted from Q and the point w_0 (w_2) locates on the symmetry axis S_h^- (S_h^+) (Fig. 6(d)).

References

- Birkhoff, G. D. Dynamical Systems, American Mathematical Society Colloquium Publications Vol. 9 (American Mathematical Society, 1927, Revised edition, 1966). https://archive.org/details/ dynamicalsystems00birk/page/n7
- Dullin, H. R., Meiss, J. D. and Sterling, D., Symbolic codes for rotational orbits, SIAM J. Appl. Dyn. Sys. 4 (2005), 515–562. https://doi. org/10.1137/040612877
- Guckenheimer, J. and Holmes, P., Nonlinear oscillations, dynamical systems, and bifurcations of vector fields (Springer-Verlag, 1983), p. 51.
- Hénon, M., Numerical study of quadratic area-preserving mappings, *Quart. Appl. Math.* XXVII(3) (1969), 291–312.
- Moser, J. K., Lectures on Hamiltonian Systems, Memoirs of the American Mathematical Society 81 (1968), 1–60. See Fig. 11. Hamiltonian dynamical systems. A reprint selection compiled & introduced by R. S. Mackay & J. D. Meiss. (Adam Hilger, 1987). 77–136.