Original Paper Forma, 36, 35-40, 2021

Anomalous Period-Doubling Bifurcation of the Elliptic Fixed Point
in the Area-Preserving M aps

Yoshihiro YamagucHiand Kiyotaka Tanikawa

12-4-14, Kokubunjidai-chuo, Ichihara, Chiba 290-0193, Japan
2National Astronomical Observatory, Mitaka 181-8588, Japan
E-mail address: chaosfractal @icloud.com; tanikawa.ky@nao.ac.jp

(Received August 31, 2021; Accepted October 27, 2021)

In 1968, Moser reported a new bifurcation through which the periodic orbits with period-3 or -4 appear. At
present, this bifurcation is called the anomalous rotation bifurcation (ARB). The examples of ARB have been
already known. Why the anomalous period-doubling bifurcation (APDB) of the elliptic fixed point does not
happen in the area-preserving maps? In order to answer this question, we introduce the area preseiiving map
defined byC" (n > 1) mapping function and derive the conditions that APDB happens.

Key words: Anomalous Rotation/Period-Doubling Bifurcation, Area-Preserving Map

1. Introduction Next, we explain the anomalous period-doubling bifurca-
In 1968, Moser reported a new bifurcation through whidion (see Fig. 1(b)). The rotation number in the vicinity of
the periodic orbits with period-3 or -4 appear (Moser, 1968) is less than 12. As the orbital point moves away fro@®,
At present, we say this bifurcation "the anomalous rotatids rotation number increases, becom¢g® and decreases.
bifurcation” (ARB). The examples of ARB have been alAs a result, the saddle points and the elliptic points appear
ready known (Dullin-Meiss-Sterling, 2005) (see also Aphrough the saddle-node bifurcation at the region that the
pendix A). The bifurcation through which the periodic orbitotation number is 1/2. The period of these points is 2. Let
with period-2 appears from the elliptic fixed point is nameag" be the critical value at which the saddle node bifurcation
the period-doubling bifurcation. The following questiomappens. We increasefrom a5". Two saddle points move
arises naturally. Does the anomalous period-doubling bifg-Q. These points are absorbed iroata = agd_ On the
cation of the elliptic fixed point happen? In oder to answether hand, two elliptic points recede fro@. The inter-
this question, we introduce the area-preserving ap g [agn, aP% is the anomalous parameter one. We remark

that Q is a saddle with reflection at > aﬁd. Our aim is

to derive the condition that the anomalous period-doubling
bifurcation of Q happens. Our results are summarized as
Theorem 1.

T o Yorr = Yo+ F(Xn), Xnr1 = Xn + Yo 1)
The mapping functiorf (x) is defined as follows.

— 2

Fx0) = { p ((1(()):2((1(( _>)<(2)) (_xbs(xl)_, e D (2) Theoreml. . N N

A= = (2) If the mapping functionf (x) satisfies the condition
m = 2, the anomalous period-doubling bifurcation of the
d‘ixed pointQ occurs ab > 0.
(2) If the mapping functionf (x) satisfies the condition
is a saddle fixed point. The other o@ = (1, 0) is an m = 3, the regular period-doubling bifurcation of the f_ixed
elliptic fixed point at 0< a < 4 and is a saddle fixed pointpo'nt Q occurs at 0< b < 16 and the anomalous period-

with reflection ata > 4. Ata = 4, the period-doubling doubling blfurca.tlon ofQ occurs ab ~ 15' -
bifurcation of the fixed pointQ occurs. In this paper, we(3) If the mapping funchonf(x? sat|_sf|es Fhe condm_on
study this period-doubling bifurcation @. m > 4, the regular period-doubling bifurcation of the fixed
Here, using Fig. 1(a), we explain the regular perio Z;Jlr:;[%occurs._ ¢ ionf is th Mick — 0
doubling bifurcation. If the regular period-doubling bifur- ) If the mapping unct_|on (.X) IS t. € ana yt'(?b = 0),
cation of the elliptic fixed poinQ happens, two daughterthe regular period-doubling bifurcation of the fixed poit
periodic pointszg and z; appear fromQ. The relations oceurs.
71 = Tzgandzy = Tz hold. Thus, the period of these In §2, the mathematical tools and several notations used
points is 2. The mother poir® becomes the saddle poinin §3 are introduced. 1§3, Theorem 1 is proved. I§4, we
with reflection. give the conclusion and propose the problem to be solved.

Here,a > 0,b > 0, andm > 2. The mapT is included
in the Henon family (Henon, 1969). There are two fixe
pointsP = (0,0) andQ = (1,0). The pointP = (0, 0)
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Fig. 1. (8 The situation after the regular period-doubling bifurcation (zz = Tzy, zo = Tz;). (b) The configuration around Q when the anomalous
period-doubling bifurcation happens. Here, v represents the rotation number.
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Fig. 2.

