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In 1968, Moser reported a new bifurcation through which the periodic orbits with period-3 or -4 appear. At
present, this bifurcation is called the anomalous rotation bifurcation (ARB). The examples of ARB have been
already known. Why the anomalous period-doubling bifurcation (APDB) of the elliptic fixed point does not
happen in the area-preserving maps? In order to answer this question, we introduce the area preserving mapT
defined byCn (n ≥ 1) mapping function and derive the conditions that APDB happens.
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1. Introduction
In 1968, Moser reported a new bifurcation through which

the periodic orbits with period-3 or -4 appear (Moser, 1968).
At present, we say this bifurcation ”the anomalous rotation
bifurcation” (ARB). The examples of ARB have been al-
ready known (Dullin-Meiss-Sterling, 2005) (see also Ap-
pendix A). The bifurcation through which the periodic orbit
with period-2 appears from the elliptic fixed point is named
the period-doubling bifurcation. The following question
arises naturally. Does the anomalous period-doubling bifur-
cation of the elliptic fixed point happen? In oder to answer
this question, we introduce the area-preserving mapT .

T : yn+1 = yn + f (xn), xn+1 = xn + yn+1. (1)

The mapping functionf (x) is defined as follows.

f (x) =
{

fl(x) = a(x − x2) (x ≤ 1),

fr (x) = a(x − x2) − b(x − 1)m (x ≥ 1).
(2)

Here,a > 0, b ≥ 0, andm ≥ 2. The mapT is included
in the H́enon family (H́enon, 1969). There are two fixed
points P = (0, 0) and Q = (1, 0). The pointP = (0, 0)

is a saddle fixed point. The other oneQ = (1, 0) is an
elliptic fixed point at 0< a < 4 and is a saddle fixed point
with reflection ata > 4. At a = 4, the period-doubling
bifurcation of the fixed pointQ occurs. In this paper, we
study this period-doubling bifurcation ofQ.

Here, using Fig. 1(a), we explain the regular period-
doubling bifurcation. If the regular period-doubling bifur-
cation of the elliptic fixed pointQ happens, two daughter
periodic pointsz0 and z1 appear fromQ. The relations
z1 = T z0 and z0 = T z1 hold. Thus, the period of these
points is 2. The mother pointQ becomes the saddle point
with reflection.
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Next, we explain the anomalous period-doubling bifurca-
tion (see Fig. 1(b)). The rotation number in the vicinity of
Q is less than 1/2. As the orbital point moves away fromQ,
its rotation number increases, becomes 1/2 and decreases.
As a result, the saddle points and the elliptic points appear
through the saddle-node bifurcation at the region that the
rotation number is 1/2. The period of these points is 2. Let
asn

c be the critical value at which the saddle node bifurcation
happens. We increasea from asn

c . Two saddle points move
to Q. These points are absorbed intoQ at a = apd

c . On the
other hand, two elliptic points recede fromQ. The inter-
val [asn

c , apd
c ) is the anomalous parameter one. We remark

that Q is a saddle with reflection ata > apd
c . Our aim is

to derive the condition that the anomalous period-doubling
bifurcation of Q happens. Our results are summarized as
Theorem 1.

Theorem 1.
(1) If the mapping functionf (x) satisfies the condition
m = 2, the anomalous period-doubling bifurcation of the
fixed pointQ occurs atb > 0.
(2) If the mapping functionf (x) satisfies the condition
m = 3, the regular period-doubling bifurcation of the fixed
point Q occurs at 0< b ≤ 16 and the anomalous period-
doubling bifurcation ofQ occurs atb > 16.
(3) If the mapping functionf (x) satisfies the condition
m ≥ 4, the regular period-doubling bifurcation of the fixed
point Q occurs.
(4) If the mapping functionf (x) is the analytic (b = 0),
the regular period-doubling bifurcation of the fixed pointQ
occurs.

In §2, the mathematical tools and several notations used
in §3 are introduced. In§3, Theorem 1 is proved. In§4, we
give the conclusion and propose the problem to be solved.
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Fig. 1. (a) The situation after the regular period-doubling bifurcation (z1 = T z0, z0 = T z1). (b) The configuration around Q when the anomalous
period-doubling bifurcation happens. Here, ν represents the rotation number.

Fig. 2. (a) Analytic function (b = 0). (b) C1-class function (m = 2, b = 16). (c) C2-class function (m = 3, b = 16). (d) C3-class function
(m = 4, b = 16). The dotted line in the region x > 1 represents y = a(x − x2). a = apd

c = 4.

2. Preliminaries
2.1 Properties of the mapping function

The properties of the mapping function f (x) are summa-
rized. The function f (x) with b = 0 is analytic and f (x)

with b > 0 is of Cm−1-class.
For example, consider f (x) with m = 2 and b > 0. We

have f ′
l (1) = −a = f ′

r (1) and f ′′
l(1) = −2a �= f ′′

r (1) =
−2a − 2b. Thus, f (x) with m = 2 is of C1-class.