(&) Analytic function (b = 0). (b) Cl-class function (m = 2,b = 16). (c) C2-class function (m = 3,b = 16). (d) C3-class function

(m =4, b = 16). Thedotted lineintheregion x > 1 representsy = a(x — x2). a = acpd =4

2. Preliminaries
2.1 Properties of the mapping function

The properties of the mapping function f (x) are summa-
rized. The function f (x) withb = Oisanalytic and f(x)
with b > Oisof C™!-class.

For example, consider f (x) withm =2andb > 0. We
have f/(1) = —a= f/ (1) and f"1(1) = —2a # " (1) =
—2a — 2b. Thus, f(x) withm = 2isof C!-class.

Several mapping functions are depicted in Fig. 2.
Fig. 2(a) represents the analytic function. The mapping
functionswithm = 2, 3, and 4 are displayed in Figs. 2(b)—
(d). The dotted linein theregion x > 1isy = a(x — x?).
Here, weincrease the value of m at the fixed valueof b > 0
and observe that the mapping functions accumulate at the
analytic one.

2.2 Critical value of the period-doubling bifurcation

Thefirst derivative of f (x) iscontinuousat x = 1. Thus,
we can useit for the linear stability analysis. The linearized
matrix Mq at Q = (1, 0) isobtained as

©)

Thedeterminant of Mg is1. Thismeansthat themapisarea
and orientation preserving. The eigenvalues are determined
by the following characteristic equation.
AM—(Q2-ar+1=0. (4)
We have the discriminant D = a? — 4a. The fixed point Q
isastable elliptic point at 0 < a < 4 and is a saddle point
with reflection at a > 4. Thus, a = 4 isthe critical value
al? at which the period-doubling bifurcation of Q happens.
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2.3 Involutionsand symmetry axes

If a map is represented by the product of involutions,
we say that the map has the reversibility in the sense of
Birkhoff (Birkhoff, 1927). The map T isreversible. Using
theinvolutions g and h, werepresent T as T = h o g where
hoh=gog=idanddetVh = detvg = —1.

o(X)=(73"") 0 (D)=(2) @

The set of fixed points of involution is called the sym-
metry axis. Let §; be the symmetry axis of g and §, be
the symmetry axis of h. Here, we define the portions of
S y=—-f(x)/2)and § (y =0).

§ y=—fx/2x=1, (6)
§ y=—-fx)/20<x <1, (7
S y=0(x=1, (8)
S y=00<x=<l. 9

In this paper, x = Lisincludedin §F andin S;.

24 Several maps
Differentiating the map with respect to x,,, the map of the
slope &, = dy,/dx, is derived.

En + T/ (Xn)

= 10
nt+1 ft F o) + 1 (10
The following relation is used.
dynt1  dYnia OXny1 /
dx, dxXner d% =&pnEn+ ')+ 1. (11)
We let x, = 1 and have the one-dimensional map.
éh—a
= - 12
En+1 & _atl (12)

Differentiating Eq.(10) with respect to x,, the map of the
second derivative n, = d?y,/dx? is obtained. We set
Xn = 1.
nn — 2a

(n—a+ 1%
Differentiating Eq.(10) with respect to x, twice, the map
of the third derivative ¢, = d3y,/dx2 is obtained. We set
Xn = 1.

M+l = (13)

&n _ (Mn — 23)2
(én—a+D? (n—a+ D>

Here, we explain how to use Eq.(12). The slope of §;
a x = lisa/2. Using the initial condition & = a/2,
we calculate & which is the slope of the image TS; at
x = 1. Let usconsider the situation satisfying the condition
& = a/2

Sl = (14)

(a/2—a) a

= G2—atD 2

Solving this equation, we have the solution a = 4 satisfying

the condition a > 0. Thisisthe critical value at which the

period-doubling bifurcation of Q occurs. Thus, Property 2
is derived.

(15)

Property 2. The orbital points of period-2 appearing
through the period-doubling bifurcation of Q locate on S;.

3. Proof of Theorem 1
3.1 Twocriteria

The anomalous period-doubling bifurcation in the case
withm=2andb = 32isdisplayedin Fig. 3.

Fig. 3(a) represents the configuration of the symmetry
axis § (dashed line) and the image TS; (solid line) at
the critical situation of the saddle-node bifurcation (a =
ay' = 3.483623). Theimage TS; touches S a s1. At
a > ad', point s; changes into two points z; and w; where
z; isthe orbital point of the elliptic period-2 and w; isthat
of the saddle period-2. Here, we increase the value of a to
a = 4. Two saddle points w1 and wq (not displayed) move
to Q (Fig. 3(b) and Fig. 3(c)). At a = 4, these points are
absorbed into Q (Fig. 3(d)).