Several mapping functions are depicted in Fig. 2.
Fig. 2(a) represents the analytic function. The mapping
functions with m = 2, 3, and 4 are displayed in Figs. 2(b)–
(d). The dotted line in the region x ≥ 1 is y = a(x − x2).
Here, we increase the value of m at the fixed value of b > 0
and observe that the mapping functions accumulate at the
analytic one.

2.2 Critical value of the period-doubling bifurcation
The first derivative of f (x) is continuous at x = 1. Thus,

we can use it for the linear stability analysis. The linearized
matrix MQ at Q = (1, 0) is obtained as

MQ =
(

1 −a
1 1 − a

)
. (3)

The determinant of MQ is 1. This means that the map is area
and orientation preserving. The eigenvalues are determined
by the following characteristic equation.

λ2 − (2 − a)λ + 1 = 0. (4)

We have the discriminant D = a2 − 4a. The fixed point Q
is a stable elliptic point at 0 < a < 4 and is a saddle point
with reflection at a > 4. Thus, a = 4 is the critical value
apd

c at which the period-doubling bifurcation of Q happens.
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2.3 Involutions and symmetry axes
If a map is represented by the product of involutions,

we say that the map has the reversibility in the sense of
Birkhoff (Birkhoff, 1927). The map T is reversible. Using
the involutions g and h, we represent T as T = h ◦ g where
h ◦ h = g ◦ g = id and det∇h = det∇g = −1.

g

(
y
x

)
=

(−y − f (x)

x

)
, h

(
y
x

)
=

( −y
x − y

)
. (5)

The set of fixed points of involution is called the sym-
metry axis. Let Sg be the symmetry axis of g and Sh be
the symmetry axis of h. Here, we define the portions of
Sg (y = − f (x)/2) and Sh (y = 0).

S+
g : y = − f (x)/2 (x ≥ 1), (6)

S−
g : y = − f (x)/2 (0 < x ≤ 1), (7)

S+
h : y = 0 (x ≥ 1), (8)

S−
h : y = 0 (0 < x ≤ 1). (9)

In this paper, x = 1 is included in S±
g and in S±

h .

2.4 Several maps
Differentiating the map with respect to xn , the map of the

slope ξn = dyn/dxn is derived.

ξn+1 = ξn + f ′(xn)

ξn + f ′(xn) + 1
. (10)

The following relation is used.

dyn+1

dxn
= dyn+1

dxn+1

dxn+1

dxn
= ξn+1(ξn + f ′(xn) + 1). (11)

We let xn = 1 and have the one-dimensional map.

ξn+1 = ξn − a

ξn − a + 1
. (12)

Differentiating Eq.(10) with respect to xn , the map of the
second derivative ηn = d2 yn/dx2

n is obtained. We set
xn = 1.

ηn+1 = ηn − 2a

(ξn − a + 1)3
. (13)

Differentiating Eq.(10) with respect to xn twice, the map
of the third derivative ζn = d3 yn/dx3

n is obtained. We set
xn = 1.

ζn+1 = ζn

(ξn − a + 1)4
− 3

(ηn − 2a)2

(ξn − a + 1)5
. (14)

Here, we explain how to use Eq.(12). The slope of S−
g

at x = 1 is a/2. Using the initial condition ξ0 = a/2,
we calculate ξ1 which is the slope of the image T S−

g at
x = 1. Let us consider the situation satisfying the condition
ξ1 = a/2.

ξ1 = (a/2 − a)

(a/2 − a + 1)
= a

2
. (15)

Solving this equation, we have the solution a = 4 satisfying
the condition a > 0. This is the critical value at which the
period-doubling bifurcation of Q occurs. Thus, Property 2
is derived.

Property 2. The orbital points of period-2 appearing
through the period-doubling bifurcation of Q locate on Sg .

3. Proof of Theorem 1
3.1 Two criteria

The anomalous period-doubling bifurcation in the case
with m = 2 and b = 32 is displayed in Fig. 3.

Fig. 3(a) represents the configuration of the symmetry
axis S+

g (dashed line) and the image T S−
g (solid line) at

the critical situation of the saddle-node bifurcation (a =
asn

c = 3.483623). The image T S−
g touches S+

g at s1. At
a > asn

c , point s1 changes into two points z1 and w1 where
z1 is the orbital point of the elliptic period-2 and w1 is that
of the saddle period-2. Here, we increase the value of a to
a = 4. Two saddle points w1 and w0 (not displayed) move
to Q (Fig. 3(b) and Fig. 3(c)). At a = 4, these points are
absorbed into Q (Fig. 3(d)).