Before proceeding further, we give a remark about
Arcy = (w1, Z1)7g in Fig. 3(c). Arcy locates to the
right of arc I' = (wy, Z)g;- Suppose that up € T’ and
u; = Tug € y. Therotation angle on the points of the arc
connecting ws to Ug is greater than .

From the observation of Fig. 3(d) at a = 4, Property 3is
obtained.

Property 3.

Ata =4,
(i) the slope of theimage TS at Q is equal to that of the
symmetry axis S at Q and
(ii) theimage T S§; locates below S in the right neighbor-
hood of Q.

Using (ii) and the continuity of theimage T §;, theimage
TS, intersectsthe symmetry axis %” outside the neighbor-
hood of Q. The intersection point z; locates away from
Q. This fact means that the point z; appears through the
anomal ous period-doubling bifurcation. If the image T
locates above Sg+ in the right neighborhood of Q, thereis
no intersection pointsin the right neighborhood. Therefore,
the regular period-doubling bifurcation occursat a = 4.

Suppose that the image T'§; is represented y = F(x)
in the neighborhood of x = 1. The symmetry axis %* is
represented y = Fs(X) (= —f; (X)/2). Using these, we
have Criterion 4.

Criterion 4.

Consider the e-neighborhood of x = 1 at the critica
situationa = al® = 4.
(1) If therelation Fs(x) < F(x) (x > 1) holds, the regular
period-doubling bifurcation occurs.
(2) If therelation Fs(x) > F(X) (x > 1) holds, the anoma
lous period-doubling bifurcation occurs.

From Criterion 4, Criterion 5 is derived. In the represen-
tation of Criterion 5, F{¥(1) means the k-th derivative of
Fs(x) a x = 1 and F® (1) means the k-th derivative of
Fx)ax=1

Criterion 5. Ata = al® = 4, the relation F/(1) = F'(1)
holds.

(1) If the relation F®(1) < F@(1) holds, the reg-
ular period-doubling bifurcation occurs. If the relation
F{2(1) > F®@(1) holds, the anomalous period-doubling
bifurcation occurs.

(2) Case with F{2(1) = F@(1). If therelation F® (1) <
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Fig. 3. Example of the anomalous period-doubling bifurcation. m = 2. b = 32. (a) a = a" = 3.483623. () a=35. (c)a=37. (da= al

1.05

The solid line represents the image T §; and the dashed one the symmetry axis %*

F® (1) holds, the regular period-doubling bifurcation oc-
curs. If therelation F® (1) > F® (1) holds, the anomalous
period-doubling bifurcation occurs.

3.2 Proof of Theorem 1
Therelationsof theimage T §; and §j around X = 1are
studied. First, the case with m = 2 is considered. In oder
to determine 1, we put & = a/2, 5o = aanda = 4in
Eq.(13) where & isthe slope of §; at X = 1 and 1o is the
second derivativeof §; at x = 1. Thus, 71 = 4 (= F@ (1))
is obtained. Here, EQ.(13) is used. The second derivative
of § at x = 1is F{?(1) = 4+ b. Thefollowing relation
holds.
F2(1) > F@(). (16)

From Criterion 5(1), it is obtained that the anomalous
period-doubling bifurcation occursin this case. Thus, The-
orem 1(1) is proved.

Next, n1 = 4 holds in the case with m = 3. The
second derivative of a x = 1lisaso 4. Thus we
have to determine the third order derivatives. We input
& =a/2,np = a, { = 0anda = 4in Eq.(14) and have
{1 = 48 (= F®(1)). On the other hand, the third order
derivative of § at x = 1is3b (= F{¥(1)). From Criterion
5(2), the anomalous period-doubling bifurcation occurs if
the condition b > 16 holds. If the condition b < 16 holds,
the regular period-doubling bifurcation occurs

We prove that the regular period-doubling bifurcation
occurs in the case with b = 16. In the following, we let
a = 4. Suppose that the initial point to = (Xo, Yo) locates
on g .

Xo=1, yo=—2(t —t?). (17)

Here, wesett = 1 — ¢ (¢ > 0) and obtain the position of

x
d— a4,
theimaget; = (Xg, y1).
Xt =1+€—2€2, yp =2(1—¢€)e. (18)

In order to determine the y-coordinate (ys) of %f at x = Xy,
weletb = 16.

ys = 2¢(1 — € — 20€® + 48¢* — 32¢%). (19)
The differenced = y; — Vs isobtained.
d=vy —ys = 64e*((e —3/4)?>+1/16) > 0.  (20)

From Criterion 4, it is obtained that the regular period-
doubling bifurcation occurs. Thus, Theorem 1(2) is proved.

The relation ¢; = 48 = F® (1) holds in the cases with
m > 4. But, the third derivative of S at x = 1is F&Q) =
0. As aresult, we have the relation F®(1) < F®(1).
From Criterion 5(2), it is obtained that the regular period-
doubling bifurcation occurs. Thus, Theorem 1(3) is proved.