Before proceeding further, we give a remark about
Arcγ = (w1, z1)T S−

g
in Fig. 3(c). Arcγ locates to the

right of arc � = (w1, z1)S+
g

. Suppose that u0 ∈ � and
u1 = T u0 ∈ γ . The rotation angle on the points of the arc
connecting w1 to u0 is greater than π .

From the observation of Fig. 3(d) at a = 4, Property 3 is
obtained.

Property 3.
At a = 4,

(i) the slope of the image T S−
g at Q is equal to that of the

symmetry axis S+
g at Q and

(ii) the image T S−
g locates below S+

g in the right neighbor-
hood of Q.

Using (ii) and the continuity of the image T S−
g , the image

T S−
g intersects the symmetry axis S+

g outside the neighbor-
hood of Q. The intersection point z1 locates away from
Q. This fact means that the point z1 appears through the
anomalous period-doubling bifurcation. If the image T S−

g
locates above S+

g in the right neighborhood of Q, there is
no intersection points in the right neighborhood. Therefore,
the regular period-doubling bifurcation occurs at a = 4.

Suppose that the image T S−
g is represented y = F(x)

in the neighborhood of x = 1. The symmetry axis S+
g is

represented y = Fs(x) (= − fr (x)/2). Using these, we
have Criterion 4.

Criterion 4.
Consider the ε-neighborhood of x = 1 at the critical

situation a = apd
c = 4.

(1) If the relation Fs(x) < F(x) (x > 1) holds, the regular
period-doubling bifurcation occurs.
(2) If the relation Fs(x) > F(x) (x > 1) holds, the anoma-
lous period-doubling bifurcation occurs.

From Criterion 4, Criterion 5 is derived. In the represen-
tation of Criterion 5, F (k)

s (1) means the k-th derivative of
Fs(x) at x = 1 and F (k)(1) means the k-th derivative of
F(x) at x = 1.

Criterion 5. At a = apd
c = 4, the relation F ′

s(1) = F ′(1)

holds.
(1) If the relation F (2)

s (1) < F (2)(1) holds, the reg-
ular period-doubling bifurcation occurs. If the relation
F (2)

s (1) > F (2)(1) holds, the anomalous period-doubling
bifurcation occurs.
(2) Case with F (2)

s (1) = F (2)(1). If the relation F (3)
s (1) <
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Fig. 3. Example of the anomalous period-doubling bifurcation. m = 2. b = 32. (a) a = asn
c = 3.483623. (b) a = 3.5. (c) a = 3.7. (d) a = apd

c = 4.
The solid line represents the image T S−

g and the dashed one the symmetry axis S+
g .

F (3)(1) holds, the regular period-doubling bifurcation oc-
curs. If the relation F (3)

s (1) > F (3)(1) holds, the anomalous
period-doubling bifurcation occurs.

3.2 Proof of Theorem 1
The relations of the image T S−

g and S+
g around x = 1 are

studied. First, the case with m = 2 is considered. In oder
to determine η1, we put ξ0 = a/2, η0 = a and a = 4 in
Eq.(13) where ξ0 is the slope of S−

g at x = 1 and η0 is the
second derivative of S−

g at x = 1. Thus, η1 = 4 (= F (2)(1))

is obtained. Here, Eq.(13) is used. The second derivative
of S+

g at x = 1 is F (2)
s (1) = 4 + b. The following relation

holds.
F (2)

s (1) > F (2)(1). (16)

From Criterion 5(1), it is obtained that the anomalous
period-doubling bifurcation occurs in this case. Thus, The-
orem 1(1) is proved.

Next, η1 = 4 holds in the case with m = 3. The
second derivative of S+

g at x = 1 is also 4. Thus, we
have to determine the third order derivatives. We input
ξ0 = a/2, η0 = a, ζ0 = 0 and a = 4 in Eq.(14) and have
ζ1 = 48 (= F (3)(1)). On the other hand, the third order
derivative of S+

g at x = 1 is 3b (= F (3)
s (1)). From Criterion

5(2), the anomalous period-doubling bifurcation occurs if
the condition b > 16 holds. If the condition b < 16 holds,
the regular period-doubling bifurcation occurs

We prove that the regular period-doubling bifurcation
occurs in the case with b = 16. In the following, we let
a = 4. Suppose that the initial point t0 = (x0, y0) locates
on S−

g .

x0 = t, y0 = −2(t − t2). (17)

Here, we set t = 1 − ε (ε > 0) and obtain the position of

the image t1 = (x1, y1).

x1 = 1 + ε − 2ε2, y1 = 2(1 − ε)ε. (18)

In order to determine the y-coordinate (ys) of S+
g at x = x1,

we let b = 16.

ys = 2ε(1 − ε − 20ε3 + 48ε4 − 32ε5). (19)

The difference d = y1 − ys is obtained.

d = y1 − ys = 64ε4((ε − 3/4)2 + 1/16) > 0. (20)

From Criterion 4, it is obtained that the regular period-
doubling bifurcation occurs. Thus, Theorem 1(2) is proved.

The relation ζ1 = 48 = F (3)(1) holds in the cases with
m ≥ 4. But, the third derivative of S+

g at x = 1 is F (3)
s (1) =

0. As a result, we have the relation F (3)
s (1) < F (3)(1).

From Criterion 5(2), it is obtained that the regular period-
doubling bifurcation occurs. Thus, Theorem 1(3) is proved.

Finally, the case with b = 0 is studied. Using the reason
for the cases with m ≥ 4, we obtain the same result that the
regular period-doubling bifurcation occurs. The details are
omitted. Thus, Theorem 1(4) is proved.

3.3 Examples of period-2
The orbital points of period-2 appearing through the

anomalous period-doubling bifurcation are displayed in
Fig. 4 (m = 2) and in Fig. 5 (m = 3). The anomalous
parameter intervals are a ∈ [3.852747, 4) (m = 2) and
a ∈ [3.924018, 4) (m = 3). The large disks represent the
orbital points of elliptic period-2 and the small disks repre-
sent those of saddle ones.
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Fig. 4. m = 2. b = 8. asn
c = 3.852747. (a) a = 3.853. (b) a = 3.855. (c) a = 3.9. (d) a = 4.

Fig. 5. m = 3. b = 64. asn
c = 3.924018. (a) a = 3.925. (b) a = 3.95. (c) a = 3.975. (d) a = 4.

3.4 Remark
Using the Poincaré index (Guckenheimer and Holmes,

1983), we explain the fact that two saddle points absorbed
into Q are not emitted from Q at a > 4. After the saddle-
node bifurcation, the elliptic period-2 points and the saddle
ones appear. Under the operation of T 2, there exist two
orbital points of the elliptic period-2 and the saddle one.
Thus, the Poincaré index of the elliptic points is 2 × (+1).
The Poincaré index of the saddle points is 2 × (−1). Under
the operation of T 2, Q is the elliptic point. The index
is (+1). Thus, the summation of the Poincaré indices is
(+1) = (+1) + (+2) + (−2). Before the saddle-node
bifurcation, only Q exists. Thus, the summation is (+1).
The summation of Poincaré indices are preserved.

Next, we study the situation that two saddle points are
absorbed into Q. This is the situation at a > 4. Thus, Q
is the saddle point under the operation of T 2 and the index
of Q is (−1). Under the operation of T 2, there exist two
daughter elliptic points appeared from Q at a > 4. The
Poincare index of two daughter points is 2× (+1). Suppose
that two saddle points are emitted from Q at a > 4. The
Poincare index of two saddle points is 2 × (−1). Thus, we
have the summation (−1) = (−1) + (+2) + (−2). But,
before the emission of two saddle points, the summation is
(+1). The contradiction is derived.
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Fig. 6. (a) a = asn
c = 0.9942834. (b) a = 0.997. (c) a = ac(1/4) = 1. (d) a = 1.1.

4. Conclusion
We derive the conditions that the regular/anomalous

period-doubling bifurcation of T happens. The results are
summarized as Theorem 1. Theorem 1 says that the loss of
smoothness of the mapping function causes the anomalous
period-doubling bifurcation.

In this paper, we do not discuss the anomalous rotation
bifurcation of the periodic orbit with the rotation number
p/q (0 < p/q < 1/2). In the cases with m = 1, 2
and p/q (0 < p/q < 1/2), it is needed to determine
the conditions at which the anomalous rotation bifurcation
occurs. We leave it as a future problem.

Acknowledgments. The authors are grateful to the referee for
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Appendix A. The anomalous rotation bifurcation
of period-4

We introduce the example of the anomalous rotation bi-
furcation of period-4. Here, the mapping function f (x) is
defined.

f (x) = a(x − x3) (a > 0). (A.1)

The anomalous parameter interval is [asn
c =

0.9942834, ac(1/4) = 1). The image T 2S−
g touches

the symmetry axis S+
g at a = asn

c . The tangent point s2

locates apart from Q (see Fig. 6(a)). The two intersection
points z2 and w2 are observed in Fig. 6(b) where z2 is
the elliptic point and w2 is the saddle point. The saddle
points w j (0 ≤ j ≤ 3) move to Q and these are absorbed
into Q (Fig. 6(c)) at a = 1. The monotone twist property
(Birkhoff, 1927) does not hold in the vicinity of Q at
a ∈ [asn

c , ac(1/4)). At a > 1, the saddle points are emitted
from Q and the point w0 (w2) locates on the symmetry axis
S−

h (S+
h ) (Fig. 6(d)).
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