Findly, the case with b = 0 is studied. Using the reason
for the cases with m > 4, we obtain the same result that the
regular period-doubling bifurcation occurs. The details are
omitted. Thus, Theorem 1(4) is proved.

3.3 Examplesof period-2

The orbital points of period-2 appearing through the
anomalous period-doubling bifurcation are displayed in
Fig. 4 (m = 2) and in Fig. 5 (m = 3). The anomalous
parameter intervals are a € [3.852747,4) (m = 2) and
a € [3.924018, 4) (m = 3). The large disks represent the
orbital points of elliptic period-2 and the small disks repre-
sent those of saddle ones.
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34 Remark Next, we study the situation that two saddle points are
Using the Poincaré index (Guckenheimer and Holmes, absorbed into Q. Thisisthe situation at a > 4. Thus, Q
1983), we explain the fact that two saddle points absorbed s the saddle point under the operation of T2 and the index
into Q are not emitted from Q at a > 4. After thesaddle- of Q is (—1). Under the operation of T2, there exist two
node bifurcation, the elliptic period-2 points and the saddle daughter elliptic points appeared from Q at a > 4. The
ones appear. Under the operation of T?, there exist two Poincare index of two daughter pointsis 2 x (+1). Suppose
orbital points of the elliptic period-2 and the saddle one. that two saddle points are emitted from Q at a > 4. The
Thus, the Poincaré index of the dlliptic pointsis 2 x (+1). Poincare index of two saddle pointsis 2 x (—1). Thus, we
The Poincaré index of the saddle pointsis2 x (—1). Under have the summation (—1) = (-1) + (+2) + (—2). But,
the operation of T2, Q is the eliptic point. The index before the emission of two saddle points, the summation is
is (+1). Thus, the summation of the Poincaré indices is (+1). The contradiction is derived.
+1) = +1) + (+2) + (—2). Before the saddle-node
bifurcation, only Q exists. Thus, the summation is (+1).
The summation of Poincaré indices are preserved.
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4. Conclusion

We derive the conditions that the regular/anomalous
period-doubling bifurcation of T happens. The results are
summarized as Theorem 1. Theorem 1 says that the loss of
smoothness of the mapping function causes the anomalous
period-doubling bifurcation.

In this paper, we do not discuss the anomalous rotation
bifurcation of the periodic orbit with the rotation number
p/q 0 < p/q < 1/2). In the cases withm = 1,2
and p/q (0 < p/q < 1/2), it is needed to determine
the conditions at which the anomalous rotation bifurcation
occurs. We leave it as a future problem.

Acknowledgments. The authors are grateful to the referee for
useful comments.

Appendix A. The anomalous rotation bifurcation
of period-4
We introduce the example of the anomal ous rotation bi-
furcation of period-4. Here, the mapping function f (x) is
defined.

f(x) =ax —x% (a> 0). (A1)

interval is [a' =
The image T2S; touches

The anomaous parameter
0.9942834, a.(1/4) = 1).

the symmetry axis SgF a a = a". The tangent point s,
locates apart from Q (see Fig. 6(8)). The two intersection
points z, and w, are observed in Fig. 6(b) where z;, is
the elliptic point and w, is the saddle point. The saddle
pointswj (0 < j < 3) moveto Q and these are absorbed
into Q (Fig. 6(c)) at a = 1. The monotone twist property
(Birkhoff, 1927) does not hold in the vicinity of Q at
a e [ad, a:(1/4)). Ata > 1, the saddle points are emitted
from Q and the point wq (w-) locates on the symmetry axis

S (S)) (Fig. 6(d)).

References

Birkhoff, G. D. Dynamical Systems, American Mathematical Society Col-
loquium Publications Vol. 9 (American Mathematical Society, 1927,
Revised edition, 1966). https://archive.org/details/
dynami cal syst ens00bi r k/ page/ n7

Dullin, H. R., Meiss, J. D. and Sterling, D., Symbolic codes for rotational
orbits, SAM J. Appl. Dyn. Sys. 4 (2005), 515-562. ht t ps: // doi .
org/ 10. 1137/ 040612877

Guckenheimer, J. and Holmes, P, Nonlinear oscillations, dynamical sys-
tems, and bifurcations of vector fields (Springer-Verlag,1983), p. 51.

Hénon, M., Numerical study of quadratic area-preserving mappings,
Quart. Appl. Math. XXVI11(3) (1969), 291-312.

Moser, J. K., Lectures on Hamiltonian Systems, Memoirs of the Ameri-
can Mathematical Society 81 (1968), 1-60. See Fig. 11. Hamiltonian
dynamical systems. A reprint selection compiled & introduced by R. S.
Mackay & J. D. Meiss. (Adam Hilger, 1987). 77-136.



